Locating the gamma-ray emission regions in the relativistic jet of 3C 279.

Tekano Mbonani, Brian van Soelen & Richard Britto

Department of Physics University of the Free State

High Energy Astrophysics in Southern Africa 2024

2 – 4 October 2024

mbonanits@ufs.ac.za | **www.ufs.ac.za**

Outline

- Introduction: 3C 279
- Optical and Gamma-ray Data
- Results:
	- The *z*-transformed discrete cross-correlation functions: Time-lags
	- Gamma-ray flux temporal profiling
	- Physical Constraints: Doppler factors, emission region radii and distance from the SMBH.
	- Gamma-ray SED: spectral energy breaks
- Discussion

Introduction: 3C 279

- Active Galactic Nucleus (AGNs)
- Blazars relativistic jet aligned close to the line of sight of the observer [1].
- Blazar Subclass:
	- Flat Spectrum Radio Quasars (FSRQ).
	- BL Lacertae (BL Lac).
- Target 3C 279 Characteristics:
	- FSRQ.
	- Multiwavelength variability on all timescales [2].
	- Inconsistent multi-wavelength correlation [2].

Introduction: 3C 279

- Active Galactic Nucleus (AGNs)
- Blazars relativistic jet aligned close to the line of sight of the observer.
- Blazar Subclass:
	- Flat Spectrum Radio Quasars (FSRQ).
	- BL Lacertae (BL Lac).
- Target 3C 279 Characteristics:
	- FSRQ.
	- Multiwavelength variability on all timescales [1].
	- Inconsistent multi-wavelength

correlation [1]. 1. Patel, S.R., 2021. Broadband modelling of Orphan gamma ray flares. *Journal of High Energy Astrophysics*, *²⁹*, pp.31-39.

Gamma-ray and Optical **Correlations**

- *z*-transformed Discrete Cross-Correlation Functions (ZDCF) [1].
	- Variability time-lags
	- To probe the number of emission zones in the jet during flares
- The *Fermi* Large Area Telescope (LAT): Gamma-rays $0.1 - 300$ GeV [2].
	- Light-curves
	- Spectral Energy Distributions (SEDs)
- Optical Photometry:
	- Boyden Observatory: Watcher Telescope
	- Las Cumbres Observatory (LCO)
	- Steward Observatory
	- Small and Moderate Aperture Research Telescope System (SMARTS)
- 1. Alexander, T. (2013), 'Improved agn light curve analysis with the ztransformed discrete correlation function', arXiv preprint arXiv:1302.1508.
- 2. Atwood, W. (2009), 'The large area telescope on the fermi gamma-ray space telescope mission', The Astrophysical Journal 697(2), 1071.

Watcher 40-cm Telescope

SMARTS 1.3-m Telescope

Steward **Observatory**

Figure 1: The gamma-ray [photon.cm⁻².s⁻¹] and optical [erg.cm⁻².s⁻¹.Hz⁻¹] light-curves of 3C 279 between 2014 – 2019.

1. Vaughan, S., (2003), 'On characterizing the variability properties of x-ray light curves from active galaxies', Monthly Notices of the Royal Astronomical Society 345(4), 1271–1284.

3C 279: Optical & Gamma-ray Variability

$$
F_{var} = \sqrt{\frac{(S^2 - f^2_{err})}{f^2_{avg}}}
$$
 (1)

 S^2 is the flux variance, f^2_{err} the mean square flux error and f_{avg}^2 is the mean square flux [1].

Table 1. Observational dates and the flux variability amplitudes of the flaring phases.

Optical and Gamma-ray Correlations

Table 2. *z*-transformed Discrete Cross-Correlation Functions and time-lags from Phase I and II.

 r_{ZDCF} peak ≥ 2 σ C.L.

• Phase I:

- The gamma-ray leads the optical $(\tau > 0)$.
- τ < 1 day, i.e. near zero time-lags.
- Phase II:
	- The gamma-ray lags the optical $(\tau < 0)$.
	- Two to three weeks delays (τ) .

Table 3. *z*-transformed Discrete Cross-Correlation Functions and time-lags from Phase III and IV.

- r_{ZDCF} peak \geq 30 C.L.
- Phase III:
	- The gamma-ray leads the optical $(\tau > 0)$.
	- $\tau \sim 0$ day, i.e. near zero time-lags.
- Phase IV:
	- The gamma-ray leads the optical $(\tau > 0)$.
	- $\tau \sim 3 4$ days, i.e. near zero time-lags.

The Gamma-ray Flux Temporal Profiling & Photon Energies

$$
\mathsf{F}(\mathsf{t}) = F_c + 2F_0(e^{t_0 - t/T_r} + e^{t - t_0/T_f})^{-1} \quad (2)
$$

- *F⁰* is the flare amplitude
- F_c is the constant baseline flux
- t_0 is the approximate time at F_0
- *T^r* is the flux rise timescale
- T_f is the flux decay timescale

 $t_d = \ln 2 \times Tr$

(3)

• *t_d* is the flux doubling time, i.e., the time it takes the observed flux to increase by a factor two $\lceil \cdot \rceil$.

