Locating the gamma-ray emission regions in the relativistic jet of 3C 279.

Tekano Mbonani, Brian van Soelen & Richard Britto

Department of Physics University of the Free State

High Energy Astrophysics in Southern Africa 2024

2 – 4 October 2024

mbonanits@ufs.ac.za | www.ufs.ac.za

Outline

- Introduction: 3C 279
- Optical and Gamma-ray Data
- Results:
 - The z-transformed discrete cross-correlation functions: Time-lags
 - Gamma-ray flux temporal profiling
 - Physical Constraints: Doppler factors, emission region radii and distance from the SMBH.
 - Gamma-ray SED: spectral energy breaks
- Discussion

Introduction: 3C 279

- Active Galactic Nucleus (AGNs)
- Blazars relativistic jet aligned close to the line of sight of the observer [1].
- Blazar Subclass:
 - Flat Spectrum Radio Quasars (FSRQ).
 - BL Lacertae (BL Lac).
- Target 3C 279 Characteristics:
 - FSRQ.
 - Multiwavelength variability on all timescales [2].
 - Inconsistent multi-wavelength correlation [2].

Introduction: 3C 279

- Active Galactic Nucleus (AGNs)
- Blazars relativistic jet aligned close to the line of sight of the observer.
- Blazar Subclass:
 - Flat Spectrum Radio Quasars (FSRQ).
 - BL Lacertae (BL Lac).
- Target 3C 279 Characteristics:
 - FSRQ.
 - Multiwavelength variability on all timescales [1].
 - Inconsistent multi-wavelength correlation [1].

1. Patel, S.R., 2021. Broadband modelling of Orphan gamma ray flares. *Journal of High Energy Astrophysics*, 29, pp.31-39.

Gamma-ray and Optical Correlations

- z-transformed Discrete Cross-Correlation Functions (ZDCF) [1].
 - Variability time-lags
 - To probe the number of emission zones in the jet during flares
- The Fermi Large Area Telescope (LAT): Gamma-rays
 0.1 300 GeV [2].
 - Light-curves
 - Spectral Energy Distributions (SEDs)
- Optical Photometry:
 - Boyden Observatory: Watcher Telescope
 - Las Cumbres Observatory (LCO)
 - Steward Observatory
 - Small and Moderate Aperture Research Telescope System (SMARTS)

 Alexander, T. (2013), 'Improved agn light curve analysis with the ztransformed discrete correlation function', arXiv preprint arXiv:1302.1508.
 Atwood W. (2009), 'The large area telescope on the fermi gamma-ray space.

2. Atwood, W. (2009), 'The large area telescope on the fermi gamma-ray space telescope mission', The Astrophysical Journal 697(2), 1071.

Watcher 40-cm Telescope

SMARTS I.3-m Telescope

Steward Observatory

Figure 1:The gamma-ray [photon.cm⁻².s⁻¹] and optical [erg.cm⁻².s⁻¹.Hz⁻¹] light-curves of 3C 279 between 2014 – 2019.

I. Vaughan, S., (2003), 'On characterizing the variability properties of x-ray light curves from active galaxies', Monthly Notices of the Royal Astronomical Society 345(4), 1271–1284.

3C 279: Optical & Gamma-ray Variability

$$F_{var} = \sqrt{\frac{(S^2 - f_{err}^2)}{f_{avg}^2}} \tag{1}$$

S² is the flux variance, f_{err}^2 the mean square flux error and f_{avg}^2 is the mean square flux [1].

Table I. Observational dates and the flux variability amplitudes of the flaring phases.

Phase	MJD	Year	F _{var}
I	57180 - 57196	2015	0.96±0.02
П	57800 - 57865	2017	0.54±0.01
Ш	58100 - 58160	2017	0.97±0.01
IV	58216 - 58250	2018	0.69±0.05

Optical and Gamma-ray Correlations

Table 2. z-transformed Discrete Cross-Correlation Functions and time-lags from Phase I and II.

Light-curves	Phase I		Phase II	
	<i>r</i> _{ZDCF}	τ (days)	r _{zdcf}	τ (days)
Gamma-ray/Optical V	0.61±0.14	0.65±0.11	0.86±0.07	-21.85±0.03
Gamma-ray/Optical R	0.72±0.18	0.82±0.14	0.81±0.08	-14.82±0.09

- r_{ZDCF} peak $\geq 2\sigma$ C.L.
- Phase I:
 - The gamma-ray leads the optical $(\tau > 0)$.
 - $\tau < 1$ day, i.e. near zero time-lags.
- Phase II:
 - The gamma-ray lags the optical $(\tau < 0)$.
 - Two to three weeks delays (τ) .

