

The Phenomenology of Rare $b \rightarrow s \ell^+ \ell^-$ Decays

Danny van Dyk

Institute for Particle Physics Phenomenology, Durham

Seminar, University of Birmingham, Oct 30th 2024

Motivation

► deviations between measurements and Standard Model (SM) predictions requires careful interpretation

Possible Explanations

- 1. QED: mismatch between predictions and measurements, particularly in differential observables
 - unlikely explanation

[Isidori/Nabeebaccus/Zwicky 2009.00929]

- "dangerous hard-collinear logarithms cancel at the differential level in the currently used experimental treatment"
- not further discussed here

Possible Explanations

- 1. QED: mismatch between predictions and measurements, particularly in differential observables
 - unlikely explanation

[Isidori/Nabeebaccus/Zwicky 2009.00929]

- "dangerous hard-collinear logarithms cancel at the differential level in the currently used experimental treatment"
- not further discussed here
- 2. QCD: lack of understanding of the Standard Model long-distance dynamics, which mimic beyond the Standard Model (BSM) effects
 - quantify potential hadronic and BSM effects (within the Weak Effective Theory)
 - topic of this presentation

Possible Explanations

- 1. QED: mismatch between predictions and measurements, particularly in differential observables
 - unlikely explanation

[Isidori/Nabeebaccus/Zwicky 2009.00929]

- "dangerous hard-collinear logarithms cancel at the differential level in the currently used experimental treatment"
- not further discussed here
- 2. QCD: lack of understanding of the Standard Model long-distance dynamics, which mimic beyond the Standard Model (BSM) effects
 - quantify potential hadronic and BSM effects (within the Weak Effective Theory)
 - topic of this presentation
- 3. BSM: genuine BSM effects in the data?
 - interpret potential BSM effects qualitatively
 - task for model builders (i.e.: not me!)

Interpretation within the Weak Effective Theory

- widely used tool of theoretical physics
- used to predict obsevable in SM and interpret measurements w/o assuming a concrete model beyond SM

- widely used tool of theoretical physics
- used to predict obsevable in SM and interpret measurements w/o assuming a concrete model beyond SM
- ► replaces dynamical d.o.f. (here: t, W, Z) with coefficients C_l and local operators (here: [s̄ Γ b][ℓΓ'ℓ])

- used to predict obsevable in SM and interpret measurements w/o assuming a concrete model beyond SM
- replaces dynamical d.o.f. (here: t, W, Z) with coefficients C₁ and local operators (here: [s̄ □ b][ℓ̄ □ 'ℓ])
- local operators must respect remaining U(1)_{EM} × SU(3)_C symmetry

- used to predict obsevable in SM and interpret measurements w/o assuming a concrete model beyond SM
- replaces dynamical d.o.f. (here: t, W, Z) with coefficients C_i and local operators (here: [s̄ □ b][ℓ̄ □ 'ℓ])
- local operators must respect remaining U(1)_{EM} × SU(3)_C symmetry
- for $b \to s\ell\ell$ we find in general

▶ ...

- 10 semileptonic $[\overline{s} \Gamma b] [\overline{\ell} \Gamma' \ell]$ ops
- 20 four-quark $[\overline{s} \Gamma b] [\overline{c} \Gamma' c]$ ops

Energy W ELHC Mr M_{D} $\sum_{i} C_{i} \times [\overline{s} \Gamma_{i} b] \times [\overline{\ell} \Gamma_{i}' \ell]$

▶ in the SM, only the following set of D = 6 effective operators contributes:

$$\mathcal{L}_{SM}^{eff} = \mathcal{L}_{QCD} + \mathcal{L}_{QED} + \frac{4G_F}{\sqrt{2}} \left[\lambda_f \sum_{i=3}^{10} \mathcal{C}_i \mathcal{O}_i + \lambda_c \sum_{j=1}^2 \mathcal{C}_j^{\ c} \mathcal{O}_j^{\ c} + \lambda_u \sum_{k=1}^2 \mathcal{C}_k^{\ u} \mathcal{O}_k^{\ u} \right] \qquad \text{with } \lambda_q \equiv V_{qb} V_{qs}^*$$

radiative

$$\mathcal{O}_{7(\prime)} = \frac{e}{16\pi^2} m_b (\bar{s}\sigma^{\mu\nu} P_{R(L)} b) F_{\mu\nu} \qquad \qquad \mathcal{O}_{8(\prime)} = \frac{g_s}{16\pi^2} m_b (\bar{s}\sigma^{\mu\nu} P_{R(L)} T^A b) G^A_{\mu\nu}$$

