

INFN

LST

South

СТАО

The reflecting panels for the Large Size Telescopes at the southern site of the Cherenkov Telescope Array Observatory (CTAO)

Ministero dell'Università e della Ricerca

CTAO – Cherenkov Telescope Array Observatory

ory Introduction

Credit: Gabriel Pérez Díaz, IAC

NORTH SITE

Observatorio del Roque de los Muchachos , La Palma Plan for Alpha Configration:

4 LST 9 MST

Credit: Gabriel Pérez Diaz, IAC / Marc-André Besel, CTAO

SOUTH SITE

Valley between Paranal and Armazones, Chile Plan for Alpha Configuration:

14 MST 37 SST INAE

ISTITUTO NAZIONALE DI ASTROFISICA

_ST

CTAO – Cherenkov Telescope Array Observatory

SST 4.3 m diam. 18 segments 850 mm MST 12 m diam. 86 segments 1200 mm LST 23 m diam. 198 segments 1510 mm

Introduction

NORTH SITE

Observatorio del Roque de los Muchachos , La Palma Plan for Alpha Configration:

4 LST --> 792 mirror segments 9 MST --> 774 mirror segments

SOUTH SITE

Valley between Paranal and Armazones, Chile Plan for Alpha Configuration:

14 MST --> 1204 mirror segments 37 SST --> 666 mirror segments

~ 3500 mirror segments

INAE

_ST

Ministero dell'Università e della Ricerca

СТЛО

Project frame

CTA+, PNRR project lead by INAF and supported by INFN 2 LST-S to be added to CTAO South site alpha configuration (plus 5 more SST) INAF-OAB responsible for the optical design and M1 mirror segments procurement (~ 500)

The challange is in the time and cost-effective mass production of several hundreds of mirror segments (~ 6000 € on average), for wide-field optical telescope with moderate resolution, to be used for Cherenkov Telescopes operating in La Palma and in Chile (environmental condition).

INAF

LST-S sketch

Ministero dell'Università e della Ricerca

INAF ISTITUTO NAZIONALE DI ASTROFISICA

 \diamond

СТАО

M1 primary mirror:

Parabolic shape

diam. 23 m

focal length 28 m

198 segments:

- hexagonal shape
- flat-to-flat 1.5 m
- Thickness < 50 mm
- 3 pads I/Fs to structure toward actuators and fix point
- spherical shape, with radius of curvature pending the position on the dish

	RoC [m]	# of segments
COR1	56.3 +/- 1.5	60
COR2	57.1 +/- 1.5	60
COR3	57.9 +/- 1.5	78

Prescription assumed for the mirror segments mass-production

Proposed ring distribution on the dish Segments size and pads locations

INAF ISTITUTO NAZIONALE DI ASTROFISICA

INFN

LST

South

 \diamond

СТАО

Common Environmental Requirements

Observation temperature	-15° C < T < +25° C
Survival temperature	-20° C < T < +35° C
Temperature gradient	< 7.5° C/h
Temperature shocks	± 30° C
Survival air temperature gradients	< 0.5° C/min for 20 minutes
Observation humidity	2-90 %
Survival humidity	2-100 %
Rain in 24 hours	200 mm
Rain in 1 hour	70 mm
Rain wind speed	< 90 km/h
Rain during transition	< 2 mm/h
Survival snow load	< 20 kg/m ²
Hailstone damage	< 20 mm
Survival ice load	< 20 mm
Observation wind speed	< 36 km/h
Transition wind speed	< 50 km/h
Survival wind gust	< 170 km/h
Solar radiation	< 1200 W/m ²
Aggressive atmosphere	NO, NO ₂ , SO ₂ < 3 ppb
Water resistance	IP67
Tape adhesion test	> 16 N
Substrate lifetime	> 15 yr
Coating lifetime	> 6 yr

Environmental test will be covered during the process qualification for LST-S optics mass-production: it is worth noting that the same process has already been qualified in the past for other IACT (good heritage: MAGIC, ASTRI, MST)

- Preliminary thermal test already performed at prototype level
- Watertight test to cover the humidity and rain requirements not yet performed at prototype level
- Survival loads deeply studied with Finite Element Method (FEM) analysis
- Coating resistance will be checked on each mirror during mass production
- Substrate and Coating lifetime already heritage with operative telescopes

Ministero dell'Università e della Ricerca

CTAO

Cold Slumping Technology

Technology for Mirror Production:

- sandwich panels glass-Al core-glass ٠
- based on glass cold replication ٠ (developed by INAF initially for MAGIC2, adopted for ASTRI)

FOR REFERENCE:

[DOI <u>10.1117/12.790404</u>] → In the framework of the MAGIC2 mirrors [DOI: 10.1117/1.JATIS.8.1.014005] → in the frame of ASTRI-MA and MST-Nord contract, for which the Substrate preparation and finishing was performed by Media Lario, and the coating was deposited by ZAOT using the **INAF's technology**

INAF

INFN

LST

Ministero dell'Università e della Ricerca

i 🔶

 \blacklozenge

INAF

INF

ISTITUTO NAZIONALE DI ASTROFISICA

LST

South

Production Process for LST N

(a) Cold slump technique.