Table 4. *The gamma-ray flux temporal profiling & high energy photons from the most rapid flares during Phases I – IV.*

- *Asymmetric flaring profiles.*
- Faster flux rise than decay times $T_r < T_f$, *Phases I – III.*
- Faster decay than rise times $T_r > T_f$, Phases IV.
- *Intra-day variability (IDV), i.e.* $t_d \leq 24$ hours.
- t_d are comparable within error (2 σ).
- *High energy photons.*

1. Abdo, A. et al. (2010), 'Gamma-ray light curves and variability of bright fermi- detected blazars', The Astrophysical Journal 722(1), 520

Assuming the optical depth of a high energy photon with energy ϵ = $E_{\gamma}/m_{\rm e}c^2$ to interact with a low energy photon in photon-photon absorption is $\tau(\epsilon) = 1$, we determined the minimum Doppler factors [1]:

$$
\delta_{\min} = \left[\frac{\sigma_T d_L^2 (1+z)^2 f_X \epsilon}{4 t_d m_e c^4} \right]^{1/6}
$$

- σ _{τ} is the Thomson scattering cross-section.
- *d*_L is the luminosity distance.
- *z* is the cosmological redshift.
- f_X is the X-ray flux at $\epsilon = \frac{E_y}{m_e c^2}$.

1. Paliya, V. S. (2015), 'Fermi-large area telescope observations of the exceptional gamma-ray flare from 3c 279 in 2015 june', The Astrophysical Journal Letters 808(2), L48

Relativistic Beaming | with the settlem is stated to Region: Size & Location

By assuming the geometry of the emission regions to be spherical, we can determine their radii (**r**) and distances (R) relative to the SMBH $[2]$:

(6)

2. Rani et al, B. (2013), 'Radio to gamma-ray variability study of blazar s5 0716+714', Astronomy & Astrophysics 552, A11

Table 5. *The minimum Doppler factors, the emission region radii and distances from the SMBH.*

- Phases I, III and IV have similar relativistic beaming δ_{\min} within error (2σ).
- Consistent radii r (within 1σ) for all phases.
- R is comparable with the size of the BLR, i.e., $R_{BRI} \sim$ 2.30×10^{17} cm [4].

- 1. Pittori, C. (2015), 'Update on swift follow-up observations of the gev flaring blazar 3c 279', The Astronomer's Telegram 7668, 1.
- 2. Yoo, S. & An, H. (2020), 'Spectral variability of the blazar 3c 279 in the optical to x-ray band during 2009–2018', The Astrophysical Journal 902(1), 2.
- 3. Prince, R. (2020), 'Broadband variability and correlation study of 3c 279 during flares of 2017–2018', The Astrophysical Journal 890(2), 164.
- 4. Böttcher, M. & Els, P. (2016), 'Gamma–gamma absorption in the broad line region radiation fields of gamma-ray blazars', The Astrophysical Journal 821(2), 102

$$
\frac{dN}{dE} = N_0 \times \left\{ \frac{\left(\frac{E}{E_{\text{break}}}\right)^{-\Gamma_1}}{\left(\frac{E}{E_{\text{break}}}\right)^{-\Gamma_2}} \right\}
$$
(7)

 $\Gamma = \Gamma_1$, $E \le E_{break}$ $\Gamma = \Gamma_2$ 2 , \blacksquare \blacksquare \blacksquare \blacksquare

- Prefactor N_0 is in units of MeV⁻¹cm⁻²s⁻¹.
- *Ebreak* is the break in the spectral energy
- *Γ_i* is the photon index below and above E_{break} .

Table 6. *Broken Power-law (BPL) likelihood fit parameters.*

Gamma-ray Spectral Energy Distributions (SEDs)

- The spectra is hard below E_{break} and softens above E_{break} .
- Phases have comparable spectral parameters.
	- Γ_i is the same within 2σ error.
	- E_{break} comparable within 30 error.

Discussion: Emission from 3C 279

• Near zero time-lags implies that the flares were produced co-spatially by a single population of non-thermal particles.

The emission were produced in similar emission regions, located at similar distances from the SMBH, i.e., near the outer edges of the BLR.

- Previous studies estimate external Compton cooling times in the range $7 27$ minutes, significantly shorter than our decay times $[1, 2]$.
- The flux rise and fall times suggest the emission were produced through interactions with standing shocks within the jet:
	- The faster rise $(T_{\rm r})$ than decay time are consistent with the rapid injection of accelerated electrons in the emission regions at the shock front.
	- The slower decay $(T_{\sf f})$ can be attributed to a combination of a continued injection \blacksquare of accelerated electrons and radiative cooling as the emission region propagates beyond the shock (Phases I, II & III).
	- The slower rise than decay observed in Phase IV could be attributed to a slow injection rate of accelerated electrons $(\mathcal{T}_{\mathsf{r}})$, followed by continued injection and efficient electron cooling ($T_{\rm f}$).
	- 1. Paliya, V. S. (2015), 'Fermi-large area telescope observations of the exceptional gamma-ray flare from 3c 279 in 2015 june', The Astrophysical Journal Letters 808(2), L48.
- 2. Wang, G., Fan, J., Xiao, H. & Cai, J. (2022), 'Variability and spectral behavior of gamma-ray flares of 3c 279', Publications of the Astronomical Society of the Pacific 134(1040), 104101

THANK YOU.