

Characterisation of various γ -ray activity states of a sample of γ -NLS1 galaxies

Anna Luashvili

Catherine Boisson, Andreas Zech

High Energy Astrophysics in Southern Africa 2024 @ Wits Rural Facility 02 October 2024

Characterisation of various γ -ray activity states of a sample of γ -NLS1 galaxies

Anna Luashvili

Catherine Boisson, Andreas Zech, Markus Boettcher

High Energy Astrophysics in Southern Africa 2024 @ Wits Rural Facility 02 October 2024

Blazar sub-classes

Blazar sub-classes

Blazar sub-classes

Peculiar γ -ray emitting NLS1 galaxies

- NLS1 classification based on optical features (Osterbrock & Pogge 1985)
- Relatively low mass BH compared to FSRQs Thought to be hosted by spiral galaxies
- Only a small fraction of NLS1 found to be radio loud (7%, Komossa+2006)

Unexpected Gamma-ray detection (PMN J0948+0022, Abdo+2009)

Confirmed the presence of a powerful relativistic jet

- Rare objects: ~ 20 discovered up to date (*e.g.* Paliya+2019)
- Never detected in the VHE band, CTA projections not promising (Romano+2020)
- Short variability timescales ~ hours (*e.g.* Paliya+2015)
- Extremely high (close-Eddington) accretion rates, changing SED properties (disc or completely jet dominated states… (Calderone+2012, D'Ammando+2015))

Sample:

- 1H 0323+342 (z=0.0625) (Paliya et al., 2014)
- PMN J0948+0022 (z=0.5846) (D'Ammando et al., 2015)
- B2 0954+25A (z=0.712) (Calderone et al., 2012)

• MWL data analysis of low and high states, observational constraints

Sample:

- 1H 0323+342 (z=0.0625) (Paliya et al., 2014)
- PMN J0948+0022 (z=0.5846) (D'Ammando et al., 2015)
- B2 0954+25A (z=0.712) (Calderone et al., 2012)

- MWL data analysis of low and high states, observational constraints
- SED modelling using:
	- One-zone SSC model (e.g. Katarzynski et al., 2001)
	- direct and EIC scattered components following

Ghisellini & Tavecchio (2009) and Dermer & Menon (2009).

See also Arrieta-Lobo (2017) & Luashvili et al., 2023

Sample:

- 1H 0323+342 (z=0.0625) (Paliya et al., 2014)
- PMN J0948+0022 (z=0.5846) (D'Ammando et al., 2015)
- B2 0954+25A (z=0.712) (Calderone et al., 2012)

- MWL data analysis of low and high states, observational constraints
- SED modelling using:
	- One-zone SSC model (e.g. Katarzynski et al., 2001)
- direct and EIC scattered components following Ghisellini & Tavecchio (2009) and Dermer & Menon (2009).

See also Arrieta-Lobo (2017) & Luashvili et al., 2023

• BLR and Torus dominated scenario tests

 $R_v < R_{BLR,in}$: BLR-EIC dominates $R_v = R_{BLR,out}$: Torus-EIC dominates

Investigate the physical origin of their variability

Anna Luashvili HEASA Conference 2024 2

Sample:

- 1H 0323+342 (z=0.0625) (Paliya et al., 2014)
- PMN J0948+0022 (z=0.5846) (D'Ammando et al., 2015)
- B2 0954+25A (z=0.712) (Calderone et al., 2012)

- MWL data analysis of low and high states, observational constraints
- SED modelling using:
	- One-zone SSC model (e.g. Katarzynski et al., 2001)
- direct and EIC scattered components following Ghisellini & Tavecchio (2009) and Dermer & Menon (2009).

See also Arrieta-Lobo (2017) & Luashvili et al., 2023

• BLR and Torus dominated scenario tests

 $R_v < R_{BLR,in}$: BLR-EIC dominates $R_v = R_{BLR,out}$: Torus-EIC dominates

- Investigate the physical origin of their variability
- Estimation of variable jet powers

1H 0323+342

1H 0323+342 (z=0.0625), closest known γ -NLS1

 $M_{BH} = 2~10^7 M_{\odot}$ (Landt et al., 2017)

- Suspected to host an underpowered jet (Kynoch et al., 2018)
- Strong and fast variability (~hours day), (Paliya et al., 2014, D'Ammando et al., 2020)
- Brightest flare in 2013 (Paliya et al., 2014)
- Intermediate/low state from 2008 and 2015 (Paliya et al., 2014, Kynoch et al., 2018)

Anna Luashvili HEASA Conference 2024 3

1H 0323+342 – Disc & BLR dominated scenario

 $R_{\gamma} < R_{BLR,in}$: dominant EIC BLR (& disc)

Constant external photon fields and varying jet parameters only

- Denser blob and more relativistic blob in the high state
- Changes in the particle distribution