▶ in the SM, only the following set of D = 6 effective operators contributes:

$$\mathcal{L}_{SM}^{eff} = \mathcal{L}_{QCD} + \mathcal{L}_{QED} + \frac{4G_F}{\sqrt{2}} \left[\lambda_f \sum_{l=3}^{10} \mathcal{C}_l \mathcal{O}_l + \lambda_c \sum_{j=1}^2 \mathcal{C}_j^{\,c} \mathcal{O}_j^{\,c} + \lambda_u \sum_{k=1}^2 \mathcal{C}_k^{\,u} \mathcal{O}_k^{\,u} \right] \qquad \text{with } \lambda_q \equiv V_{qb} V_{qs}^*$$

radiative

$$\mathcal{O}_{7(\prime)} = \frac{\Theta}{16\pi^2} m_b (\bar{s}\sigma^{\mu\nu} P_{R(L)} b) F_{\mu\nu} \qquad \qquad \mathcal{O}_{8(\prime)} = \frac{g_s}{16\pi^2} m_b (\bar{s}\sigma^{\mu\nu} P_{R(L)} T^A b) G^A_{\mu\nu}$$

semileptonic

$$\mathcal{O}_{9} = \frac{\alpha}{4\pi} (\bar{s}\gamma_{\mu} P_{L} b) (\bar{\ell}\gamma^{\mu} \ell) \qquad \qquad \mathcal{O}_{10} = \frac{\alpha}{4\pi} (\bar{s}\gamma_{\mu} P_{L} b) (\bar{\ell}\gamma^{\mu} \gamma_{5} \ell)$$

▶ in the SM, only the following set of D = 6 effective operators contributes:

$$\mathcal{L}_{SM}^{\text{eff}} = \mathcal{L}_{QCD} + \mathcal{L}_{QED} + \frac{4G_F}{\sqrt{2}} \left[\lambda_f \sum_{l=3}^{10} \mathcal{C}_l \mathcal{O}_l + \lambda_c \sum_{j=1}^2 \mathcal{C}_j^{\,c} \mathcal{O}_j^{\,c} + \lambda_u \sum_{k=1}^2 \mathcal{C}_k^{\,u} \mathcal{O}_k^{\,u} \right] \qquad \text{with } \lambda_q \equiv V_{qb} V_{qs}^*$$

radiative

$$\mathcal{O}_{7(\prime)} = \frac{e}{16\pi^2} m_b (\bar{s}\sigma^{\mu\nu} P_{R(L)} b) F_{\mu\nu} \qquad \qquad \mathcal{O}_{8(\prime)} = \frac{g_s}{16\pi^2} m_b (\bar{s}\sigma^{\mu\nu} P_{R(L)} T^A b) G^A_{\mu\nu}$$

semileptonic

$$\mathcal{O}_{\varphi} = rac{lpha}{4\pi} (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\ell)$$

four-quark current-current ($q = c, u$)

$$\mathcal{O}_1^{\mathbf{q}} = (\overline{\mathbf{q}}\gamma_\mu P_L b)(\overline{s}\gamma^\mu P_L \mathbf{q})$$

$${\cal O}_{10}=rac{lpha}{4\pi}(ar{s}\gamma_\mu P_L b)(ar{\ell}\gamma^\mu\gamma_5\ell)$$

$$\mathcal{O}_2^{\mathbf{q}} = (\overline{\mathbf{q}} \gamma_\mu P_L T^a b) (\overline{s} \gamma^\mu P_L T^a \mathbf{q})$$

▶ in the SM, only the following set of D = 6 effective operators contributes:

$$\mathcal{L}_{SM}^{eff} = \mathcal{L}_{QCD} + \mathcal{L}_{QED} + \frac{4G_F}{\sqrt{2}} \left[\lambda_f \sum_{l=3}^{10} \mathcal{C}_l \mathcal{O}_l + \lambda_c \sum_{j=1}^2 \mathcal{C}_j^{\,c} \mathcal{O}_j^{\,c} + \lambda_u \sum_{k=1}^2 \mathcal{C}_k^{\,u} \mathcal{O}_k^{\,u} \right] \qquad \text{with } \lambda_q \equiv V_{qb} V_{qs}^*$$

radiative

$$\mathcal{O}_{7^{(\prime)}} = \frac{e}{16\pi^2} m_b (\bar{s}\sigma^{\mu\nu} P_{R(L)} b) F_{\mu\nu} \qquad \qquad \mathcal{O}_{8^{(\prime)}} = \frac{g_s}{16\pi^2} m_b (\bar{s}\sigma^{\mu\nu} P_{R(L)} T^A b) G^A_{\mu\nu}$$

semileptonic

$$\mathcal{O}_{9} = rac{lpha}{4\pi} (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\ell)$$

four-quark current-current ($q = c, u$)

$$\mathcal{O}_{1}^{\mathbf{q}} = (\overline{\mathbf{q}}\gamma_{\mu}P_{L}b)(\overline{s}\gamma^{\mu}P_{L}\mathbf{q})$$

four-quark QCD penguins

$$\mathcal{O}_{3,5} = (\bar{s}\Gamma_{\tilde{\mu}}P_Lb)\sum_{q}(\bar{q}\tilde{\Gamma}^{\tilde{\mu}}q)$$

$$\mathcal{O}_{10} = rac{lpha}{4\pi} (ar{s} \gamma_\mu P_L b) (ar{\ell} \gamma^\mu \gamma_5 \ell)$$

$$\mathcal{O}_2^{\mathbf{q}} = (\overline{\mathbf{q}}\gamma_{\mu}P_LT^{\alpha}b)(\overline{s}\gamma^{\mu}P_LT^{\alpha}\mathbf{q})$$

$$\mathcal{O}_{4,6} = (\bar{s}\Gamma_{\tilde{\mu}}T^{A}P_{L}b)\sum_{q}(\bar{q}\tilde{\Gamma}^{\tilde{\mu}}T^{A}q)$$

