

Characterisation of various γ -ray activity states of a sample of γ -NLS1 galaxies

Anna Luashvili

Catherine Boisson, Andreas Zech

High Energy Astrophysics in Southern Africa 2024 @ Wits Rural Facility 02 October 2024

Characterisation of various γ -ray activity states of a sample of γ -NLS1 galaxies

Anna Luashvili

Catherine Boisson, Andreas Zech, Markus Boettcher

High Energy Astrophysics in Southern Africa 2024 @ Wits Rural Facility 02 October 2024

Blazar sub-classes

Blazar sub-classes

Blazar sub-classes

Peculiar γ -ray emitting NLS1 galaxies

- NLS1 classification based on optical features (Osterbrock & Pogge 1985)
- Relatively low mass BH compared to FSRQs Thought to be hosted by spiral galaxies
- Only a small fraction of NLS1 found to be radio loud (7%, Komossa+2006)

Unexpected Gamma-ray detection (PMN J0948+0022, Abdo+2009)

Confirmed the presence of a powerful relativistic jet

- Rare objects: ~ 20 discovered up to date (*e.g.* Paliya+2019)
- Never detected in the VHE band, CTA projections not promising (Romano+2020)
- Short variability timescales ~ hours (*e.g.* Paliya+2015)
- Extremely high (close-Eddington) accretion rates, changing SED properties (disc or completely jet dominated states... (Calderone+2012, D'Ammando+2015))

Sample:

- 1H 0323+342 (z=0.0625) (Paliya et al., 2014)
- PMN J0948+0022 (z=0.5846) (D'Ammando et al., 2015)
- B2 0954+25A (z=0.712) (Calderone et al., 2012)

• MWL data analysis of low and high states, observational constraints

Sample:

- 1H 0323+342 (z=0.0625) (Paliya et al., 2014)
- PMN J0948+0022 (z=0.5846) (D'Ammando et al., 2015)
- B2 0954+25A (z=0.712) (Calderone et al., 2012)

- MWL data analysis of low and high states, observational constraints
- SED modelling using:
 - One-zone SSC model (e.g. Katarzynski et al., 2001)
 - direct and EIC scattered components following

Ghisellini & Tavecchio (2009) and Dermer & Menon (2009).

See also Arrieta-Lobo (2017) & Luashvili et al., 2023

Sample:

- 1H 0323+342 (z=0.0625) (Paliya et al., 2014)
- PMN J0948+0022 (z=0.5846) (D'Ammando et al., 2015)
- B2 0954+25A (z=0.712) (Calderone et al., 2012)

- MWL data analysis of low and high states, observational constraints
- SED modelling using:
 - One-zone SSC model (e.g. Katarzynski et al., 2001)
- direct and EIC scattered components following Ghisellini & Tavecchio (2009) and Dermer & Menon (2009).

See also Arrieta-Lobo (2017) & Luashvili et al., 2023

BLR and Torus dominated scenario tests

 $R_{\gamma} < R_{BLR,in}$: BLR-EIC dominates $R_{\gamma} = R_{BLR,out}$: Torus-EIC dominates

Investigate the physical origin of their variability

HEASA Conference 2024

Sample:

- 1H 0323+342 (z=0.0625) (Paliya et al., 2014)
- PMN J0948+0022 (z=0.5846) (D'Ammando et al., 2015)
- B2 0954+25A (z=0.712) (Calderone et al., 2012)

- MWL data analysis of low and high states, observational constraints
- SED modelling using:
 - One-zone SSC model (e.g. Katarzynski et al., 2001)
- direct and EIC scattered components following Ghisellini & Tavecchio (2009) and Dermer & Menon (2009).

