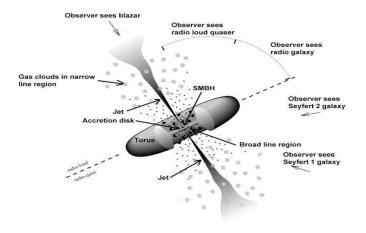


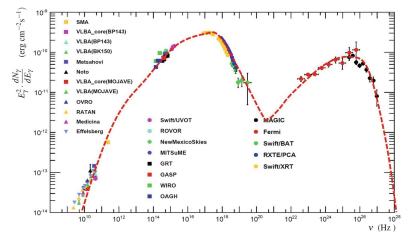
Rukaiya Khatoon

Postdoctoral Researcher North-West University, South Africa Working with **Prof. Markus Böttcher**

Collaborators:

Jyotishree Hota & Ananta C. Pradhan (NIT Rourkela, India), Ranjeev Misra (IUCAA, India)


Hota, Khatoon+, et al. (2024) arXiv: https://arxiv.org/abs/2409.12827


HEASA-2024 (2-4 October), University of the Witwatersrand (Wits), South Africa

- Class of AGN for which the relativistic jet is pointed towards the observer.
- Blazars include two main categories: Flat Spectrum Radio Quasars (FSRQs), which have strong optical emission lines, and BL Lacertae objects (BL Lacs), which have weak or no optical emission lines.

Blazar properties

- Non-thermal spectrum extending from radio to GeV/TeV Gamma rays
- Rapid variability both spectral and flux
- Typical double hump spectral energy distribution

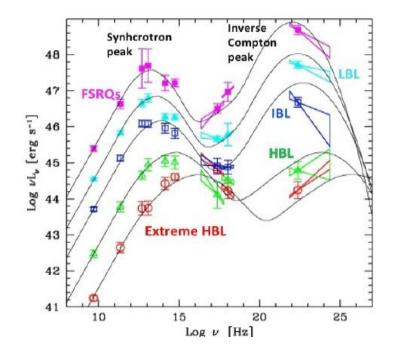
2

Blazar Sequence :

→ Low Synchrotron peaked (LSP/LBL):

Blazars consisting of FSRQs and LBLs having synchrotron peak frequency < 10^14 Hz

→ Intermediate synchrotron peaked (ISP/IBL):


Blazars classified as BL Lac objects having synchrotron peak frequency 10^14 - 10^15 Hz

→ High synchrotron peaked (HSP/HBL):

Blazars consists of HBLs i.e., BL Lac objects having synchrotron peak frequency > 10^15 Hz

→ Extreme high-energy peaked BL Lac objects (EHBLs):

For EHBLs, the synchrotron peak located at > 10^17 Hz and a high-energy hump exceeding one TeV.

The blazar sequence by Fossati et al. (1998)

Observations of 1ES 0229+200

- IES 0229+200 is an EHBL source and is located at redshift z = 0.14. It is classified as hard-TeV blazar because its emission reaches very high-energy gamma rays, with the peak of its SED occurring above some TeV.
- The source was observed over five different epochs between 2017 and 2021 by AstroSat, utilizing its onboard instruments: the Ultraviolet Imaging Telescope (UVIT: 130–300 nm), the Soft X-ray Focusing Telescope (SXT: 0.3–8.0 keV), and the Large Area X-ray Proportional Counter (LAXPC: 3–80 keV).
- ➤ The Fermi-LAT (100 MeV-300 GeV) data of the source were collected from 2008 to 2022.
- > For the VHE γ -ray observations, we used the TeV spectra obtained from the MAGIC observations reported by **MAGIC Collaboration et al. (2020)**, with a total exposure time of 117.46 hours and spanning a duration from 2013 to 2017.
- We conducted Spectral Energy Distribution (SED) analysis of the source, over different epochs between September 2017 and August 2021.