▶ in the SM, only the following set of D = 6 effective operators contributes:

$$\mathcal{L}_{\rm SM}^{\rm eff} = \mathcal{L}_{\rm QCD} + \mathcal{L}_{\rm QED} + \frac{4G_F}{\sqrt{2}} \left[\lambda_f \sum_{l=3}^{10} \mathcal{C}_l \mathcal{O}_l + \lambda_c \sum_{j=1}^2 \mathcal{C}_j^{\,c} \mathcal{O}_j^{\,c} + \lambda_u \sum_{k=1}^2 \mathcal{C}_k^{\,u} \mathcal{O}_k^{\,u} \right] \qquad \text{with } \lambda_q \equiv V_{qb} V_{qs}^*$$

radiative

$$\mathcal{O}_{7(\prime)} = \frac{\Theta}{16\pi^2} m_{\rm b} (\bar{s}\sigma^{\mu\nu} P_{R(L)} b) F_{\mu\nu} \qquad \qquad \mathcal{O}_{8^{(\prime)}} = \frac{g_s}{16\pi^2} m_{\rm b} (\bar{s}\sigma^{\mu\nu} P_{R(L)} T^A b) G^A_{\mu\nu}$$

semileptonic

$$\mathcal{O}_{9} = rac{lpha}{4\pi} (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\ell)$$

four-quark current-current ($q = c, u$)

$$\mathcal{O}_{1}^{\mathbf{q}} = (\overline{\mathbf{q}}\gamma_{\mu}P_{L}b)(\overline{s}\gamma^{\mu}P_{L}\mathbf{q})$$

four-quark QCD penguins

$$\mathcal{O}_{3,5} = (\bar{s}\Gamma_{\tilde{\mu}}P_{L}b)\sum_{q}(\bar{q}\tilde{\Gamma}^{\tilde{\mu}}q)$$

▶ SM contributions to $C_i(\mu_b)$ known to high accuracy (NNLL)

$$\mathcal{O}_{10} = rac{lpha}{4\pi} (ar{s} \gamma_\mu P_L b) (ar{\ell} \gamma^\mu \gamma_5 \ell)$$

$$\mathcal{O}_2^{\mathbf{q}} = (\overline{\mathbf{q}}\gamma_\mu P_L T^a b)(\overline{s}\gamma^\mu P_L T^a \mathbf{q})$$

$$\mathcal{O}_{4,6} = (\bar{s}\Gamma_{\tilde{\mu}}T^{A}P_{L}b)\sum_{q}(\bar{q}\tilde{\Gamma}^{\tilde{\mu}}T^{A}q)$$

[Bobeth,Misiak,Urban '99; Misiak,Steinhauser '04, Gorbahn,Haisch '04] [Gorbahn, Haisch, Misiak '05; Czakon, Haisch, Misiak '06]

Tangent 1: Renormalization Group Equations (RGE)

- ▶ Wilson coefficients C_i can be computed in perturbation theory at some high energy scale $\mu_0 \sim M_W \gg m_b$
- ► however, matrix elements of operators are evaluated (e.g. from lattice QCD) at some low energy scale $\Lambda_{had} < \mu_1 < m_b$
- mismatch must be resolved to obtain reliable predictions
- Renormalization Group Equations (RGEs) provide means to evolve both the Wilson coefficients and the matrix elements from their respective intrinsic scales to one common scale
 - \Rightarrow RGE-improved perturbation theory

Tangent 1: Renormalization Group Equations (RGE)

RGE for multiplicatively-renormalizing quantities:

$$\mu \frac{d}{d\mu} \mathcal{C}(\mu) = \gamma(\alpha_s(\mu)) \mathcal{C}(\mu) \qquad \qquad \mu \frac{d}{d\mu} \alpha_s(\mu) = 2\beta(\alpha_s(\mu))$$
$$\gamma = \gamma^{(0)} \frac{\alpha_s}{4\pi} + \mathcal{O}\left(\alpha_s^2\right) \qquad \qquad \beta = \beta^{(0)} \left(\frac{\alpha_s}{4\pi}\right)^2 + \mathcal{O}\left(\alpha_s^3\right)$$

Solution

$$\mathcal{C}(\mu_{1}) = \mathcal{C}(\mu_{0}) \left[\frac{\alpha_{s}(\mu_{1})}{\alpha_{s}(\mu_{0})}\right]^{\left(\frac{\gamma^{(0)}}{2\beta^{(0)}}\right)} + \mathcal{O}\left(\alpha_{s}^{n+1}(\mu_{0})\ln^{n}\left(\frac{\mu_{1}}{\mu_{0}}\right)\right)$$

$$\overset{\text{NLL}}{\overset{\text{(*): resums all leading-logarithmic (LL) terms } \alpha_{s}^{n}(\mu_{0})\ln^{n}\left(\frac{\mu_{1}}{\mu_{0}}\right) \text{ via}}{\left[\frac{\alpha_{s}(\mu_{1})}{\alpha_{s}(\mu_{0})}\right]^{\left(\frac{\gamma^{(0)}}{2\beta^{(0)}}\right)}} = 1 - \gamma^{(0)}\alpha_{s}(\mu_{0})\ln\left(\frac{\mu_{1}}{\mu_{0}}\right) + \mathcal{O}\left(\alpha_{s}(\mu_{0})^{2}\ln^{2}\left(\frac{\mu_{1}}{\mu_{0}}\right)\right)$$