See also Arrieta-Lobo (2017) & Luashvili et al., 2023

BLR and Torus dominated scenario tests

 $R_{\gamma} < R_{BLR,in}$: BLR-EIC dominates $R_{\gamma} = R_{BLR,out}$: Torus-EIC dominates

- → Investigate the physical origin of their variability
- Estimation of variable jet powers

1H 0323+342

1H 0323+342 (z=0.0625), closest known γ -NLS1

 $M_{BH} = 2 \ 10^7 M_{\odot}$ (Landt et al., 2017)

- Suspected to host an underpowered jet (Kynoch et al., 2018)
- Strong and fast variability (~hours day), (Paliya et al., 2014, D'Ammando et al., 2020)
- Brightest flare in 2013 (Paliya et al., 2014)
- Intermediate/low state from 2008 and 2015 (Paliya et al., 2014, Kynoch et al., 2018)

1H 0323+342 – Disc & BLR dominated scenario

Anna Luashvili

 $R_{\gamma} < R_{BLR,in}$: dominant EIC BLR (& disc)

Constant external photon fields and varying jet parameters only

Fixed parameters								
	θ	5°						
M	$T_{BH}[M_{\odot}] = 2$	2×10^7						
L_D	$[erg \ s^{-1}]$ 2 :	$\times 10^{45}$						
	l_{Edd}	0.80						
State	Low	High						
δ	9	10						
$n_e \ [cm^{-3}]$	2.56×10^4	1.74×10^4						
$R_{blob} \ [cm]$	1.15×10^{15}	1.03×10^{15}						
n_2	4.2	3.4						
γ_{min}	50	120						
γ_b	150	280						

- Denser blob and more relativistic blob in the high state
- Changes in the particle distribution

PMN J0948+0022 – torus dominated scenario

 $R_{\gamma} = R_{BLR,out}$: Torus-EIC dominates

Constant external photon fields and varying jet parameters only

	Fixed parameters							
_		θ	3	3°				
	$M_{BH}[M_{\odot}]$							
1	$L_D[e$	$erg \; s^{-1}]$	$9 \times$	10^{45}				
		l_{Edd}	0.	48				
		_						
State	;	Low	•	H	Iigh			
δ		10			12			
$n_e \; [cm^-$	$^{-3}]$	12.80)	1	6.37			
R_{blob} [ca	m]	9.37×10^{-10}	10^{16}	9.35	$\times 10^{16}$			
$B\left[G\right]$]	0.20		().12			
n_2		3.9			3.5			
γ_b		900		1:	$\times 10^{3}$			

- Denser blob and more relativistic blob in the high state
- Changes in the particle distribution (+ B)

Estimation of each contribution to the jet power

For each source of interest, considered scenario and activity state, various contributions to the total jet powers are estimated:

$$P_{jet,tot} = P_{rad} + P_B + P_e + P_{p,cold}$$

where
$$P_i = 2\pi R^2 c \Gamma^2 U'_i$$
associated energy density
two-sideness of the jet
associated energy density
in the co-moving frame

Source	Scenario	State	$\log P_e$	$\log P_B$	logP _{rad}	$\log P_{p, \text{ cold}}$	$\log P_{\text{tot, jet}}$	$\eta_{ m rad}$
		Low	43.20	42.21	43.80	44.48	44.58	0.17
	Disc-BLR	Intermediate	43.32	42.21	43.97	44.58	44.70	0.19
111 (1222 + 242		High	43.78	42.31	44.65	44.94	45.15	0.32
1110525 ± 542		Low	43.66	42.62	43.85	44.08	44.38	0.30
	Torus	Intermediate	43.62	42.63	43.91	44.00	44.36	0.36
		High	44.38	42.95	44.91	44.75	45.22	0.50
	Disc PI P	Intermediate	44.67	43.42	46.04	46.48	46.62	0.26
DNANT 100/0 + 0000	DISC-DLK	High	45.08	43.43	46.62	46.85	47.05	0.37
PMN J0948+0022	Torus	Intermediate	44.60	43.89	45.82	44.99	45.91	0.82
		High	44.93	43.64	46.46	45.28	46.50	0.91
		Low	44.39	43.78	45.14	46.28	46.31	0.07
D2 0054 + 25 A	DISC-DLK	High	44.65	43.96	45.52	46.56	46.60	0.08
BZ 0934+23A	Tamaa	Low	44.30	43.69	45.23	44.66	45.38	0.71
	Torus	High	44.56	43.64	45.53	44.93	45.67	0.73