Details of the AstroSat observations at five epochs:

Observation ID	Instrument	Energy	Observation date	Exposure	Count rate
		band		(ks)	(Count/sec)
	LAXPC20	3-30 keV	21-23, Sep 2017	57.4	2.74 ± 0.15
A03_078T01_9000001546	SXT	0.7-7 keV	21-23, Sep 2017	57.4	0.42 ± 0.01
	UVIT	FUVBaF2 (1541 Å)	22, Sep 2017	4.97	0.168 ± 0.007
	UVIT	NUVB13(2447 Å)	22, Sep 2017	5.0	0.463 ± 0.01
	LAXPC20	3-30 keV	9-10, Dec 2017	40	2.99 ± 0.10
A04_130T01_9000001762	SXT	0.7-7 keV	9-10, Dec 2017	40	0.40 ± 0.02
	UVIT	FUVBaF2 (1541 Å)	9, Dec 2017	4.97	0.175 ± 0.006
	UVIT	NUVB13(2447 Å)	9, Dec 2017	4.97	0.468 ± 0.01
	LAXPC20	3-30 keV	21-22, Dec 2017	50	3.15 ± 0.10
A04_130T01_9000001792	SXT	0.7-7 keV	21-22, Dec 2017	50	0.37 ± 0.007
	UVIT	FUVBaF2 (1541 Å)	21, Dec 2017	4.99	0.168 ± 0.006
	UVIT	NUVB13 (2447 Å)	21, Dec 2017	5.0	0.467 ± 0.01
	LAXPC20	3-30 keV	8-9, Dec 2018	57.4	2.52 ± 0.06
A04_130T01_9000001822	SXT	0.7-7 keV	8-9, Jan 2018	57.4	0.42 ± 0.02
	UVIT	FUVBaF2(1541 Å)	8, Jan 2018	4.9	0.175 ± 0.006
	UVIT	NUVB13 (2447 Å)	8, Jan 2018	5	0.50 ± 0.01
	LAXPC20	3-30 keV	8-12, Aug 2021	343.6	2.32 ± 0.09
T04_034T01_9000004632	SXT	0.7-7 keV	8-12, Aug 2021	343.6	0.24 ± 0.006
	UVOT	W1(2600 Å)	8-12, Aug 2021	3	0.613 ± 0.028
	UVOT	W2(1928 Å)	8-12, Aug 2021	3	0.440 ± 0.02
	UVOT	M2(2246 Å)	8-12, Aug 2021	3	0.286 ± 0.013

- Previous Models Explaining VHE Emission:
 - One-zone Leptonic SSC Models: Abdo et al. (2011); Aleksic´ et al. (2012); Aliu et al. (2014); Costamante et al. (2018); Xue et al. (2019); Foffano et al. (2019); Diwan et al. (2023) etc.
 - One-zone Lepto-hadronic Model: Zech & Lemoine (2021)
 - Two-zone Lepto-hadronic Model: Aguilar-Ruiz et al. (2022)
- Our Modeling Approach for 1ES 0229+200:
 - Processes: Synchrotron and Synchrotron Self-Compton (SSC)
 - Particle Distribution Models Applied:
- 1. Log-parabola model
- 2. Broken Power Law model
- 3. Power Law with a maximum electron energy (γ_{max})
- 4. Energy-dependent Diffusion (EDD)
- 5. Energy-dependent Acceleration (EDA)

Sinha et al. 2017; Goswami et al. 2018; Hota, **Khatoon+**, et al. 2021; **Khatoon** et al. 2022; Bora, **Khatoon+**, et al. 2024

SED Modeling of 1ES 0229+200

The synchrotron emissivity due to a relativistic electron distribution $n(\gamma)$ (*Rybicki & Lightman 1986*):

$$J_{\rm syn}(\epsilon') = rac{1}{4\pi} \int P_{\rm syn}(\gamma,\epsilon') \, n(\gamma) \, d\gamma$$

$$P_{\rm syn}(\gamma,\epsilon') = \frac{\sqrt{3}\pi e^3 B}{4m_e c^2} f\left(\frac{\epsilon'}{\epsilon_c}\right) - \frac{1}{2}$$

