

Refinement of the Proposed Gamma-Ray Burst Time Delay Model

G. F. Abbey, ¹ J. Simfukwe¹. P.C Simpemba, ¹ P. S Phiri, ¹ S. A. Srivastava¹, G. G Nyambuya^{1,2} ¹Department of Physic, School of Mathematics and Natural Sciences, Copperbelt University Kitwe, Zambia. Department of Applied Physics, Faculty of Applied Sciences, National University of Science & Technology, Bulawayo, Zimbabwe godson.abbey@cbu.ac.zm

- simultaneous, systematic photon emission from the shock front (Eq. 2)
- Obtain a unified model for time delays across four different GRBs using a relative distance mechanism (Eq. 3)
- Estimate the frequency equivalence of the interstellar medium (ISM)'s conductance (Eq. 5)
- Obtain the Average distances to the four GRB samples (Eq. 5)

Data Sample

- Zhang et al. (2016) used their GRB data to constraint the cosmological upper mass limit of the photon mass
- Chandra and Frail (2012) compiled 304 radio observations of GRB afterglows procured between January 1997 and January 2011.

		_	
Theor	etical Framewo	<u>ork</u>	
FDSL Model:	$\Delta t = \frac{Dv_*}{C} \left(\frac{1}{v_1} - \frac{1}{v_1} \right)$	(1)	FrequeDistance
Non-Simultaneous Emission Model	$\Delta t = \frac{\mathcal{D} v_*}{c_0} \left(\frac{1}{v_l} - \frac{1}{v_h} \right) +$	t _c (2)	• GRB 03 • GRB 98
Refined FDSL Model:	$\frac{\Delta t}{D_{\rm rel}} = \frac{D_{\dagger} v_*}{c_0} \left(\frac{1}{v_l} - \frac{1}{v_h}\right)$)(3)	• GRB 00 • GRB 02
Conductance of the ISM:	$\sigma = \frac{8\pi v_*}{\mu_0 c_0^2} = 8\pi \varepsilon_0 v_*$	(4)	 provide reinforc
Distance Estimation:	$S = \frac{Dv_*}{c_0}$	(5)	 The congests the stablis
$ \begin{array}{c} 80 \\ \hline & GRB - 030329 \\ BFL : \Delta t = 107.35 \pm 3.04(v_1^{-1} - v_h^{-1}) \\ R^2 = 0.9889 \\ \hline & 0 $	Results	GRB090425 Data Pionts -BFL: $\frac{\Delta t}{D_{Rel}} = 68.40 \pm 2.00(v_l^{-1} - v_h^{-1})$ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 $\Delta \nu^{-1}(GHz^{-1})$ GRB021004 Data Pionts -BFL: $\frac{\Delta t}{D_{Rel}} = 69.30 \pm 2.00(v_l^{-1} - v_{h_1}^{-1})$	 this positive of the second second
$70 - GRB Dation BFL: \frac{40}{D}$	$\frac{\Delta t}{P_{Rel}} = 69.40 \pm 0.50 (v_1^{-1} - v_h^{-1})$		 The results knowled Moreover
D _{Rel} 30 - 20 - 20 - 10 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	$A = \frac{1}{1}$		 Furture size of

Figure 2:. Final plot for GRB 030329, 980425, 000418, 021004 before and after after time delay and the relative distance correctionused . Fitting passes through the origin (0, 0) naturally after the corrections were made indicating strong support for our model.

Source	Host Galaxy Redshift	Relative Distance	$\mathcal{D}_{\mathcal{L}}$ (Mpc)	D _{avg} (Mpc)	$D_{\dagger}v^{*}/c_{0}$ (10 ¹⁵)	R^2
GRB030329	0.1683 ± 0.0001	1.7360 ± 0.0030	838.9000	69.4000 ± 0.1000	10.0000 ± 0.1000	1.0000
GRB980425	0.0087 ± 0.0000	1.0000 ± 0.0000	40.0000	40.0000 ± 0.0000	6.0000 ± 2.0000	0.9985
GRB000418	1.1181 ± 0.0001	1.4600 ± 0.0100	7804.0000	58.4000 ± 0.4000	9.0000 ± 0.9000	0.9932
GRB021004	2.3304 ± 0.0005	2.1500 ± 0.0300	19188.0000	86.0000 ± 1.0000	13.0000 ± 3.0000	0.9916
$v_* = 1.507 \pm 0.009$						

- ce Estimates:
- $30329 = 69.40 \pm 0.10$ Mpc
- $30425 = 40.00 \pm 0.00$ Mpc
- $00418 = 58.40 \pm 0.40$ Mpc
- $21004 = 86.00 \pm 1.00$ Mpc

- orrelation
- en published.

Key Findings

ncy equivalent: v_{*} ~1.500± 0.009 Hz.

Discussions/Conclusion

new insights into GRB jet dynamics and photon mass, cing or challenging existing GRB models.

mbined analysis of the four GRB sources strongly sugat an independent distance measure to GRBs can be shed because the graph of $\Delta t D$ rel vs $\Delta v - 1$ supports sition since from this graph we obtain an impressively

t that the data points of the four GRBs can be grouped subgroups suggests that these subgroups may very independent shock systems. This needs further invesand will be subject of our next instalment which have

SL model provides a stronger theoretical framework for anding photon time delays in GRBs.

sults support and refine key GRB models, advancing dge of relativistic outflows.

er, these results lend support to two existing GRB the fireball model and the multiple shock wave model.

e: Explorae GRB archive involving large sample radio afterglow data.

Acknowledgement

• Pan-African Planetary and Space Science Network under funding agreement number 6242.24-PANAF-12020-1-BW-PANAF-MOBAF.

• The Copperbelt University (Republic of Zambia)

• National University of Science & Technology Zimbabwe

References

Nyambuya, G. G., Marusenga, S., Abbey, G. F., Simpemba, P., & Simfukwe, J. (2023). Corr in Gamma-Ray Burst Time Delays between Pairs of Radio Photons. Available at SSRN 437 13(3), 195–216. https://doi.org/10.4236/ijaa.2023.133012

• Abbey, G., Simfukwe, J., Simpemba, P., Phiri, S., Srivastava, A. and Nyambuya, G. (2024) finement of the Proposed Gamma-Ray Burst Time Delay Model. International Journal of As my and Astrophysics, 14, 120-147. https://doi.org/10.4236/ijaa.2024.142008