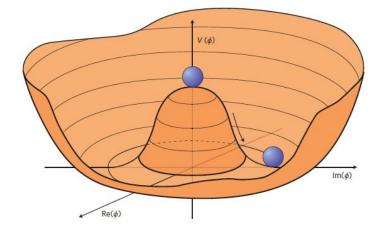
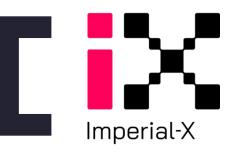


Higgs boson combinations at CMS

UoB Particle Physics Seminar

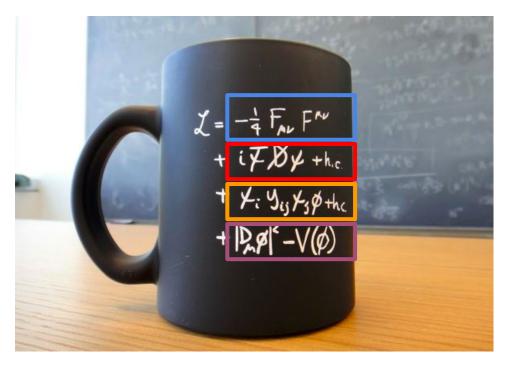


Dr. Jonathon Langford 27th November 2024



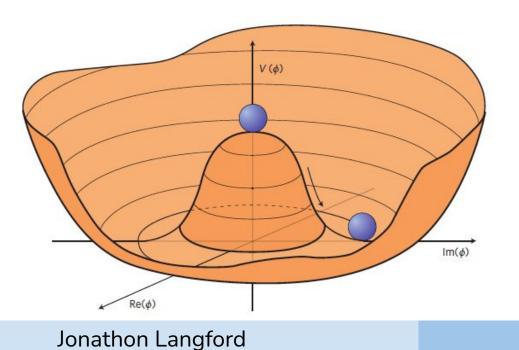
Higgs & the standard model

SM = set of quantum field theories that describe fundamental particles and their interactions



Propagation of force carriers (spin-1 bosons) Interactions of matter particles (spin-1/2 fermions) Masses of matter particles (Yukawa) **Higgs interactions & masses of force carriers**

Higgs mechanism plays a major role in the SM

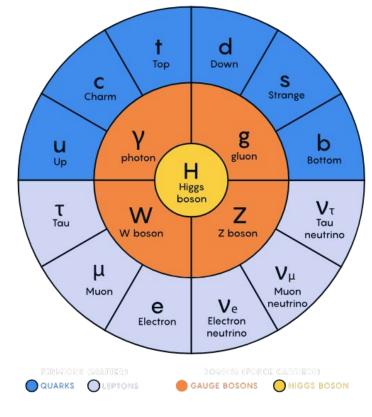


Explains how:

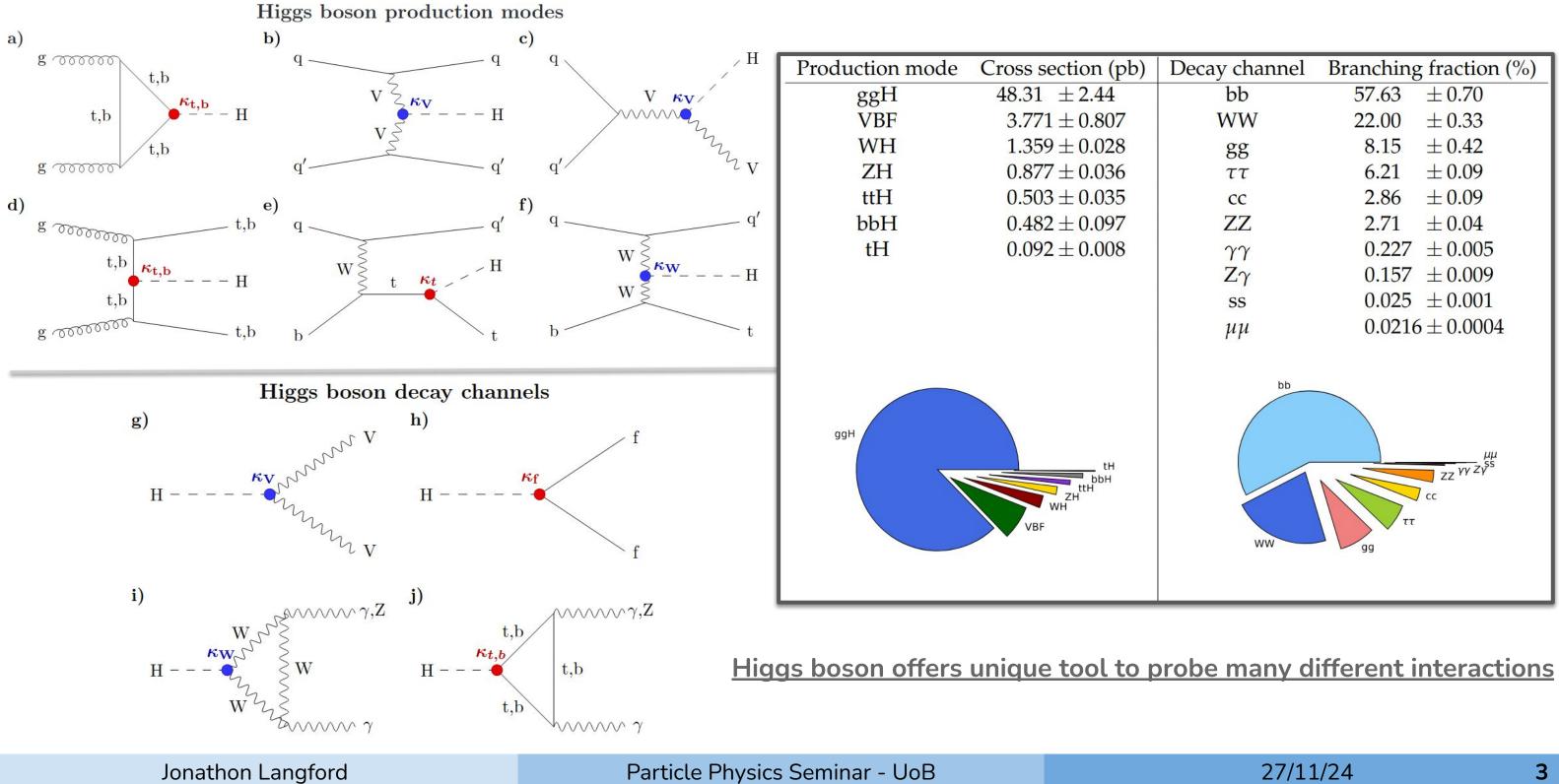
- W and Z bosons acquire mass
- Quarks and charged leptons acquire mass