The pitch angle averaged synchrotron power emitted by single particle

$$\epsilon_c = \frac{3he\gamma^2 B}{16m_e c}$$

 $f\left(\frac{\epsilon'}{\epsilon_c}\right) \rightarrow$ The synchrotron power function defined as

$$\rightarrow \quad f(x) = x \int_x^\infty K_{5/3}(\psi) \, d\psi$$

 $K_{\rm 5/3}$ is the Bessel function of order 5/3

□ The synchrotron flux that the observer receives at energy
e will be given by (Begelman, Blandford & Rees 1984):

$$F_{\text{syn}}(\epsilon) = \frac{\delta^3 (1+z)}{d_L^2} V J_{\text{syn}} \left(\frac{1+z}{\delta}\epsilon\right)$$
$$= \frac{\delta^3 (1+z)}{d_L^2} V \mathbb{A} \int_{\xi_{min}}^{\xi_{max}} f(\epsilon/\xi^2) n(\xi) d\xi$$

$$J_{\rm syn}\left(\frac{1+z}{\delta}\epsilon\right) = \mathbb{A}\int_{\xi_{min}}^{\xi_{max}} f(\epsilon/\xi^2) n(\xi) d\xi$$

Here, the particle energy distribution is expressed by $n(\xi)$, where ξ is represented in such a way that $\xi = \gamma \sqrt{\mathbb{C}}$, where $\mathbb{C} = \frac{\delta}{1+z} \frac{3heB}{16m_ec}$

 δ being the jet's Doppler factor, and B is the magnetic field. In the model, the XSPEC "energy" variable is defined as $\xi = \gamma \sqrt{\mathbb{G}}$, where the corresponding observed photon energy is $\epsilon = \xi^2$ (ξ^2 has units of keV).

SED Modeling of 1ES 0229+200

> Local convolution model, *sscicon* \otimes *n*(ξ) in XSPEC software package to fit the broadband SED of the source where *n*(ξ) is the particle distribution.

Log parabola (LP): The underlying particle distribution in this scenario is described as

$$n(\xi) = K(\xi/\xi_r)^{-\alpha - \beta \log(\xi/\xi_r)}$$

Here, particle spectral index is denoted by α at the reference energy $\xi^2 = \xi_r^2$, while β represents the spectral curvature, and **K** stands for the normalization of the particle density.

Broken power-law (BPL): The particle distribution in this scenario is characterized as

$$n(\xi) = \begin{cases} K(\xi/1\sqrt{keV})^{-p} \text{ for } \xi < \xi_{break} \\ K\xi_{break}^{q-p}(\xi/1\sqrt{keV})^{-q} \text{ for } \xi > \xi_{break} \end{cases}$$

p and q represent the low and high energy photon indices.

SED Modeling of 1ES 0229+200

D Power-law particle distribution with maximum electron energy (PL with γ_{max}):

The steady-state evolution of density is given by (Kardashev 1962),

$$\frac{\partial}{\partial \gamma} \left[\left(\frac{\gamma}{\tau_{acc}} - \beta_s \gamma^2 \right) n_a \right] + \frac{n_a}{\tau_{esc}} = Q \delta(\gamma - \gamma_0) \qquad \qquad \gamma_{max} = \frac{1}{\beta_s \tau_{acc}}$$

The solution of the steady-state equation,

$$n(\xi) = K\xi^{-p} \left(1 - \frac{\xi}{\xi_{max}}\right)^{(p-2)}$$

$$K = Q_0 \tau_a \gamma_0^{p-1} \mathbb{C}^{p/2}, \ p = \tau_{acc} / \tau_{esc} + 1 \qquad \xi_{max} = \gamma_{max} \sqrt{\mathbb{C}}$$

The free parameters are, ξ_{max} , *p*, and the normalization \mathbb{N} defined as,

$$\mathbb{N} = \frac{\delta^3(1+z)}{d_L^2} V \mathbb{A} Q_0 \tau_{acc} \gamma_0^{p-1} \mathbb{C}^{p/2}$$