(b) Mirror facet.

Figure 2.32 – (a): The cold slump technique (replica method) used for the production of the mirror facets, which have a sandwich structure. (b): A 1.5 m flat to flat hexagonal mirror produced at company *Sanko* in Japan.

Ministero dell'Università e della Ricerca

INAF Istituto nazionale di astrofisica

INFN

LST

South

 \blacklozenge

CTAO

Prototype production results

mock-up mould prepared for process

Sandwich structure on the mould

Glue curing

Ministero dell'Università e della Ricerca

INAF ISTITUTO NAZIONALE DI ASTROFISICA

'NFN

LST

South

 \blacklozenge

CTAO

Prototype production results

INFN mould with clear variation from the ideal shape Residuals of the order of micrometers

mani

 \blacklozenge

INAF

INFN

ISTITUTO NAZIONALE DI ASTROFISICA

LST

South

СТАО

Coating checks

Reflectivity measurement carried out on 12 points distributed along three diagonals on prototype

INAF ISTITUTO NAZIONALE DI ASTROFISICA

_ST

South

СТЛО

Thermal test on prototype

- Thermal test for stability check
 - Range: -20/+50 °C
 - Rate: 30 °C/h (0.5°C/min)
 - Dwell time: 30 min
 - Number of cycle: 3
- Survival @ thermal environmental condition confirmed
- No degradation (change) in shape accuracy variation inside meas. repeatability
- No degradation in reflectivity values
- VI successfully passed

Gruppo: Impianto CFS MEDIA LARIO SRL; DTT.44.04.5051; CTT.44.04.5104

Confirmation of production method applicability for this size of mirrors, and check of handling procedures and test jigs. Fine-tuning of all process parameters to be carried out during the qualification phase of optics contract with industry.

Finanziato dall'Unione europea Ministero dell'Università e della Ricerca

C	ΓΛΟ	What's coming next -> LST-S mass-production			
		DDVP MODEL PHILOSOPHY		TESTS PLAN	
	Pre-production	 2 COR1 segments 2 COR2 segments 2 COR3 segments 	PROCESS QUALIFICATION	Dim. and weight Shape 3D probe Optically tested Coating adhesion Coating reflectivity I/Fs (pads position)	
	Production Start	 10 COR1 segments 10 COR2 segments 10 COR3 segments 	PRODUCTION LINE QUALIFICATION & STABILITY	Dim. and weight Shape 3D probe Optically tested Coating adhesion Coating reflectivity I/Fs (pads position)	
	Mass Production	 > 120 COR1 segments > 120 COR2 segments > 156 COR3 segments 	COMPLETE PROCUREMENT for 2 LST-S	Dim. and weight Shape 3D probe (every 10 s Optically tested (TBC) Coating adhesion Coating reflectivity (every 5 I/Fs (pads position)	egments) segments)

 \blacklozenge

INAF

ISTITUTO NAZIONALE DI ASTROFISICA

Concluding Remarks

- PROTOTYPING ACTIVITY CARRIED OUT
 - Applicability of technology for such large segments proved (both by analyses and

experimentally)

- · Good obtained results with mock-up mould
- Tool, setup and procedures assessed and already put in place or designed

MASS-PRODUCTION TO START SOON

- · Process qualification for process parameters fine tuning
- Mass production

 \blacklozenge

INAE

DI ASTROFISICA

S1

CTAO

Finanziato dall'Unione europea NextGenerationEU

Italiadomani ^{PIANO NAZIONALE} DI RIPRESA E RESILIENZA

Thank you!