- sbcc 4-quark operators yield UV divergence
 - must be renormalized
 - require $sb\ell\ell$ / $sb\gamma$ counterterm (C_9 / C_7)
- SM operator basis renormalizes multiplicatively
 - γ is promoted to a matrix γ_{ij}
 - operators mix under RGE
- phenomenologically important
 - SM sbcc operators contribute \sim 50% of $\mathcal{C}_{\rm g}^{\rm SM}(\mu_b)$ at NNLL

▶ in the presence of NP effects

$$\mathcal{L}_{\text{BSM}}^{\text{eff}} = \mathcal{L}_{\text{SM}}^{\text{eff}} + \frac{4G_{\text{F}}}{\sqrt{2}} \left[\lambda_{t} \sum_{i} \mathcal{C}_{i} \mathcal{O}_{i} \right]$$

semileptonic

$$\mathcal{O}_{9'} = \frac{\alpha}{4\pi} (\bar{s}\gamma_{\mu}P_{R}b)(\bar{\ell}\gamma^{\mu}\ell)$$
$$\mathcal{O}_{S} = \frac{\alpha}{4\pi} (\bar{s}P_{R}b)(\bar{\ell}\ell)$$
$$\mathcal{O}_{P} = \frac{\alpha}{4\pi} (\bar{s}P_{R}b)(\bar{\ell}\gamma_{5}\ell)$$
$$\mathcal{O}_{T} = \frac{\alpha}{4\pi} (\bar{s}\sigma^{\mu\nu}b)(\bar{\ell}\sigma_{\mu\nu}\ell)$$

► regularly considered in the literature!

$$\mathcal{O}_{10'} = \frac{\alpha}{4\pi} (\bar{s}\gamma_{\mu}P_{R}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell)$$
$$\mathcal{O}_{S'} = \frac{\alpha}{4\pi} (\bar{s}P_{L}b)(\bar{\ell}\ell)$$
$$\mathcal{O}_{P'} = \frac{\alpha}{4\pi} (\bar{s}P_{L}b)(\bar{\ell}\gamma_{5}\ell)$$
$$\mathcal{O}_{T5} = \frac{\alpha}{4\pi} (\bar{s}\sigma^{\mu\nu}P_{L}b)(\bar{\ell}\sigma_{\mu\nu}\gamma_{5}\ell)$$

▶ in the presence of NP effects

$$\mathcal{L}_{\text{BSM}}^{\text{eff}} = \mathcal{L}_{\text{SM}}^{\text{eff}} + \frac{4G_F}{\sqrt{2}} \left[\lambda_f \sum_i \mathcal{C}_i \, \mathcal{O}_i \right]$$

- add further 2×18 operators with q = c, u
- ► add further "QCD-penguin" operators with q = d, s, b
- these operators are routinely ignored in the literature!

[except by Jäger,Kirk,Lenz,Leslie '17]

for a truly model-independent analysis of data, would need to fit coefficients of all operators!

- WET makes calculations in the SM possible in the first place
 - ► separates long-distance ($[\overline{s}\Gamma b][...]$) physics from short-distance physics (C)
- "divides and conquers"
 - SM WET contributions under excellent theory control
 - ► precision of SM predictions hinges on accurate control of hadronic matrix elements
- accounts transparently and model-independently for the effects of physics beyond the SM
 - \blacktriangleright treats Wilson coefficients ${\cal C}$ as generalized couplings and fits them from data
 - provides an excellent interface to model builders

From the WET to the Observables

Anatomy of exclusive $b \rightarrow s\ell^+\ell^-$ decay amplitudes

$$\mathcal{A}_{\lambda}^{\chi} = \mathcal{N}_{\lambda} \left\{ (C_{9} \mp C_{10}) \mathcal{F}_{\lambda}(q^{2}) + \frac{2m_{b}M_{B}}{q^{2}} \left[C_{7} \mathcal{F}_{\lambda}^{I}(q^{2}) - 16\pi^{2} \frac{M_{B}}{m_{b}} \mathcal{H}_{\lambda}(q^{2}) \right] \right\}$$

nomenclature of the essential hadronic matrix elements

 $q^2 = m_{\ell\ell}^2$

- \mathcal{F}_{λ} local form factors of dimension-three $\bar{s}\gamma^{\mu}b$ & $\bar{s}\gamma^{\mu}\gamma_{5}b$ currents
- $\mathcal{F}^{I}_{\lambda}$ local dipole form factors of dimension-three $\bar{s}\sigma^{\mu\nu}b$ currents
- \mathcal{H}_{λ} nonlocal form factors of dimension-five nonlocal operators

all three needed for consistent description to leading-order in α_e

Local Form Factors

- Iocal form factors are conceptually "easy"
 - yet a substantial source of uncertainties
- ► lattice QCD provides results typically at large q^2 for $B \to K$, $B \to K^*$, $B_s \to \phi$
 - caveat: K* is broad state, non-zero width can have O (10%) effects [Descotes-Genon,Khodjamirian,Virto '19]
 - new lattice results down to $q^2 = 0$ for $B \to K$ form factors [HPace '2]
- light-cone sum rules provide anchor points at small q²
 - caveat: systematic uncertainties hard to quantify