Energy dependent diffusion model (EDD):

Escape time scale energy dependent or the diffusion coefficient energy is dependent as $\tau_{esc}(\gamma)$ is given by

$$\tau_{esc} = \tau_{esc,R} \left(\frac{\gamma}{\gamma_R} \right)$$

The electron energy distribution,

$$n(\xi) = K'\xi^{-1}\exp\left[-\frac{\psi}{\kappa}\,\xi^{\kappa}\right]$$

Where,
$$\psi = \eta_R \left(\mathbb{C} \gamma_R^2 \right)^{-\kappa/2} = \eta_R \xi_R^{-\kappa}$$
 $\eta_R \equiv \tau_{acc} / \tau_{esc,R}$

The normalization parameter is given as,

$$\mathbb{N} = \frac{\delta^3 (1+z)}{d_L^2} V \mathbb{A} K' \qquad \qquad K' = Q_0 \tau_{acc} \sqrt{\mathbb{C}} \exp\left[\frac{\eta_{\mathsf{R}}}{\kappa} \left(\frac{\gamma_0}{\gamma_{\mathsf{R}}}\right)^{\kappa}\right]$$

The free parameters are ψ , *k*, and the normalization $\mathbb N$

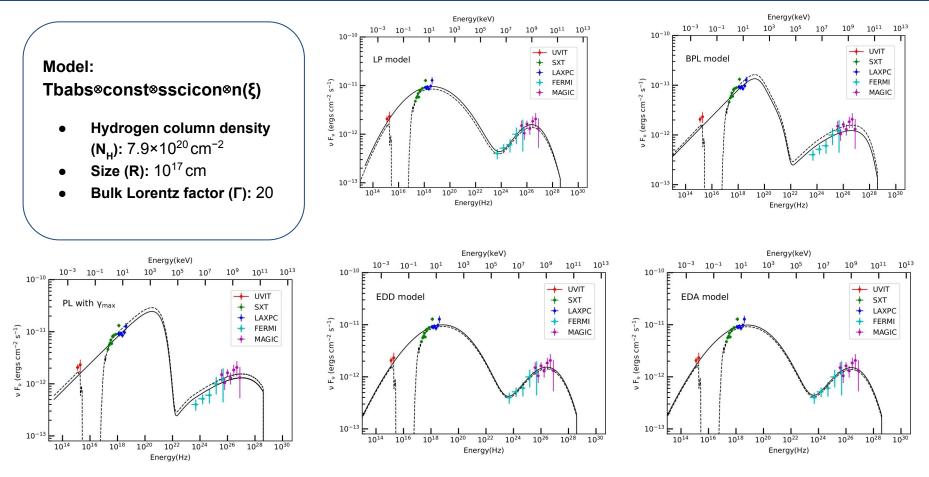
Energy dependent acceleration model (EDA):

Escape time scale energy dependent or the diffusion coefficient energy is dependent as $\tau_{acc}(\gamma)$ is given by

$$\tau_{acc} = \tau_{acc,R} \left(\frac{\gamma}{\gamma_R}\right)^{\kappa}$$

The electron energy distribution,

$$n(\xi) = K'\xi^{\kappa-1} \exp\left[-\frac{\psi}{\kappa}\,\xi^{\kappa}\right]$$

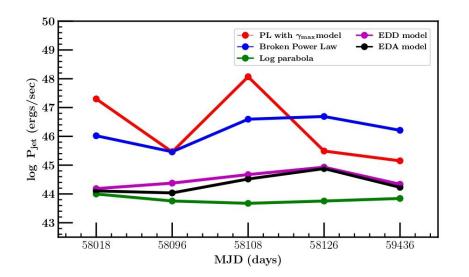

Where,
$$\psi = \eta_R \left(\mathbb{C} \gamma_R^2 \right)^{-\kappa/2} = \eta_R \xi_R^{-\kappa}$$
 $\eta_R \equiv \tau_{acc,R} / \tau_{esc}$

