PULSAR WIND NEBULAE AS GALACTIC PEVATRON CANDIDATES

Elena Amato

INAF- Osservatorio Astrofisico di Arcetri Firenze - Italy

PULSAR WIND NEBULAE

SNRs WITH

CENTER FILLED MORPHOLOGY BROAD NON THERMAL SPECTRUM FLAT RADIO SPECTRUM $F_{\nu} \propto \nu^{-\alpha}, \quad \alpha < 0.5$

Multi-wavelength emission and size shrinkage

WHY PWNE ARE INTERESTING

$L_{\text{radio}} \lesssim 10^{-10} \dot{E}_{\text{PSR}}, \quad L_{\gamma} \lesssim 10^{-2} \dot{E}_{\text{PSR}}, \quad L_{\text{PWN}} \ge 0.1 \dot{E}_{\text{PSR}}$

PLASMA PHYSICS:

PULSAR PHYSICS:

• CLOSEST AND BEST STUDIED RELATIVISTIC PLASMAS • PARTICLE ACCELERATION AT THE MOST RELATIVISTIC SHOCKS IN NATURE ($10^4 < \Gamma < 10^8$)

COSMIC RAY PHYSICS:

ONLY SOURCES WITH DIRECT EVIDENCE OF PeV PARTICLES
LIKELY MAIN CONTRIBUTORS OF CR POSITRONS

GAMMA-RAY ASTROPHYSICS:

MOST NUMEROUS CLASS OF GALACTIC SOURCES

- EXTENDED TeV HALOES
- LEPTONIC (AT LEAST) PEVATRONS

COSMIC RAYS

4

THE QUEST FOR PEVATRONS

UHE SOURCES IN THE GALAXY

LHAASO >1	00 Tev
-----------	--------

Table 1 | UHE γ -ray sources

Cao+ 2021

Source name	RA (°)	dec. (°)	Significance above 100 TeV (× σ)	E _{max} (PeV)	Flux at 100 Te	eV (CU)
LHAASO J0534+2202	83.55	22.05	17.8	0.88 ± 0.11	1.00(0.14)	
LHAASO J1825-1326	276.45	-13.45	16.4	0.42 ± 0.16	3.57(0.52)	
LHAASO J1839-0545	279.95	-5.75	7.7	0.21±0.05	0.70(0.18)	
LHAASO J1843-0338	280.75	-3.65	8.5	0.26 -0.10 ^{+0.16}	0.73(0.17)	
LHAASO J1849-0003	282.35	-0.05	10.4	0.35 ± 0.07	0.74(0.15)	
LHAASO J1908+0621	287.05	6.35	17.2	0.44 ± 0.05	1.36(0.18)	
LHAASO J1929+1745	292.25	17.75	7.4	0.71-0.07 ^{+0.16}	0.38(0.09)	
LHAASO J1956+2845	299.05	28.75	7.4	0.42 ± 0.03	0.41(0.09)	
LHAASO J2018+3651	304.75	36.85	10.4	0.27 ± 0.02	0.50(0.10)	
LHAASO J2032+4102	308.05	41.05	10.5	1.42 ± 0.13	0.54(0.10)	
LHAASO J2108+5157	317.15	51.95	8.3	0.43 ± 0.05	0.38(0.09)	NO PSR
LHAASO J2226+6057	336.75	60.95	13.6	0.57 ± 0.19	1.05(0.16)	

PULSAR ASSOCIATIONS IN 1LHAASO

-35 ASSOCIATIONS WITH PULSARS OUT OF 90 SOURCES -22 UHE OUT OF 43 -POSSIBLY THE ONLY SOURCES IN THE GALAXY ABLE TO ACCELERATE LEPTONS TO PeV ENERGIES

WHAT WE KNOW ABOUT PWNE

BROAD BAND NON-THERMAL SPECTRUM

CRAB NEBULA spectrum [adapted from Atoyan & Aharonian 1996]

synchrotron radiation by relativistic particles in the nebular B field Inverse Compton scattering with local photon field

PARTICLES AND FIELD FROM ROTATIONAL ENERGY LOST BY PULSAR

PSR IS A ROTATING MAGNET THAT SLOWS DOWN DUE TO E.M. TORQUE

POSSIBLY THE ONLY SOURCES IN THE GALAXY ABLE TO ACCELERATE LEPTONS TO PeV ENERGIES

[Pacini & Salvati 1973, EA+ 2000, Bucciantini+ 2011....] [also Fraschetti & Pohl 2017 for log-parabola injection] [Comisso, Sobacchi & Sironi 2020 for alternative scenario]

BASIC PICTURE FOR YOUNG SYSTEMS

 $= P_{PWN} = \frac{\dot{E} t}{4\pi R_N^3}$ $\frac{\dot{E}}{4\pi cR_{TS}^2}$ $R_{TS} = \left(\frac{v_N}{c}\right)$ R_N