Local Form Factors

- Iocal form factors are conceptually "easy"
 - yet a substantial source of uncertainties
- ► lattice QCD provides results typically at large q^2 for $B \to K$, $B \to K^*$, $B_s \to \phi$
 - caveat: K* is broad state, non-zero width can have O (10%) effects [Descotes-Genon,Khodjamirian,Virto '19]
 - new lattice results down to $q^2 = 0$ for $B \rightarrow K$ form factors [HPacD '22]
- light-cone sum rules provide anchor points at small q²
 - caveat: systematic uncertainties hard to quantify
- IPPP group recently revisited dispersive bounds for all local $b \rightarrow s$ form factors

[Gubernari,Reboud,DvD,Virto '23]

Tangent 3: Dispersive Bound

consider auxilliary quantity: moment of cross section $\chi = \int ds \,\omega(s) \sigma(e^+e^- \rightarrow X_{b\bar{s}})$

exclusive picture

► moment of cross section is sum of positive-definite terms

► involves squares of $\overline{B}K$, $\overline{B}K^*$ form factors $\chi \sim \int dq^2 |F(q^2)|^2 + \text{pos. terms}$

inclusive picture

► moment of cross section can be computed "perturbatively"

- ► focussing on one exclusive final state (e.g, $\overline{B}K$), pertubartive results for χ limits form factor parameter space
- using apt parametrization

$$F(q^2) = \frac{1}{\sqrt{\chi}\cdots}\sum_n a_n z(q^2)^n$$

the bound takes the form $\sum_n |a_n|^2 < 1$

- global analysis finds good compatibility between LCSR and lattice QCD results
- dispersive bounds have been applied
 - reduce extrapolation error
 - turn hard-to-quantify systematic unc. into parametric unc.

- global analysis finds good compatibility between LCSR and lattice QCD results
- dispersive bounds have been applied
 - reduce extrapolation error
 - turn hard-to-quantify systematic unc. into parametric unc.
- commonly used BSZ parametrization surprisingly efficient
 - ► dispersive bound and BSZ very compatible for $q^2 \ge 0$, no need to swap params as of yet
 - ► theory will also require local form factors at $q^2 < 0$, where BSZ underestimates uncertainties

[Gubernari,Reboud,DvD,Virto '23]

 $\blacktriangleright O_{1,2}^c \sim [\overline{s} \Gamma b] [\overline{c} \Gamma' c]$

source of dominant systematic uncertainties in theoretical predictions! perturbative treatment does not reflect hadronic spectrum!

- leading contributions expressed through local form factors \$\mathcal{F}_{\lambda}\$
- correction suppressed by $1/(q^2 4m_c^2)$ can by systematically obtained

► for $q^2 = M_{J/\psi}^2$ and $q^2 = M_{\psi(2S)}^2$, spectrum dominated by $B \to K^*\psi(\to \mu^+\mu^-)$ decays

- experimental measurements provide additional information about \mathcal{H}_{λ}

[Bobeth,Chrzaszcz,DvD,Virto '17]

- compute \mathcal{H}_{λ} at spacelike a^2
- extrapolate to timelike $q^2 < 4M_D^2$ using suitable parametrization
- include information from hadronic decays to narrow charmonia J/ψ and $\psi(2S)$

Tangent 4: QCD Factorization (QCDF)

- the literature frequently discusses "the QCDF" approach to the non-local form factors
 [Beneke,Feldmann,Seidel '01&'04]
 - more correctly labelled: 1-loop, perturbative approach to non-local form factors

Tangent 4: QCD Factorization (QCDF)

- the literature frequently discusses "the QCDF" approach to the non-local form factors
 [Beneke,Feldmann,Seidel '01&'04]
 - ► more correctly labelled: 1-loop, perturbative approach to non-local form factors
- QCDF predicts ratios of local form factors, and ratios of some contributions to non-local form factors
 - QCDF is not predictive by itself, requires lattice QCD or light-cone sum rules as inputs
 - QCDF is not "dealing" with the charm loop contributions; it is agnostic of their treatment

Tangent 4: QCD Factorization (QCDF)

- the literature frequently discusses "the QCDF" approach to the non-local form factors
 [Beneke,Feldmann,Seidel '01&'04]
 - ► more correctly labelled: 1-loop, perturbative approach to non-local form factors
- QCDF predicts ratios of local form factors, and ratios of some contributions to non-local form factors
 - QCDF is not predictive by itself, requires lattice QCD or light-cone sum rules as inputs
 - QCDF is not "dealing" with the charm loop contributions; it is agnostic of their treatment
- slightly more technical
 - QCDF is used to express exclusive form factors for small q² in terms of nonlocal B and K^(*) matrix elements (LCDAs)
 - ► this calculation encounters universal divergences ⇒ not predictive for an individual form factor
 - universal divergences cancel in ratios

Preparing $b \rightarrow s\ell\ell$ predictions for the era of the High-Luminosity LHC

Reduce systematical theory uncertainties

 check previous computations of the nonlocal form factors at subleading power

[Gubernari,DvD,Virto '20]

- ► previous results incomplete, missing terms cancel known contributions
- subleading-power terms are negligible at spacelike q^2
- improve the parametrization to control the extrapolation error