Prediction of new scalar particle \rightarrow **Higgs boson**

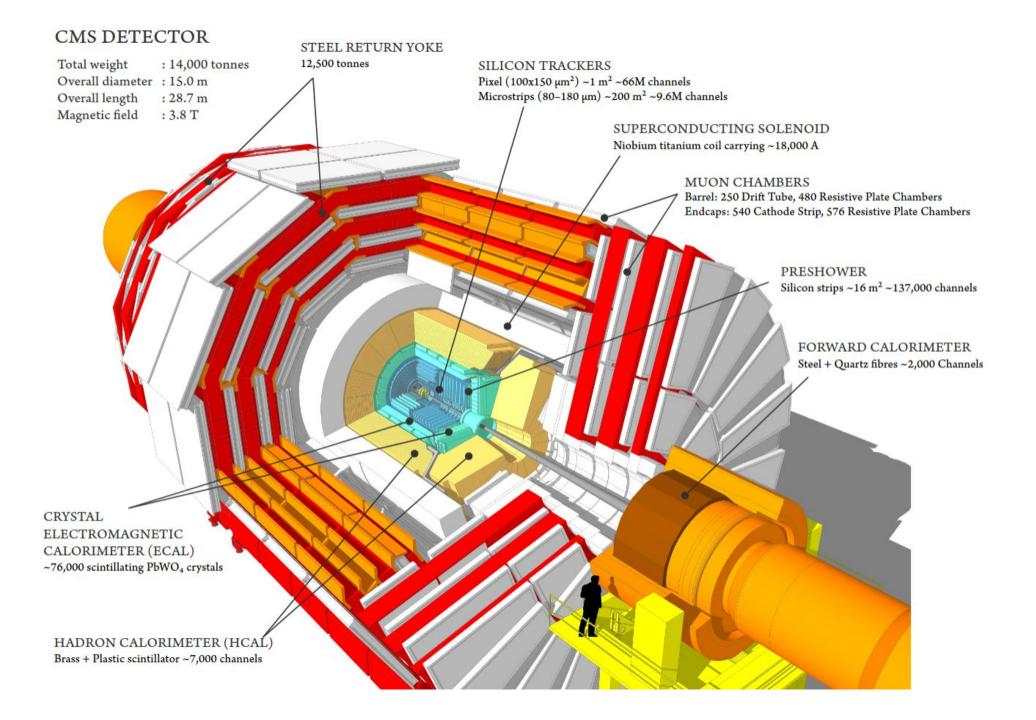
Particle Physics Seminar - UoB



Higgs boson production & decay @ LHC

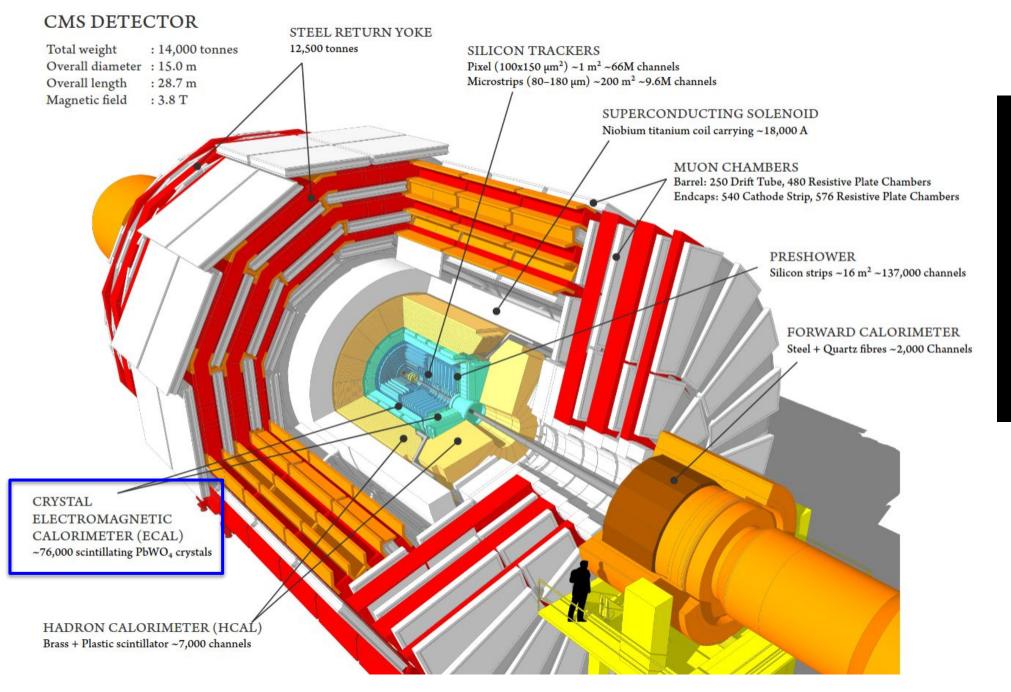


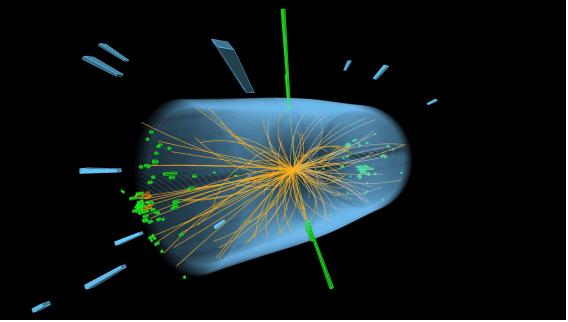
Decay channel	Branching fraction (%)			
bb	57.63	± 0.70		
WW	22.00	± 0.33		
gg	8.15	± 0.42		
ττ	6.21	± 0.09		
CC	2.86	± 0.09		
ZZ	2.71	± 0.04		
$\gamma\gamma$	0.227	± 0.005		
$Z\gamma$	0.157	± 0.009		
SS	0.025	± 0.001		
μμ	0.0216	5 ± 0.0004		
bb zz yy zy ^{ss} ww gg				