The normalization parameter is given as,

$$\mathbb{N} = \frac{\delta^3 (1+z)}{d_L^2} V \mathbb{A} K' \qquad K' = Q_0 \tau_{acc,R} \sqrt{\mathbb{C}} \xi_R^{-\kappa} \exp\left[\frac{\eta_R}{\kappa} \left(\frac{\xi_0}{\xi_R}\right)^{\kappa}\right]$$

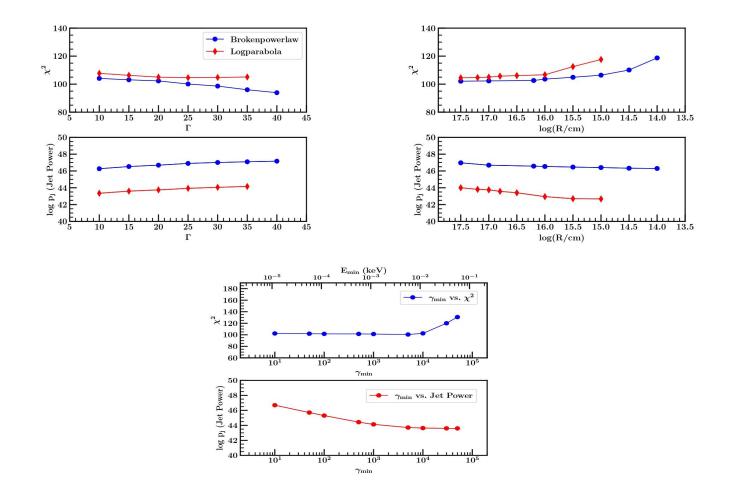
The free parameters are ψ , *k*, and the normalization $\mathbb N$

SED modeling results for 1ES 0229+200



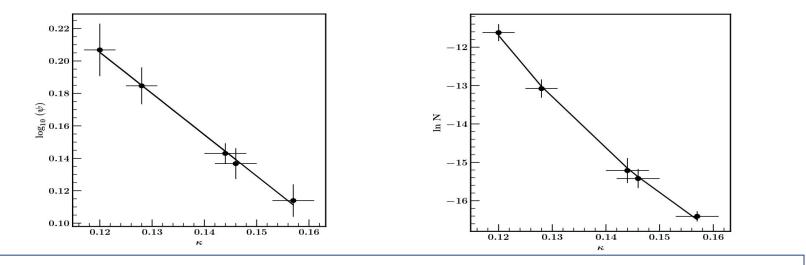
13

□ The total jet power (P_{jet}):


$$P_{jet} = 2 \pi^2 R^2 \Gamma^2 \beta_c u'_k$$

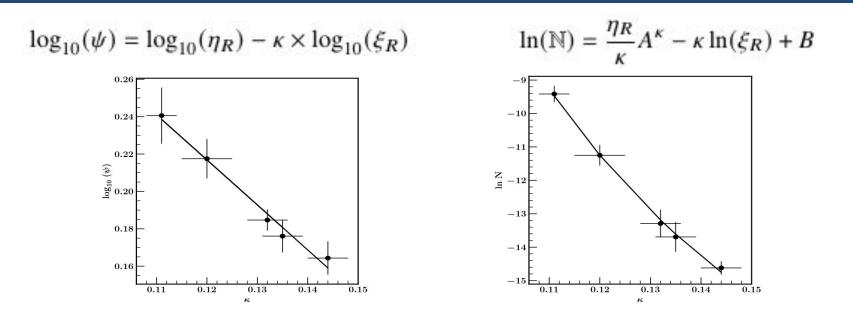
 u_k are the energy densities in the co-moving jet's frame of the magnetic field, relativistic electrons, and cold protons.