[Gubernari,DvD,Virto '20; Gubernari,Reboud,Virto '22; Gubernari,Reboud,Virto '23]

- ► use dispersively-bounded parametrization for both local and non-local form factors
- challenge implicit theory assumptions in the nonlocal form factors
 - determine WET Wilson coefficients of *sbcc* operators from data

[Kirk,McPartland,Reboud,DvD,Virto]

 \checkmark

ongoing

Compute Light-Cone OPE

 $4m_c^2 - q^2 \gg \Lambda_{hadr.}^2$

▶ expansion in operators at light-like distances $x^2 \simeq 0$

[Khodjamirian, Mannel, Pivovarov, Wang 2010]

► employing light-cone expansion of charm propagator [Balltsky, Braun 1989]

 $\int d^4x \, e^{i\mathbf{q}\cdot \mathbf{x}} \, \mathcal{T}\left\{J_{\text{em}}^{\mu}(\mathbf{x}), [C_1O_1^c + C_2O_2^c](\mathbf{0})\right\}$ $\xrightarrow{q^2 \ll 4m_c^2} \underbrace{\left(\frac{C_1}{3} + C_2\right)g(m_c^2, q^2)}_{\text{coeff #1}} \left[\overline{s} \, \Gamma \, b\right] + \cdots$

+ (coeff #2) × [$\bar{s}_L \gamma^{\alpha} (in_+ \cdot D)^n \tilde{G}_{\beta \gamma} b_L$]

Compute Light-Cone OPE

 $4m_c^2 - q^2 \gg \Lambda_{hadr.}^2$

▶ expansion in operators at light-like distances $x^2 \simeq 0$

[Khodjamirian, Mannel, Pivovarov, Wang 2010]

► employing light-cone expansion of charm propagator [Balitsky, Braun 1989]

- $\Rightarrow \mathcal{H}_{\lambda} = \operatorname{coeff} \#1 \times \mathcal{F}_{\lambda} + \mathcal{H}_{\lambda}^{\operatorname{spect.}} + \operatorname{coeff} \#2 \times \tilde{\mathcal{V}}$
- ▶ leading part identical to QCD Fact. results

[Beneke, Feldmann, Seidel '01&'04]

subleading coefficient computed previously

[Khodjamirian, Mannel, Pivovarov, Wang '10]

▶ we find full agreement, also cast result in convenient form

[Gubernari,Virto,DvD '20]

 \blacktriangleright next step: determine "subleading form factor" $\tilde{\mathcal{V}}$

Compute Soft gluon matrix elements

 $B \rightarrow K$ $\tilde{\mathcal{A}}$ (+4.9 + 2.8).

Transition $\tilde{\mathcal{V}}(q^2 = 1 \,\mathrm{GeV}^2)$

GvDV2020	KMPW2010
$2 \pm 2.8) \cdot 10^{-7}$	$(-1.3^{+1.0}_{-0.7})\cdot 10^{-4}$

		(, , , ,	(-0.//
	$\tilde{\mathcal{V}}_1$	$(-4.4 \pm 3.6) \cdot 10^{-7} \text{GeV}$	(-1.5 ^{+1.5} _{-2.5}) · 10 ⁻⁴ GeV
$B ightarrow K^*$	$\tilde{\mathcal{V}}_2$	$(+3.3\pm2.0)\cdot10^{-7}{ m GeV}$	$(+7.3^{+14}_{-7.9}) \cdot 10^{-5}{ m GeV}$
	$\tilde{\mathcal{V}}_3$	$(+1.1 \pm 1.0) \cdot 10^{-6} \text{GeV}$	$(+2.4^{+5.6}_{-2.7})\cdot 10^{-4}{ m GeV}$
	$\tilde{\mathcal{V}}_1$	$(-4.4 \pm 5.6) \cdot 10^{-7} \text{GeV}$	_
$B_s \to \phi$	$\tilde{\mathcal{V}}_2$	$(+4.3\pm3.1)\cdot10^{-7}{ m GeV}$	—
	$\tilde{\mathcal{V}}_3$	$(+1.7\pm2.0)\cdot10^{-6}\text{GeV}$	—

reduction by a factor of ~ 200

- new structures in three-particle LCDAs account for factor 10 (due to cancellations!)
- updated inputs that enter the sum rules account for further factor 10
- ▶ similar relative uncertainties, but absolute uncertainties reduced by O(100)

- ongoing project at IPPP to compute leading non-local contributions for full BSM basis of *sbcc* operators
 - ► first step to full control of non-local form factors in the WET
 - \checkmark one-loop calculation
 - w.i.p. two-loop calculation; working on reduction of master integrals
 - w.i.p. identifying observables that provide constraints on full basis (e.g., $\overline{B} \to KJ/\pi$ or *B* lifetime)
- ongoing project in Siegen to better classify non-local operators
 - of particular interest: contributions with hard-collinear gluon
 - relevant to "internal" charm loop

Extrapolate Parametrisations

- Taylor expand \mathcal{H}_{λ} in q^2/M_B^2 around 0
 - + simple to use in a fit
 - incomaptible with analyticity properties, does not reproduce resonances
 - expansion coefficients unbounded!