Jonathon Langford

Particle Physics Seminar - UoB

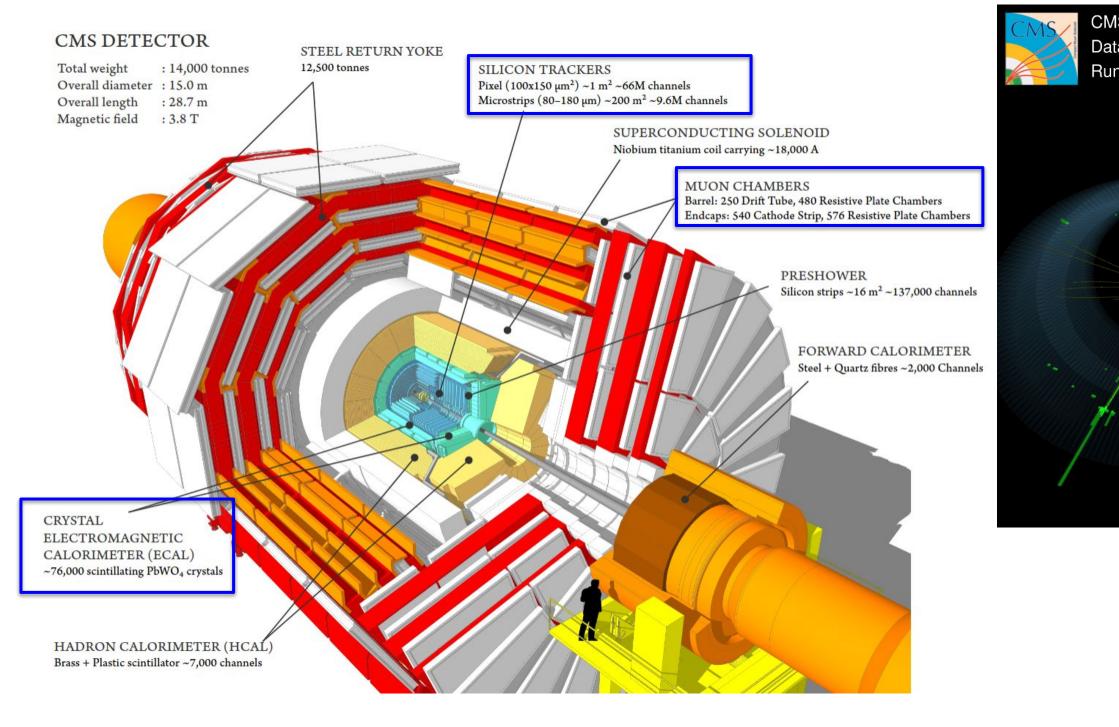




Jonathon Langford

Particle Physics Seminar - UoB

$H \rightarrow \gamma \gamma$ candidate



Jonathon Langford

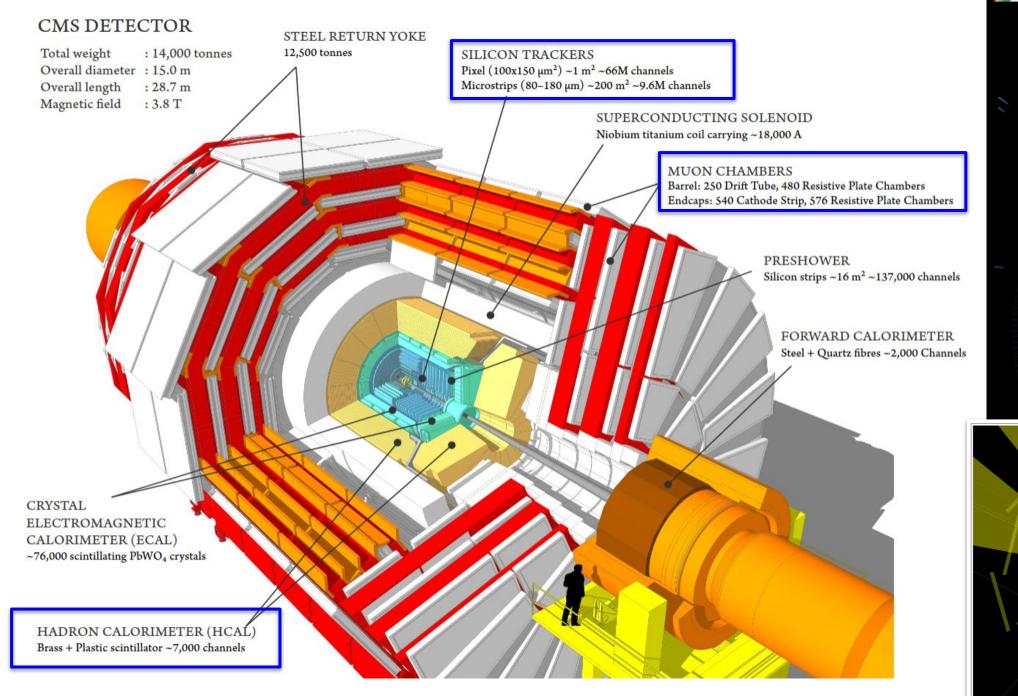
Particle Physics Seminar - UoB

CMS Experiment at the LHC, CERN Data recorded: 2018-May-10 13:41:39.516864 GMT Run / Event / LS: 316082 / 225538853 / 180