PMN J0948+0022 – torus dominated scenario

$\overline{R}_\gamma = \overline{R}_{BLR,out}$: Torus-EIC dominates

Constant external photon fields and varying jet parameters only

- Denser blob and more relativistic blob in the high state
- Changes in the particle distribution (+ B)

Estimation of each contribution to the jet power

For each source of interest, considered scenario and activity state, various contributions to the total jet powers are estimated:

$$
P_{jet, tot} = P_{rad} + P_B + P_e + P_{p,cold}
$$

where

$$
P_i = 2\pi R^2 c \Gamma^2 U_i'
$$

associated energy density
two-sideness of the jet
in the co-moving frame

Variable jet powers of γ -NLS1 galaxies

Variable jet powers of γ -NLS1 galaxies η_{rad} =

 P_{rad} $P_{tot,jet}$

Variable jet powers of γ -NLS1 galaxies

 η_{rad} = P_{rad} $P_{tot,jet}$

Variable jet powers of γ -NLS1 galaxies

 η_{rad} P_{rad} $P_{tot,jet}$

+ torus scenario violates observed variability time constraints

 P_{jet} dominates L_{Disc} (see blazars case in Ghisellini et al., 2014), except for 1H 0323+342.

 P_{jet} dominates L_{Disc} (see blazars case in Ghisellini et al., 2014), except for 1H 0323+342.

BH mass-normalized quantities

 P_{jet} dominates L_{Disc} (see blazars case in Ghisellini et al., 2014), except for 1H 0323+342.

BH mass-normalized quantities

1H 0323+342 = genuinly low-power NLS1 (Kynoch et al. 2017)? See also Paliya et al., 2016.

 P_{jet} dominates L_{Disc} (see blazars case in Ghisellini et al., 2014), except for 1H 0323+342.

BH mass-normalized quantities

1H 0323+342 = genuinly low-power NLS1 (Kynoch et al. 2017)? See also Paliya et al., 2016.

- Transition from low to high activity states well explained by denser and more relativistic blobs
- BH-blob distance kept constant between low and high states stationary shock scenario

- turbulent plasma flow through a strationary shock region (Marscher (2013)), or shock-shock interaction (Fichet de Clairfontaine et al., 2021) ...

- Transition from low to high activity states well explained by denser and more relativistic blobs
- BH-blob distance kept constant between low and high states stationary shock scenario

- turbulent plasma flow through a strationary shock region (Marscher (2013)), or shock-shock interaction (Fichet de Clairfontaine et al., 2021) ...

Quasi-stationary collimation and acceleration zones exist in 1H 0323+342 (Hada et al., 2018) $(^{2}1 - 100 \,\mathrm{pc})$

Exploited available MOJAVE and F-GAMMA radio data of our sources but de-projected distance scales too large in comparison with sub-parsec dissipation regions modelled here.

- Transition from low to high activity states well explained by denser and more relativistic blobs
- BH-blob distance kept constant between low and high states stationary shock scenario

- turbulent plasma flow through a strationary shock region (Marscher (2013)), or shock-shock interaction (Fichet de Clairfontaine et al., 2021) ...

Quasi-stationary collimation and acceleration zones exist in 1H 0323+342 (Hada et al., 2018) $(^{2}1 - 100 \,\mathrm{pc})$

Exploited available MOJAVE and F-GAMMA radio data of our sources but de-projected distance scales too large in comparison with sub-parsec dissipation regions modelled here.

- Transition from low to high activity states well explained by denser and more relativistic blobs
- BH-blob distance kept constant between low and high states stationary shock scenario

- turbulent plasma flow through a strationary shock region (Marscher (2013)), or shock-shock interaction (Fichet de Clairfontaine et al., 2021) ...

Quasi-stationary collimation and acceleration zones exist in 1H 0323+342 (Hada et al., 2018) $(^{2}1 - 100 \text{ pc})$

Exploited available MOJAVE and F-GAMMA radio data of our sources but de-projected distance scales too large in comparison with sub-parsec dissipation regions modelled here.

- Alternative super-Eddington scenario? rejected
- Calibration with FSRQs still needs to be understood. Work in progress…

- Transition from low to high activity states well explained by denser and more relativistic blobs
- BH-blob distance kept constant between low and high states stationary shock scenario

- turbulent plasma flow through a strationary shock region (Marscher (2013)), or shock-shock interaction (Fichet de Clairfontaine et al., 2021) ...

Quasi-stationary collimation and acceleration zones exist in 1H 0323+342 (Hada et al., 2018) $(^{2}1 - 100 \text{ pc})$

Exploited available MOJAVE and F-GAMMA radio data of our sources but de-projected distance scales too large in comparison with sub-parsec dissipation regions modelled here.

• Alternative super-Eddington scenario? – rejected

Thank you!

• Calibration with FSRQs – still needs to be understood. Work in progress…