[Ciuichini et al. '15]

Extrapolate Parametrisations

- Taylor expand \mathcal{H}_{λ} in q^2/M_B^2 around 0
 - + simple to use in a fit
 - incomaptible with analyticity properties, does not reproduce resonances
 - expansion coefficients unbounded!
- use information from hadronic intermediate states in a dispersion relation [Khodjamirian et al. 10] $\mathcal{H}_{\lambda}(q^2) - \mathcal{H}_{\lambda}(s_0) = \frac{q^2 - s_0}{\pi} \int ds \frac{\operatorname{Im} \mathcal{H}_{\lambda}(s)}{(s - s_0)(s - q^2)} + \dots$
 - + reproduces resonances
 - hadronic information above the threshold must be modelled
 - complicated to use in a fit, relies on theory input in single point s_0

[Ciuichini et al. '15]

Extrapolate Parametrisations

- Taylor expand \mathcal{H}_{λ} in q^2/M_B^2 around 0
 - + simple to use in a fit
 - incomaptible with analyticity properties, does not reproduce resonances
 - expansion coefficients unbounded!
- use information from hadronic intermediate states in a dispersion relation [Khodjamirian et al. 10] $\mathcal{H}_{\lambda}(q^2) - \mathcal{H}_{\lambda}(s_0) = \frac{q^2 - s_0}{\pi} \int ds \frac{\operatorname{Im} \mathcal{H}_{\lambda}(s)}{(s - s_0)(s - q^2)} + \dots$
 - + reproduces resonances
 - hadronic information above the threshold must be modelled
 - complicated to use in a fit, relies on theory input in single point s_0
- expand the matrix elements in variable $z(q^2)$ that develops branch cut at $q^2 = 4M_D^2$

- + resonances can be included through explicit poles (Blaschke factors)
- + easy to use in a fit
- + compatible with analyticitiy properties
- expansion coefficients unbounded!

[Ciuichini et al. '15]

[[]Bobeth,Chrzaszcz,DvD,Virto '17]

Extrapolate Parametrisation of the Non-Local Form Factors 20/31

► map q^2 to new variable *z* that develops branch cut at $q^2 = 4M_D^2$ (Bobeth/Chr

[Bobeth/Chrzaszcz/DvD/Virto '17]

Extrapolate Parametrisation of the Non-Local Form Factors 20/31

- ► map q^2 to new variable *z* that develops branch cut at $q^2 = 4M_D^2$ [Bobeth/Chrzaszcz/DvD/Virto '17]
 - branch cut is mapped onto unit circle in z
 - real-valued $q^2 \le 4M_D^2$ is mapped to real-valued z
 - data and theory live insides the unit circle

Extrapolate Parametrisation of the Non-Local Form Factors 20/31

- ► map q^2 to new variable *z* that develops branch cut at $q^2 = 4M_D^2$ [Bobeth/Chrzaszcz/DvD/Virto '17]
 - branch cut is mapped onto unit circle in z
 - real-valued $q^2 \leq 4M_D^2$ is mapped to real-valued z
 - data and theory live insides the unit circle
- \blacktriangleright expand in z
 - + resonances J/ψ , $\psi(2S)$ can be included (via explicit poles/Blaschke factors)
 - + easy to use in a fit to theory and data
 - + compatible with analyticity
 - expansion coefficients unbounded!

Extrapolate New Parametrisation w/ Dispersive Bound

matrix elements $\mathcal{H}^{(\lambda)}$ arise from nonlocal operator

[Gubernari,DvD,Virto '20]

21/31

$$\mathcal{H}^{\mu} \sim \langle \mathcal{K} | \mathcal{O}^{\mu}(\mathbf{Q}; x) | B \rangle \qquad \mathcal{O}^{\mu}(\mathbf{Q}; x) \sim \int \mathcal{Q}^{4} y \, e^{i\mathbf{Q} \cdot y} \, T\{J^{\mu}_{\mathsf{em}}(x+y), [C_{1}O_{1}+C_{2}O_{2}](x)\}$$

construct four-point operator to derive a dispersive bound

► define matrix element of "square" (i.e., hermitian) operator

$$\int d^4x \, e^{i \mathbf{Q} \cdot x} \, \langle 0 | \, T\{ \mathcal{O}^{\mu}(\mathbf{Q}; x) \mathcal{O}^{\dagger, \nu}(\mathbf{Q}; 0) \} \, | 0 \rangle \equiv \left[\frac{\mathcal{Q}^{\mu} \mathcal{Q}^{\nu}}{\mathcal{Q}^2} - g^{\mu \nu} \right] \Pi(\mathbf{Q}^2)$$

- Π(Q²) has two types of discontinuities
 - ▶ from intermediate unflavoured states (*cc*, *cccc*, ...)
 - ▶ from intermediate <u>bs</u>-flavoured states (<u>bs</u>, <u>bsg</u>, <u>bscc</u>, ...)

Extrapolate Cuts of **Π**

Extrapolate Cuts of Π

Sume

c

C

Q

AC.

Q

• unflavoured states ($c\overline{c}, c\overline{c}c\overline{c}, \ldots$)

Extrapolate Cuts of **Π**

- unflavoured states ($c\overline{c}, c\overline{c}c\overline{c}, \ldots$)
- bs-flavoured states (bs, bsg, bscc, ...)