ກຸ		Prad
'Irad	_	P _{tot,jet}

Source	Scenario	State	$\log P_e$	$\log P_B$	logP _{rad}	$\log P_{p, \text{ cold}}$	$\log P_{\text{tot, jet}}$	$\eta_{ m rad}$
		Low	43.20	42.21	43.80	44.48	44.58	0.17
	Disc-BLR	Intermediate	43.32	42.21	43.97	44.58	44.70	0.19
111 ()202 + 240		High	43.78	42.31	44.65	$\log P_{rad}$ $\log P_{p, cold}$ $\log P_{tot, jet}$ η_{rad} 43.8044.4844.580.1743.9744.5844.700.1944.6544.9445.150.3743.8544.0844.380.3943.9144.0044.360.3944.9144.7545.220.5946.0446.4846.620.2946.6246.8547.050.3345.8244.9945.910.8946.4645.2846.500.9945.1446.2846.310.045.5244.6645.380.745.5344.9345.670.7	0.32	
III 0323 + 342		Low	43.66	42.62	43.85	44.08	44.38	0.30
	Torus	Intermediate	43.62	42.63	43.91	44.00	44.36	0.36
		High	44.38	42.95	44.91	44.75	45.22	0.50
		Intermediate	44.67	43.42	46.04	46.48	46.62	0.26
DMNI 10048 + 0022	DISC-DLK	High	45.08	43.43	46.62	46.85	47.05	0.37
FIVIIN JU940+0022	Tomas	Intermediate	44.60	43.89	45.82	44.99	45.91	0.82
	Torus	High	44.93	43.64	46.46	45.28	46.50	0.91
	D: DID	Low	44.39	43.78	45.14	46.28	46.31	0.07
D2 0054 + 25 A	DISC-DLK	High	44.65	43.96	45.52	46.56	46.60	0.08
D2 0934+23A	Tomas	Low	44.30	43.69	45.23	44.66	45.38	0.71
	Torus	High	44.56	43.64	45.53	44.93	45.67	0.73

n		Prad
'Irad	_	P _{tot,jet}

Source	Scenario	State	$\log P_e$	$\log P_B$	logP _{rad}	$\log P_{p, \text{ cold}}$	$\log P_{\text{tot, jet}}$	$\eta_{ m rad}$
		Low	43.20	42.21	43.80	44.48	44.58	0.17
	Disc-BLR	Intermediate	43.32	42.21	43.97	44.58	44.70	0.19
111 0222 + 242		High	43.78	42.31	44.65	44.94	45.15	0.32
III 0525+542		Low	43.66	42.62	43.85	44.08	44.38	0.30
	Torus	Intermediate	43.62	42.63	43.91	44.00	44.36	0.36
		High	44.38	42.95	44.91	44.75	45.22	0.50
		Intermediate	44.67	43.42	46.04	46.48	46.62	0.26
DMINT 10049 + 0022	DISC-DLK	High	45.08	43.43	46.62	46.85	47.05	0.37
PMIN J0946+0022	Tomas	Intermediate	44.60	43.89	45.82	44.99	45.91	0.82
	Torus	High	44.93	43.64	46.46	45.28	46.50	0.91
D2 0054 + 25 A	D' DI D	Low	44.39	43.78	45.14	46.28	46.31	0.07
	DISC-DLK	High	44.65	43.96	45.52	46.56	46.60	0.08
DZ 0934+23A	Tomas	Low	44.30	43.69	45.23	44.66	45.38	0.71
	Torus	High	44.56	43.64	45.53	44.93	45.67	0.73

 $\eta_{rad} = \frac{P_{rad}}{P_{tot,jet}}$

Source	Scenario	State	$\log P_e$	$\log P_B$	logP _{rad}	$\log P_{p, \text{ cold}}$	$\log P_{\text{tot, jet}}$	$\eta_{ m rad}$
		Low	43.20	42.21	43.80	44.48	44.58	0.17
	Disc-BLR	Intermediate	43.32	42.21	43.97	44.58	44.70	0.19
1H 0323+342		High	43.78	42.31	44.65	44.94	45.15	0.32
IH 0323+342		Low	43.66	42.62	43.85	44.08	44.38	0.30
	Torus	Intermediate	43.62	42.63	43.91	44.00	44.36	0.36
		High	44.38	42.95	44.91	44.75	45.22	0.50
	Disc-BLR	Intermediate	44.67	43.42	46.04	46.48	46.62	0.26
PMN J0948+0022		High	45.08	43.43	46.62	46.85	47.05	0.37
	T	Intermediate	44.60	43.89	45.82	44.99	45.91	0.82
	Torus	High	44.93	43.64	46.46	45.28	46.50	0.91
		Low	44.39	43.78	45.14	46.28	46.31	0.07
D2 0054 + 254	DISC-BLR	High	44.65	43.96	45.52	46.56	46.60	0.08
B2 0954+25A	Tamaa	Low	44.30	43.69	45.23	44.66	45.38	0.71
	Iorus	High	44.56	43.64	45.53	44.93	45.67	0.73