BASIC PICTURE FOR YOUNG SYSTEMS

$$R_{TS} = \left(\frac{v_N}{c}\right)^{1/2} R_N$$

DISSIPATION AND PARTICLE ACCELERATION AT TS

Adapted from Kennel & Coroniti 1984 [Del Zanna & Olmi 2017]

MODELING THE PSR WIND

PWN EVOLUTION

SNR EXPANSION SLOWS DOWN + LARGE FRACTION OF ALL THE PULSARS BORN WITH HIGH KICK VELOCITY

COMPRESSED PWN OFFSET PW

REVERBERATION PHASE

RELIC NEBULAE

EVENTUALLY MOST GAMMA-RAY BRIGHT, X-RAY DIM PWNe

EVOLVED PWNE

BOW SHOCK NEBULAE

THE CR POSITRON EXCESS

BOW SHOCK PWNe EARLY SUGGESTED [Blasi & EA 11] AS BEST CANDIDATES TO EXPLAIN THE EXCESS

ALL LEPTON SPECTRUM

Evoli+ 21,22

BS-PWNe INJECT $0.1\dot{E}$ AS A BROKEN POWER-LAW OF e⁺-e⁻ : $E_B \approx 500 {\rm GeV}$

EVIDENCE FOR PEV PARTICLES!

OBSERVATIONS OF JETS AND HALOES

Geminga [Posselt+ 2017]

Extended TeV halo [Abeysekara+ 2017]

X-ray

Lighthouse nebula [Pavan+ 2016]

Guitar nebula [Cordes+ 1993, Wong+ 2003]

[Temim+ 2009]

.G327

PSR J1509-5850 [Klinger+ 2016] G327.1-1.1

PARTICLE ESCAPE FROM BOW SHOCK PWNE

HIGH ENERGY PARTICLES INJECTED CLOSE TO THE POLAR AXIS STREAM OUT FROM RECONNECTION POINT AND FORM JETS IN THE ISM B-FIELD

ESCAPE IS CHARGE SEPARATED!

Olmi & Bucciantini 2019

ENERGY DEPENDENCE OF THE ESCAPE

WITH INCREASING ENERGY:

• LARGER FRACTION OF PARTICLES • MORE ISOTROPIC RELEASE

- ENERGY DEPENDENT ESCAPE PROBABILITY MAKES HALO SPECTRUM NON TRIVIAL

- ESCAPE IS CHARGE SEPARATED!

- IF LOW AMBIENT B NON **RESONANT STREAMING** INSTABILITY [Bell 04] POSSIBLE ...

EXPLAINING JETS

EMISSION FROM PARTICLES WITH E>100 TEV!!!

AND

DEEP IMPACT ON THE SURROUNDING MEDIUM [Olmi, EA, Bandiera & Blasi 24]

Lighthouse nebula [Pavan+ 2016]

Guitar nebula [Cordes+ 1993, Wong+ 2003]

System	$n_{\rm ISM}$ cm ⁻³	$\gamma_{ m MPD}$	$\gamma_{ m esc}$	ΔB μG	$\epsilon \times 10^{-3}$	R/d_0
Guitar	0.6	1.2×10^{8}	1.2×10^{7}	78	6	0.5
Lighthouse	0.07	4.0×10^{9}	8×10^{7}	26	19	2
J2030+4415	4.0	5×10^{8}	$\lesssim 4 imes 10^7 \left(L_f / m pc ight)$	$40 < \Delta B < 181$	_	_

LHAASO DETECTION OF CRAB

PULSAR ASSOCIATIONS IN 1LHAASO

-35 ASSOCIATIONS WITH PULSARS OUT OF 90 SOURCES -22 UHE OUT OF 43 -POSSIBLY THE ONLY SOURCES IN THE GALAXY ABLE TO ACCELERATE LEPTONS TO PeV ENERGIES

MAXIMUM ENERGY FOR AN ACCELERATOR

 $E_{max}^{abs} = q\Delta\Phi = q\mathscr{E}L \approx q \eta B L \qquad \eta = \mathscr{E}/B \sim v_f/c$

ABSOLUTE LIMIT

SAME AS FOR DIRECT E-FIELD ACCELERATION WITH $\mathscr{C} pprox B$

ACCELERATION SITES

PLUS OF COURSE THE SNR SHOCK

 $E_{\rm max} = Ze\Delta\Phi$

$$E_{\text{max}}^{\text{PSR}} = 1.5 \ Z \ \text{PeV} \left(\frac{\dot{E}}{10^{36} \text{erg/s}}\right)^{1/2}$$

27

MAXIMUM ENERGY IN A PWN

ACCELERATION MECHANISM UNKNOWN BUT ...