Table 3. z-transformed Discrete Cross-Correlation Functions and time-lags from Phase III and IV.

Light-curves	Phas	e III	Phase IV		
	r _{zdcf}	τ (days)	r _{ZDCF}	τ (days)	
Gamma-ray/Optical B	-	-	0.91±0.05	3.12±0.11	
Gamma-ray/Optical V	0.94±0.03	0.23±0.02	-	-	
Gamma-ray/Optical R	0.94±0.03	0.23±0.02	0.85±0.07	3.73±0.05	

- r_{ZDCF} peak \geq 3 σ C.L.
- Phase III:
 - The gamma-ray leads the optical $(\tau > 0)$.
 - $\mathbf{\tau} \sim 0$ day, i.e. near zero time-lags.
- Phase IV:
 - The gamma-ray leads the optical $(\tau > 0)$.
 - $\tau \sim 3 4$ days, i.e. near zero time-lags.

The Gamma-ray Flux Temporal Profiling & Photon Energies

$$F(t) = F_C + 2F_0 (e^{t_0 - t/T_r} + e^{t - t_0/T_f})^{-1}$$
 (2)

- F_0 is the flare amplitude
- F_c is the constant baseline flux
- t_0 is the approximate time at F_0
- T_r is the flux rise timescale
- T_f is the flux decay timescale

 $t_d = \ln 2 \times Tr$

(3)

• t_d is the flux doubling time, i.e., the time it takes the observed flux to increase by a factor two [1].

 Table 4. The gamma-ray flux temporal profiling & high energy photons from the most rapid flares during Phases I – IV.

	T _r (days)	T _f (days)	t _d (hours)	E _y (GeV)
I	0.16±0.02	1.18±0.07	2.66±0.33	56.00
Ш	0.36±0.15	0.61±0.16	5.99±2.50	41.61
III	0.32±0.13	2.99±0.81	5.32±2.16	92.22
IV	0.29±0.12	0.15±0.08	4.82±2.00	99.76

- Asymmetric flaring profiles.
- Faster flux rise than decay times $T_r < T_f$, Phases I – III.
- Faster decay than rise times $T_r > T_f$, Phases IV.
- Intra-day variability (IDV), i.e. $t_d \leq 24$ hours.
- t_d are comparable within error (2 σ).
- High energy photons.

I. Abdo, A. et al. (2010), 'Gamma-ray light curves and variability of bright fermi- detected blazars', The Astrophysical Journal 722(1), 520

Relativistic Beaming

Assuming the optical depth of a high energy photon with energy $\epsilon = E_y/m_ec^2$ to interact with a low energy photon in photon-photon absorption is $\tau(\epsilon) = 1$, we determined the minimum Doppler factors [1]:

$$\delta_{\min} = \left[\frac{\sigma_T d_L^2 (1+z)^2 f_X \epsilon}{4t_d m_e c^4}\right]^{1/6}$$

(4)

- σ_{τ} is the Thomson scattering cross-section.
- d_L is the luminosity distance.
- z is the cosmological redshift.
- f_X is the X-ray flux at $\epsilon = {E_Y}/{m_e c^2}$.

1. Paliya, V. S. (2015), 'Fermi-large area telescope observations of the exceptional gamma-ray flare from 3c 279 in 2015 june', The Astrophysical Journal Letters 808(2), L48

Emission Region: Size & Location

By assuming the geometry of the emission regions to be spherical, we can determine their radii (r) and distances (R) relative to the SMBH [2]:

(5)

(6)

2. Rani et al, B. (2013), 'Radio to gamma-ray variability study of blazar s5 0716+714', Astronomy & Astrophysics 552, A11

Table 5. The minimum Doppler factors, the emission region radii and distances from the SMBH.