R and Γ values at 10¹⁷ cm and 20


Jet power estimated for LP & BPL models

Correlation plots for EDD Model

$$\log_{10}(\psi) = \log_{10}(\eta_R) - \kappa \times \log_{10}(\xi_R)$$


$$\ln(\mathbb{N}) = \frac{\eta_R}{\kappa} A^{\kappa} + B$$

$$\log_{10}(\xi_R) = 2.54$$
, $\log_{10}(\eta_R) = 0.51 \implies \xi_R^2 = 122$ MeV, $\gamma_R = 3.6 \times 10^8$, and $\eta_R = 3.24$

A = 9.66 × 10⁻⁰⁴, B = -23.4, $\gamma_0 \sim A \gamma_R \Rightarrow \gamma_0 \sim 3.5 \times 10^5$

Correlation plots for EDA Model

$$\xi_R^2 = 66 \text{ MeV}, \gamma_R = 2.66 \times 10^8$$
, and $\eta_R = 3.21$

A = 7.5 × 10⁻⁰⁴, B = -21.8,
$$\gamma_0 \sim 2.0 \times 10^5$$

Summary and conclusions :

- > We conducted broadband SED analysis of 1ES 0229+200 using near-simultaneous observations from September 2017 to August 2021. We applied a one-zone synchrotron and SSC model with different particle distribution models, including log-parabola, broken power law, power law with maximum gamma (γ_{max}), energy-dependent diffusion (EDD), and energy-dependent acceleration (EDA).
- ► **Costamante et al. (2018)** showed that the broadband SED modeling in hard-TeV blazars can be explained by a one-zone SSC model with a smooth broken power-law distribution. They estimated $\gamma_{\text{break}} \sim 10^6$ and magnetic fields of a few mG for six hard-TeV blazars. Similarly, in our work on 1ES 0229+200, we also find a magnetic field of a few mG and an electron break energy around ~10⁶
- The jet power for broken power-law and γ -max models, was as high as ~ 10⁴⁷ erg s⁻¹ for a minimum lorentz factor $\gamma_{min} = 10$ and reduced to ~ 10⁴⁴ erg s⁻¹ for $\gamma_{min} = 10^4$. For other particle energy distributions with intrinsic curvature, P_{jet} remained around 10⁴⁴ ergs/sec, irrespective of γ_{min} . P_{jet} (~10⁴⁴ ergs/sec) is only a small fraction of the Eddington luminosity (1.26 ×10⁴⁷ ergs/sec) of the black hole mass (10⁹ M^{\odot}), suggesting that accretion processes might be driving the jet.
- > Notably, we found that P_{jet} is nearly independent of both the bulk Lorentz factor (Γ) and the size (R).

The compatibility of the spectral fit parameters with the model predictions allows us to calculate $\xi_R^2 = 122 \text{ MeV}$, $\gamma_R = 3.6 \times 10^8$, and $\gamma_0 = 3.5 \times 10^5$ for the EDD model. For the EDA model, these values are $\xi_R^2 = 66 \text{ MeV}$, $\gamma_R = 2.66 \times 10^8$, and $\gamma_0 = 2 \times 10^5$

S.N.	Model	Unit	epoch-1	epoch-2	epoch-3	epoch-4	epoch-5
	Parameters		21–23 Sep 17	9–10 Dec 17	21–22 Dec 17	8–9 Jan 18	8-12 Aug 21
	log-paral	bola model (constant * redd	len * TBabs * e	blcor * sscicon	* log – parabo	ola)
1	α	-	$2.40^{+0.02}_{-0.02}$	$2.65^{+0.02}_{-0.02}$	$2.59^{+0.02}_{-0.02}$	$2.67^{+0.02}_{-0.02}$	$2.44^{+0.02}_{-0.02}$
2	β	-0	$0.34^{+0.01}_{-0.01}$	$0.27^{+0.01}_{-0.01}$	$0.29^{+0.01}_{-0.01}$	$0.26^{+0.01}_{-0.01}$	$0.32^{+0.01}_{-0.01}$
3	Ν	(10 ⁻¹¹)	$2.39^{+0.2}_{-0.2}$	$1.50_{-0.2}^{+0.2}$	$1.63^{+0.1}_{-0.1}$	$1.42^{+0.2}_{-0.2}$	$1.99^{+0.2}_{-0.2}$
4	В	(10 ⁻³ G)	$1.02^{+0.1}_{-0.1}$	$2.93^{+0.3}_{-0.3}$	$2.8^{+0.3}_{-0.3}$	$3.04^{+0.5}_{-0.5}$	$1.38^{+0.1}_{-0.1}$
5	log P _{jet}		$43.9984^{+0.1}_{-0.1}$	$43.7553_{-0.1}^{+0.1}$	$43.6735_{-0.1}^{+0.1}$	$43.7544_{-0.1}^{+0.1}$	$43.8437_{-0.1}^{+0.1}$
6	$\chi^2(dof)$	173	407.2(240)	86.5(88)	138.8(107)	105(106)	151.3(94)
7	factor _{sxt}	-	$0.83^{+0.04}_{-0.04}$	$0.76^{+0.02}_{-0.02}$	$0.75\substack{+0.02 \\ -0.02}$	$0.88^{+0.04}_{-0.04}$	$0.63\substack{+0.03 \\ -0.03}$