October/2024 LST-S Optics team

CTAO

Finanziato dall'Unione europea NextGenerationEU

Italiadomani ^{PIANO NAZIONALE} di RIPRESA E RESILIENZA

Backup slides

dall'Unione europea NextGenerationEU

Ministero dell'Università e della Ricerca

INAF ISTITUTO NAZIONALE DI ASTROFISICA

INFN

LST

South

 \blacklozenge

CTAO

Introduction

IACT – Imaging Atmospheric Cherenkov Telescope

Credit: deNaurois+ 2015 C.R. Phys. 16 610

Credits: R. Canestrari

INAF

INFN

ISTITUTO NAZIONALE DI ASTROFISICA

LST

Ministero dell'Università e della Ricerca

MAGIC II Telescope, La Palma, Canary Islands 17 m diameter

 \blacklozenge

INAF

ISTITUTO NAZIONALE DI ASTROFISICA

CTA/ MST glass sandwiched mirrors – Media Lario + INAF

INAF ISTITUTO NAZIONALE DI ASTROFISICA

INFN

 \blacklozenge

Ministero dell'Università e della Ricerca

Italiadomani ^{piano nazionale} di ripresa e resilienza

INFN

Telescope	Shape + F2F distance (m)	Radius of Curvature (m)	Thickness of glass and Hexacell (mm)	Number of produced mirrors
Magic I/II	Squared 0.98	34 (average)	1.7 / 20	> 100 Magic II > 100 Magic I
MST	Hexagonal 1.1	32.1	2.1 / 30	200 (+ 30 prototypes) (800 to be produced to complete MS N)
SST/ASTRI	Hexagonal 0.8	8.5 m	1.6 / 20	200 ASTRI MA + 36 ASTRI Horn (800 to be produced for the SST array)
LST - S	Hexagonal 1.5	56 - 58.4	< 2.7 - < 60	500

Italia**domani**

INAF

 \blacklozenge

Principle tensile stress versus bending radius

Ministero dell'Università e della Ricerca

INAF ISTITUTO NAZIONALE DI ASTROFISICA

S1

South

СТЛО

Prototype characteristics and tests

Parameter	Value
Size	Hexagonal shape of 1500 mm flat to flat
Shape	Spherical with around 60 m RoC (3D CMM TCX meas. and 2f set-up)
Thickness	46 mm in total (3mm glass foils + 40 mm Aluminum honeycomb core)
Coating	Al + SiO ₂ protective layer Reflectivity checks for value and uniformity, adhesion test
PADs	3 glued on the back at 120° on a circle of 1300mm from center
Optical specifications	Shape: measure with 3D CMM TCX, Optical spot: PSF meas. with 2f set-up
Thermal test	Range: -20/+50 °C Rate: 30 °C/h (0.5°C/min) Dwell time: 30 min Number of cycles: 3

Characteristics selected for:

- Replication mould already existent to "mock-up" (not optimal shape) provided by INFN Padua for development purpose
- Extensive support from FEM analyses for sandwich panels parameters
 - 3 mm glass
 - 40 mm Aluminum honeycomb
 - Internal stresses ~ 3 Mpa

Ref. BCV Progetti, P2938 report 1 - Issue 2, Milano, May 2023, 26th, CTA-SOUTH PROJECT MIRROR SEGMENTS FOR LST – M1 STRUCTURAL ANALYSIS OF THE SANDWICH SEGMENTS

²³

Italiadomani ^{PIANO NAZIONALE} di RIPRESA E RESILIENZA

INAF ISTITUTO NAZIONALE DI ASTROFISICA

INFN

LST

South

 \blacklozenge

CTAO

Load cases includes:

- Gravity loads
- Ice loads
- Operative wind
- Survival wind
- Bulk Temperatures
- Temperature gradients (along surface and thickness)
- Cold shaping
- 26 different combinations of the above single loads have been analyzed

The prototype activities have been supported by extensive FEM analyses campaign in order to individuate the optimized mirror segment design.

FEM analyses

Code: Ansys Mechanical Size: > 2,5×10⁶ dof

CTAO

Finanziato dall'Unione europea NextGenerationEU

FEM analyses

Ministero

dell'Università

e della Ricerca

According to Standard (EN 16612) the design glass strength assumed:

fatigue delamination growth = 7.25 MPa in loading combinations with just permanent loads (cold slumping and gravity CS and G). fatigue delamination growth = 18.5 MPa in loading combinations with wind (W).

fatigue delamination growth = 11.25 MPa in loading combinations without wind (just permanent loads, ice and/or temperature loads I / T).

Jpper Glass aceplate	Load combination	Maximum Tensile Stress	Utilization Factor
	G	4.58	0.63
	I/T	10.1	0.90
	W	12.9	0.70
S	Load combination	Maximum Tensile Stress	Utilization Factor
ower Glas aceplate	G	4.81	0.66
	I / T	10.5	0.93
	W	16.2	0.87

Italia**domani**

PIANO NAZIONALE DI RIPRESA E RESILIENZA

Utilization Factor distribution for I / T load combinations

INAF