	Ε _γ (GeV)	f _X (10 ⁻¹¹) (erg.cm ⁻² .s ⁻¹)	t _d (hours)	δ _{min}	r (10 ¹⁵ cm)	R (10 ¹⁷ cm)
I	33.00	5.50±0.40 ^[1]	2.66±0.33	16.22±0.39	3.04±0.39	0.99 <u>+</u> 0.05
II	11.02	1.56±0.33 ^[2]	5.99 <u>+</u> 2.50	9.57 <u>+</u> 0.75	4.03±1.71	0.77±0.13
III	53.16	6.05±0.83 ^[3]	5.32±2.16	15.90±1.14	6.00±2.50	1.89 <u>+</u> 0.27
IV	26.91	3.63±0.83 ^[3]	4.82±2.00	13.25±1.05	4.50±1.90	1.19 <u>+</u> 0.19

- Phases I, III and IV have similar relativistic beaming $\boldsymbol{\delta}_{\min}$ within error (2 σ).
- Consistent radii r (within Ισ) for all phases.
- R is comparable with the size of the BLR, i.e., $R_{BRL} \sim 2.30 \times 10^{17}$ cm [4].

- I. Pittori, C. (2015), 'Update on swift follow-up observations of the gev flaring blazar 3c 279', The Astronomer's Telegram 7668, I.
- 2. Yoo, S. & An, H. (2020), 'Spectral variability of the blazar 3c 279 in the optical to x-ray band during 2009–2018', The Astrophysical Journal 902(1), 2.
- 3. Prince, R. (2020), 'Broadband variability and correlation study of 3c 279 during flares of 2017–2018', The Astrophysical Journal 890(2), 164.
- 4. Böttcher, M. & Els, P. (2016), 'Gamma-gamma absorption in the broad line region radiation fields of gamma-ray blazars', The Astrophysical Journal 821(2), 102

$$\frac{dN}{dE} = N_0 \times \begin{cases} \left(\frac{E}{E_{\text{break}}}\right)^{-\Gamma_1} \\ \left(\frac{E}{E_{\text{break}}}\right)^{-\Gamma_2} \end{cases}$$
(7)

 $\Gamma = \Gamma_{I}, \ \mathsf{E} \leq \mathsf{E}_{\mathsf{break}} \qquad \qquad \Gamma = \Gamma_{2}, \ \mathsf{E} > \mathsf{E}_{\mathsf{break}}$

- Prefactor N_0 is in units of MeV⁻¹cm⁻²s⁻¹.
- E_{break} is the break in the spectral energy
- Γ_i is the photon index below and above E_{break} .

 Table 6. Broken Power-law (BPL) likelihood fit parameters.

Phases	N _o (10⁻¹⁰)	E _{break} (GeV)	r,	Г ₂
I	1.35±0.41	0.96±0.13	1.95±0.03	2.54 <u>+</u> 0.06
П	1.11 <u>+</u> 0.26	0.70±0.08	1.95±0.03	2.43 <u>+</u> 0.03
Ш	0.09±0.04	1.47±0.03	2.04±0.03	2.66 <u>+</u> 0.11
IV	3.05±0.66	1.77 <u>+</u> 0.19	1.96±0.01	2.62 <u>+</u> 0.06

Gamma-ray Spectral Energy Distributions (SEDs)

- The spectra is hard below E_{break} and softens above E_{break} .
- Phases have comparable spectral parameters.
 - Γ_i is the same within 2σ error.
 - E_{break} comparable within 3σ error.

Discussion: Emission from 3C 279

Near zero time-lags implies that the flares were produced co-spatially by a single population of non-thermal particles.

• The emission were produced in similar emission regions, located at similar distances from the SMBH, i.e., near the outer edges of the BLR.

- Previous studies estimate external Compton cooling times in the range <u>7 27 minutes</u>, significantly shorter than our decay times [1, 2].
- The flux rise and fall times suggest the emission were produced through interactions with standing shocks within the jet:
 - The faster rise (T_r) than decay time are consistent with the rapid injection of accelerated electrons in the emission regions at the shock front.
 - The slower decay (T_f) can be attributed to a combination of a continued injection of accelerated electrons and radiative cooling as the emission region propagates beyond the shock (Phases I, II & III).
 - The slower rise than decay observed in Phase IV could be attributed to a slow injection rate of accelerated electrons (T_r) , followed by continued injection and efficient electron cooling (T_f) .
- 1. Paliya, V. S. (2015), 'Fermi-large area telescope observations of the exceptional gamma-ray flare from 3c 279 in 2015 june', The Astrophysical Journal Letters 808(2), L48.
- 2. Wang, G., Fan, J., Xiao, H. & Cai, J. (2022), 'Variability and spectral behavior of gamma-ray flares of 3c 279', Publications of the Astronomical Society of the Pacific 134(1040), 104101

THANK YOU.