1 γmin 2 γmax 3 ξbreak √keV 4 p -	10	10	10	10	
3 ξ _{break} √keV 4 p -		10	10	10	10
4 p -	10 ⁸	10^{8}	10 ⁸	10 ⁸	10 ⁸
	₹ > 10.5	> 6.3	> 10.5	> 7.8	> 5.4
	$2.25_{-0.03}^{+0.03}$	$2.46^{+0.03}_{-0.03}$	$2.40^{+0.03}_{-0.03}$	$2.55^{+0.03}_{-0.03}$	$2.32^{+0.01}_{-0.01}$
5 q -	4.0	4.0	4.0	4.0	4.0
6 N (10^{-12})	$^{2})$ 11.5 ^{+0.8} _{-0.8}	$09.10\substack{+0.6 \\ -0.6}$	$10.02^{+0.7}_{-0.7}$	$8.68^{+0.7}_{-0.7}$	$10.7^{+0.9}_{-0.9}$
7 B (10 ⁻³	G) $1.67^{+0.3}_{-0.3}$	$3.12^{+0.3}_{-0.3}$	$2.58^{+0.3}_{-0.3}$	$3.40^{+0.3}_{-0.3}$	$1.97^{+0.3}_{-0.3}$
8 log P _{jet}	$46.0214_{0.06}^{0.06}$	$45.4643_{0.01}^{0.01}$	$46.5954_{0.01}^{0.01}$	$46.69_{0.01}^{0.01}$	$46.21_{0.008}^{0.008}$
9 $\chi^2(dof)$ -	310(243)	84.8(89)	110.2(108)	102.3(107)	112.4(95)
10 factor _{sxt} -	$1.1^{+0.06}_{-0.06}$	$0.98^{+0.06}_{-0.06}$	$0.90^{+0.06}_{-0.06}$	$1.2^{+0.09}_{-0.09}$	$0.81^{+0.04}_{-0.04}$

Proken nover low model (constant + noddan + TPake + ablean + assison + bknna)

epoch-5	epoch-4	epoch-3	epoch-2	epoch-1	Unit	Model	S.N.
8–12 aug 21	8–9 jan 18	21-22 dec 17	9-10 dec 17	21-23 sep 17		Parameters	
	scicon $* \gamma_{max}$)	abs * eblcor * ss	t * redden * TBa	model (constant	with γ_{max}	PL v	
$2.30^{+0.03}_{-0.03}$	$2.53^{+0.01}_{-0.05}$	$2.42^{+0.02}_{-0.09}$	$2.51^{+0.01}_{-0.05}$	$2.25^{+0.03}_{-0.03}$		р	1
> 13	> 8.8	> 31.5	> 17	> 23	~	ξ_{max}	2
$11.3^{+0.8}_{-0.8}$	$8.60^{+0.6}_{-0.6}$	$9.40^{+0.7}_{-0.7}$	$09.01^{+0.24}_{-0.7}$	$11.6^{+0.9}_{-0.9}$	10^{-12}	Ν	3
$1.70^{+0.2}_{-0.2}$	$4.23_{-0.5}^{+0.5}$	$3.68^{+0.6}_{-0.5}$	$4.14_{-0.5}^{+0.6}$	$1.56^{+0.4}_{-0.4}$	10 ⁻³ G	В	4
$45.15_{0.07}^{0.07}$	$45.49_{0.07}^{0.07}$	$48.07_{0.069}^{0.069}$	$45.46_{0.067}^{0.067}$	$47.30^{+0.062}_{-0.062}$		log P _{jet}	5
111.8(96)	101.2(107)	108.2(108)	82.5(89)	307.8(243)	-	$\chi^2(dof)$	6
$0.83^{+0.05}_{-0.05}$	$1.1^{+0.05}_{-0.05}$	$0.93^{+0.05}_{-0.05}$	$1.01^{+0.05}_{-0.05}$	$1.1^{+0.05}_{-0.05}$	-	factor _{sxt}	7