Extrapolate Lay of the Land

light-cone OPE SL phase space $J/\psi,\psi(2S)$ \overline{sb} cut

Extrapolate Dispersion relation for Π

dispersive representation of the $b\overline{s}$ contribution to a derivative of Π

$$\chi(Q^2) \equiv \frac{1}{2!} \left[\frac{d}{dQ^2} \right]^2 \frac{1}{2i\pi} \int_{(m_b+m_s)^2}^{\infty} ds \; \frac{\text{Disc}_{b\bar{s}} \, \Pi(s)}{s-Q^2} > 0 \qquad \text{if } Q^2 < 0$$

► Disc_{bs} Π can be computed in the local OPE $\rightarrow \chi^{OPE}(Q^2)$

- Disc_{bs} Π can be expressed in terms of the nonlocal form factors $|\mathcal{H}_{\lambda}|^2$ $\rightarrow \chi^{had}(Q^2)$
- ► global quark hadron duality suggests that $\chi^{\text{OPE}}(Q^2) = \chi^{\text{had}}(Q^2)$
- ► parametrize $\mathcal{H}_{\lambda} \propto \sum_{n} \boldsymbol{a}_{\lambda,n} f_{n}$ with orthonormal functions f_{n} ⇒ dispersive bound: $\chi^{\text{OPE}} \ge \sum |\boldsymbol{a}_{\lambda,n}|^{2}$
- first application of such a bound to nonlocal form factors
- technically more challenging than for local form factors

Extrapolate New parametrisation w/ dispersive bounds 25/31

- \blacktriangleright expand in z
 - $f_n(z)$ orthogonal on arc
 - + accounting for behaviour on arc produces dispersive bound on each parameter

[Gubernari/DvD/Virto '20]

- ► turns (so far!) hardly quantifiable systematic theory uncertainties into parametric uncertainties
- ► implemented in

- open source software at github.com/eos/eos
- Python 3 interface, available via *pip* as *eoshep*

SM Predictions: Comparing to Previous Works

- ► predictions mutually compatible; slight change to the slope in $B_s \rightarrow \phi$ due to local FFs
- our uncertainties larger, but systematically improvable

SM Predictions: Challenging Data

▶ substantial tensions in $\mathcal{B}(B \to K\mu^+\mu^-)$ and $\mathcal{B}(B_s \to \phi\mu^+\mu^-)$, lower in $\mathcal{B}(B \to K^*\mu^+\mu^-)$

SM Predictions: Challenging Data

- ▶ substantial tensions in $\mathcal{B}(B \to K\mu^+\mu^-)$ and $\mathcal{B}(B_s \to \phi\mu^+\mu^-)$, lower in $\mathcal{B}(B \to K^*\mu^+\mu^-)$
- ▶ tension in angular distribution in $B \rightarrow K^* \mu^+ \mu^-$ remains

Updated BSM Interpretation

- no global fit yet
 - large # of nuisance params makes global fit difficult
 - instead, three individual fits
 - mutually compatible results!
 - compatible with previous analyses
- fits use all available data, incl. angular obs.
- ▶ substantial tensions in $B \to K$ and $B_s \to \phi$, slightly lower in $B \to K^*$

$\Lambda_b ightarrow \Lambda \mu^+ \mu^{-1}$

- $\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$ provides complementary constraints on Wilson coefficients C_9 vs $C_{9'}$ vs C_{10} vs $C_{10'}$, etc.
- however, theory is not as well developed

	$\overline{B} ightarrow \overline{K} \mu^+ \mu^-$	$\Lambda_{ m b} ightarrow \Lambda \mu^+ \mu^-$
local FFs from lattice QCD	\checkmark	\checkmark
local FFs: dispersive bounds	\checkmark	\checkmark (recently)
QCDF for non-local FFs	\checkmark	×
soft-gluon correction	\checkmark	×

QCDF for Baryons?

- hard collinear spectator scattering
- Ist scattering does not suffice!

QCDF for Baryons?

- hard collinear spectator scattering
- Ist scattering does not suffice!
- 2nd scattering alignment?
- ► 2nd scattering LCDA?

Summary

Summary and Outlook

- ► phenomenology of rare *B* decays is a complicated business
 - WET under good control
 - local form factors see revitalized interest from lattice QCD
 - non-local form factors now under reasonable theory control
- ► new approach to (B)SM predictions corroborates earlier results qualitatively
 - ► larger uncertainties reduce significance of the anomalies somewhat
 - uncertainties very conservative and systematically improvable
- ► still: a lot to do for phenomenologists, amongst others:
 - performing a truly global fit in the new approach
 - extending analysis to $\Lambda_{\mathcal{D}} \to \Lambda$ transitions

Backup Slides

The elephant in the room

Joint LHCb measurement of $R_{\mathcal{K}}$ and $R_{\mathcal{K}^*}$

[[]LHCb 2212.09153]

- ► lepton-flavour-nonuniversality in $b \rightarrow s\ell^+\ell^-$ is gone!
 - not the longest standing anomaly by far!
 - not the only one, either!
- ► I prefer to think of it as a precision measurement of $\mathcal{B}(B \to K^{(*)}e^+e^-)$
 - gives rise to a new anomaly
 - ► $\mathcal{B}(B \to Ke^+e^-)$ deviates from SM prediction by roughly the same amount as $\mathcal{B}(B \to K\mu^+\mu^-)!$