+ torus scenario violates observed variability time constraints

 P_{jet} dominates L_{Disc} (see blazars case in Ghisellini et al., 2014), except for 1H 0323+342.

 P_{jet} dominates L_{Disc} (see blazars case in Ghisellini et al., 2014), except for 1H 0323+342.

BH mass-normalized quantities

 P_{jet} dominates L_{Disc} (see blazars case in Ghisellini et al., 2014), except for 1H 0323+342.

BH mass-normalized quantities

1H 0323+342 = genuinly low-power NLS1 (Kynoch et al. 2017)? See also Paliya et al., 2016.

 P_{jet} dominates L_{Disc} (see blazars case in Ghisellini et al., 2014), except for 1H 0323+342.

BH mass-normalized quantities

1H 0323+342 = genuinly low-power NLS1 (Kynoch et al. 2017)? See also Paliya et al., 2016.

- Transition from low to high activity states well explained by denser and more relativistic blobs
- BH-blob distance kept constant between low and high states stationary shock scenario

- turbulent plasma flow through a strationary shock region (Marscher (2013)), or shock-shock interaction (Fichet de Clairfontaine et al., 2021) ...

- Transition from low to high activity states well explained by denser and more relativistic blobs
- BH-blob distance kept constant between low and high states stationary shock scenario

- turbulent plasma flow through a strationary shock region (Marscher (2013)), or shock-shock interaction (Fichet de Clairfontaine et al., 2021) ...

Quasi-stationary collimation and acceleration zones exist in 1H 0323+342 (Hada et al., 2018) $(^{-1} - 100 \text{ pc})$

Exploited available MOJAVE and F-GAMMA radio data of our sources but de-projected distance scales too large in comparison with sub-parsec dissipation regions modelled here.

- Transition from low to high activity states well explained by denser and more relativistic blobs
- BH-blob distance kept constant between low and high states stationary shock scenario

- turbulent plasma flow through a strationary shock region (Marscher (2013)), or shock-shock interaction (Fichet de Clairfontaine et al., 2021) ...

Quasi-stationary collimation and acceleration zones exist in 1H 0323+342 (Hada et al., 2018) $(^{-1} - 100 \text{ pc})$

Exploited available MOJAVE and F-GAMMA radio data of our sources but de-projected distance scales too large in comparison with sub-parsec dissipation regions modelled here.

- Transition from low to high activity states well explained by denser and more relativistic blobs
- BH-blob distance kept constant between low and high states stationary shock scenario

- turbulent plasma flow through a strationary shock region (Marscher (2013)), or shock-shock interaction (Fichet de Clairfontaine et al., 2021) ...

Quasi-stationary collimation and acceleration zones exist in 1H 0323+342 (Hada et al., 2018) (~1 – 100 pc)

Exploited available MOJAVE and F-GAMMA radio data of our sources but de-projected distance scales too large in comparison with sub-parsec dissipation regions modelled here.

- Alternative super-Eddington scenario? rejected
- Calibration with FSRQs still needs to be understood. Work in progress...

- Transition from low to high activity states well explained by denser and more relativistic blobs
- BH-blob distance kept constant between low and high states stationary shock scenario

- turbulent plasma flow through a strationary shock region (Marscher (2013)), or shock-shock interaction (Fichet de Clairfontaine et al., 2021) ...

Quasi-stationary collimation and acceleration zones exist in 1H 0323+342 (Hada et al., 2018) (~1 – 100 pc)

Exploited available MOJAVE and F-GAMMA radio data of our sources but de-projected distance scales too large in comparison with sub-parsec dissipation regions modelled here.

• Alternative super-Eddington scenario? – rejected

Thank you!

• Calibration with FSRQs – still needs to be understood. Work in progress...