	EDD model (constant * redden * TBabs * eblcor * sscicon * edd)									
1	В	10 ⁻³ G	$1.26^{+0.1}_{-0.1}$	$1.44^{+0.3}_{-0.3}$	$2.80^{+0.3}_{-0.3}$	$3.05^{+0.5}_{-0.5}$	$1.27^{+0.1}_{-0.1}$			
2	ψ		$1.30^{+0.02}_{-0.02}$	$1.39^{+0.02}_{-0.02}$	$1.53^{+0.04}_{-0.04}$	$1.61\substack{+0.06 \\ -0.06}$	$1.37^{+0.03}_{-0.03}$			
3	К		$0.157\substack{+0.004 \\ -0.004}$	$0.144^{+0.004}_{-0.004}$	$0.128^{+0.003}_{-0.003}$	$0.120\substack{+0.003\\-0.003}$	$0.146^{+0.004}_{-0.004}$			
4	Ν	10 ⁻⁸	$7.49^{+1.0}_{-1.0}$	$24.70^{+8.0}_{-8.0}$	$209.0^{+50.0}_{-50.0}$	$897.3^{+200.0}_{-200.0}$	$20.06^{+5.0}_{-5.0}$			
5	log P _{jet}		$44.1847\substack{+0.007 \\ -0.007}$	$44.3757^{+0.01}_{-0.01}$	$44.6721_{-0.1}^{+0.1}$	$44.9290_{-0.1}^{+0.1}$	$44.3367\substack{+0.008\\-0.008}$			
6	$\chi^2(dof)$		365(242)	80.6(85)	130.5(107)	101.5(106)	137.0(95)			
7	factor _{sxt}		$0.93^{+0.04}_{-0.04}$	$0.94^{+0.06}_{-0.06}$	$0.74^{+0.04}_{-0.04}$	$0.93^{+0.04}_{-0.04}$	$0.68^{+0.04}_{-0.04}$			

		EDA mo	del (constant *)	redden * TBabs	* eblcor * ssci	con * eda)	
1	В	10 ⁻³ G	$1.26^{+0.1}_{-0.1}$	$1.28^{+0.1}_{-0.1}$	$2.75^{+0.2}_{-0.2}$	$3.15^{+0.2}_{-0.2}$	$1.24^{+0.1}_{-0.1}$
2	К		$0.144^{+0.004}_{-0.004}$	$0.132^{+0.004}_{-0.004}$	$0.120\substack{+0.005\\-0.005}$	$0.111\substack{+0.003\\-0.003}$	$0.135^{+0.004}_{-0.004}$
3	ψ		$1.46^{+0.03}_{-0.03}$	$1.53\substack{+0.02 \\ -0.02}$	$1.65\substack{+0.04 \\ -0.04}$	$1.74^{+0.06}_{-0.06}$	$1.50^{+0.03}_{-0.03}$
4	Ν	10^{-7}	$4.47^{+0.9}_{-0.9}$	$16.90^{+7.0}_{-7.0}$	$130.0^{+40.00}_{-40.00}$	$814.0^{+200.00}_{-200.00}$	$11.30^{+5.0}_{-5.0}$