IN YOUNG ENERGETIC SYSTEMS ELECTRON ACCELERATION AT THE SHOCK IS LOSS LIMITED NO MATTER THE MECHANISM

$$t_{acc} = \frac{E}{e\eta_E Bc} < t_{loss} = \frac{6\pi (mc^2)^2}{\sigma_T c B^2 E} \qquad E_{max} \approx 6 \ PeV \ \eta_E^{1/2} \ B_{-4}^{1/2}$$

FOR EVOLVED SYSTEMS, LOWER B-FIELD VALUES STRICT LIMIT FROM THE PSR POTENTIAL DROP $\Phi_{PSR} = \sqrt{\dot{E}/c}$

$$E_{max,abs} = e\eta_E B_{TS} R_{TS}$$
$$\frac{B_{TS}^2}{4\pi} = \xi_B \frac{\dot{E}}{4\pi R_{TS}^2 c}$$

$$E_{max,abs} = e\eta_E \ \xi_B^{1/2} \sqrt{\dot{E}/c} \approx 1.8 \ PeV \ \eta_E \ \xi_B^{1/2} \ \dot{E}_{36}^{1/2}$$

$$RECALL \ E_{max}^{PSR} = 1.5 \ Z \ PeV \ \left(\frac{\dot{E}}{10^{36} \text{erg/s}}\right)^{1/2}$$

IN YOUNG SYSTEMS: WE COULD SEE HADRONS ...

[EA & Arons 06; EA, Guetta, Blasi 03]

Vercellone+ 22

NOTE: FOR NEW BORN HIGH B PSR PARAMETERS ALSO UHECRS NICELY FITS COMPOSITION AND SPECTRUM AND ALSO CORRELATION WITH STARBURST GALAXIES

IONS IN PULSAR WIND?

NOTE: IN PRINCIPLE BOTH ELECTRONS AND IONS COULD BE EXTRACTED:

$$\begin{split} T_i &\approx 3.5 \times 10^5 \text{ K } \left(\frac{B_{\star}}{10^{12} \text{G}}\right)^{0.73} \\ \text{(Harding 2007)} \\ T_e &\approx 3.6 \times 10^5 \text{ K } \left(\frac{Z}{26}\right)^{0.8} \left(\frac{B_{\star}}{10^{12} \text{G}}\right)^{0.8} \\ \text{BUT } \dot{N}_i &\leq \dot{N}_{GJ} \\ \text{WHILE } \dot{N}_{\pm} &= \kappa \dot{N}_{GJ} \end{split}$$

UHECRS FROM MAGNETARS

 $T_{NS} = [1, 2, 5, 10] \times 10^6 K$

LHAASO PEVATRONS AND PWNE

SUMMARY

- HUGE PROGRESS IN OUR UNDERSTANDING OF PWNe FROM MULTI-D MHD DYNAMICS AND RADIATION MODELLING

- PARTICLE ACCELERATION MECHANISM PROGRESSIVELY BETTER CONSTRAINED BUT STILL UNCLEAR
- UHE GAMMA-RAY OBSERVATIONS HIGHLIGHT THE IMPORTANCE OF UNDERSTANDING PWNe AS PARTICLE ACCELERATORS
 - ONLY FIRMLY IDENTIFIED PEVATRON IS CRAB
 - PSRs OBSERVED IN MOST OF THE UHE EMISSION FIELDS
 - PSRs LIKELY THE ONLY GALACTIC SOURCES ABLE TO PUSH LEPTONS TO PeV
 - ON THE OTHER HAND IF THEY ARE HADRONIC PSRs ARE NOT A PRIORI EXCLUDED!!!!!
- UHE GAMMA-RAYS FROM YOUNG PWNe COULD PROVIDE FIRST EVIDENCE OF IONS IN PULSAR WINDS, WITH ENORMOUS IMPLICATIONS: NOT ONLY PULSAR PHYSICS, BUT MAYBE EVEN UHECRs...

PSR WIND AND PWN DYNAMICS

- ACCELERATION MECHANISM AND PLACE DIFFERENT FOR RADIO AND X-RAY EMITTING PARTICLES
- RADIO EMITTING PARTICLES DO NOT NEED TO BE PART OF THE WIND —> MULTIPLICITY CAN BE LOW ($\kappa\sim 10^3-10^4$) and wind lorentz factor very High ($\Gamma\sim 10^6-10^7$)

MULTI-WAVELENGTH VARIABILTY

[Komissarov & Lyubarsky 03,04; Del Zanna+ 04,06; Bogovalov+ 05;Camus+ 09; Volpi+ 08; Olmi+ 14,15,16;Porth+ 13,14] 34

TOTAL WIND POWER:

$$\dot{E} = \kappa \dot{N}_{GJ} m_e \Gamma c^2 \left(1 + \frac{m_i}{\kappa m_e} \right) (1 + \sigma)$$

$$\sigma = \frac{B^2}{4\pi n_{\pm} m_e c^2 \Gamma^2}$$

 $\kappa, \Gamma \text{ AND } \sigma \text{ UNKNOWN}$ $\Gamma = \frac{e\sqrt{\dot{E}/c}}{\kappa m_e c^2 \left(1 + \frac{m_i}{\kappa m_e}\right) (1 + \sigma)}$

IF $\kappa < m_i/m_e$ IONS COULD DOMINATE ENERGY OUTFLOW AND REACH THE TERMINATION SHOCK ($\sigma \approx 1$) WITH

$$m_i \Gamma c^2 \approx e \sqrt{\dot{E}/c}$$