$H \rightarrow ZZ^* \rightarrow ee\mu\mu$ candidate

C C Da

CMS Experiment at the LHC, CERN Data recorded: 2017-Aug-20 18:16:45.926208 GMT Run / Event / LS: 301472 / 634226645 / 664



Jonathon Langford

Particle Physics Seminar - UoB

$Z(\rightarrow ee)H(\rightarrow bb)$ candidate

20 mm

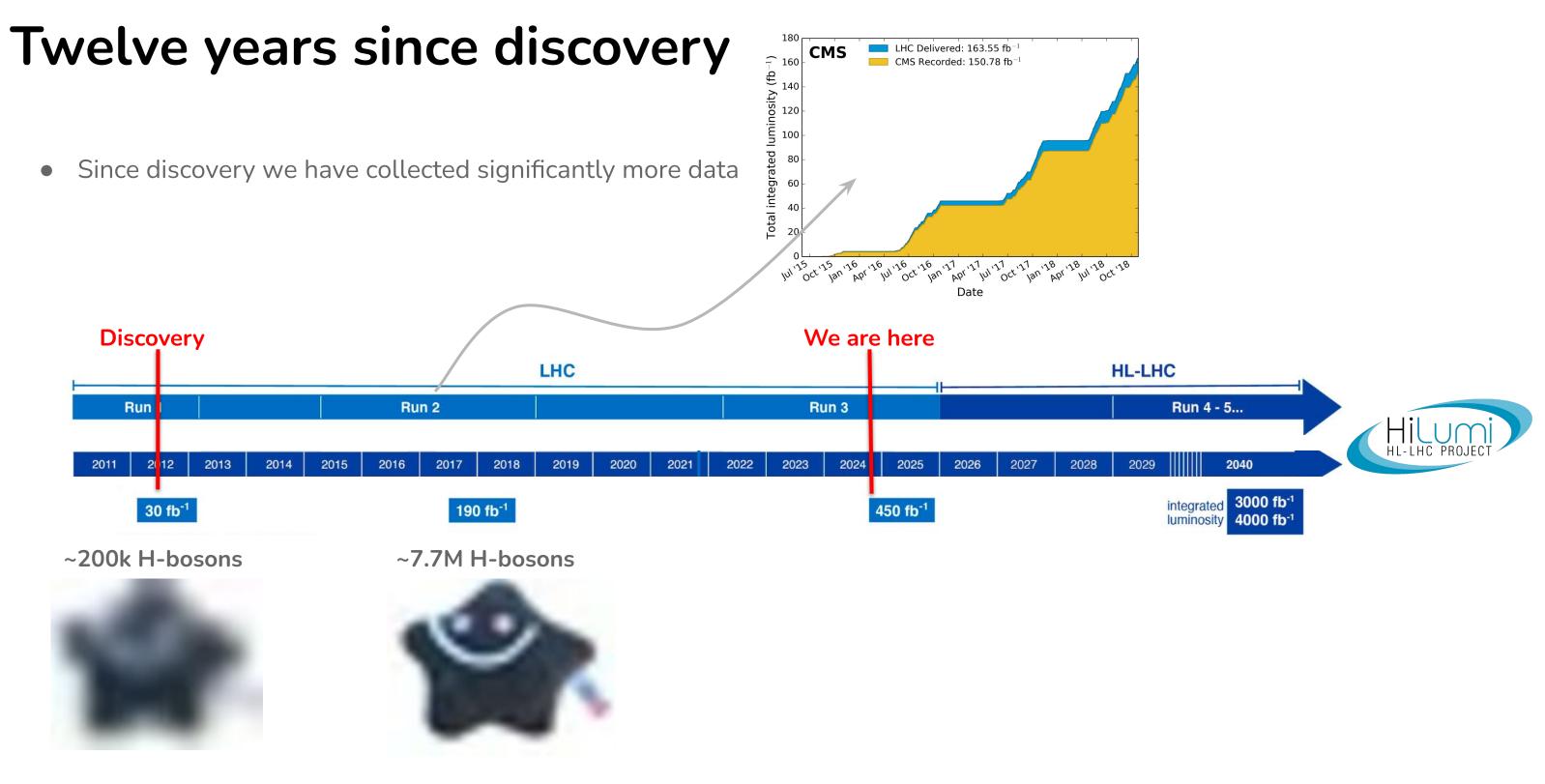
Twelve years since discovery

• Since discovery we have collected significantly more data

~200k H-bosons

Jonathon Langford

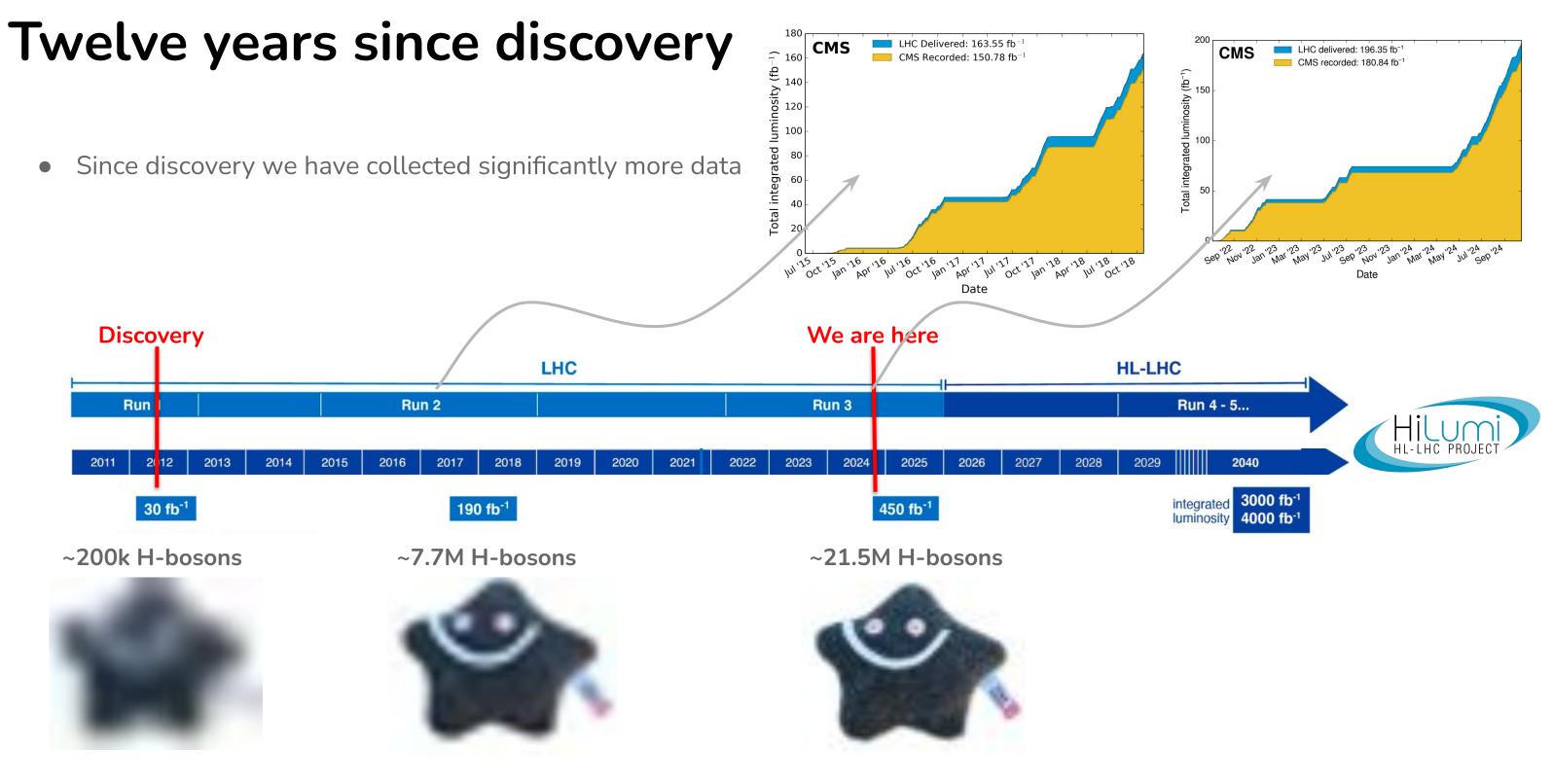
Particle Physics Seminar - UoB



• Entered era of precision measurements in the Higgs sector

Jonathon Langford

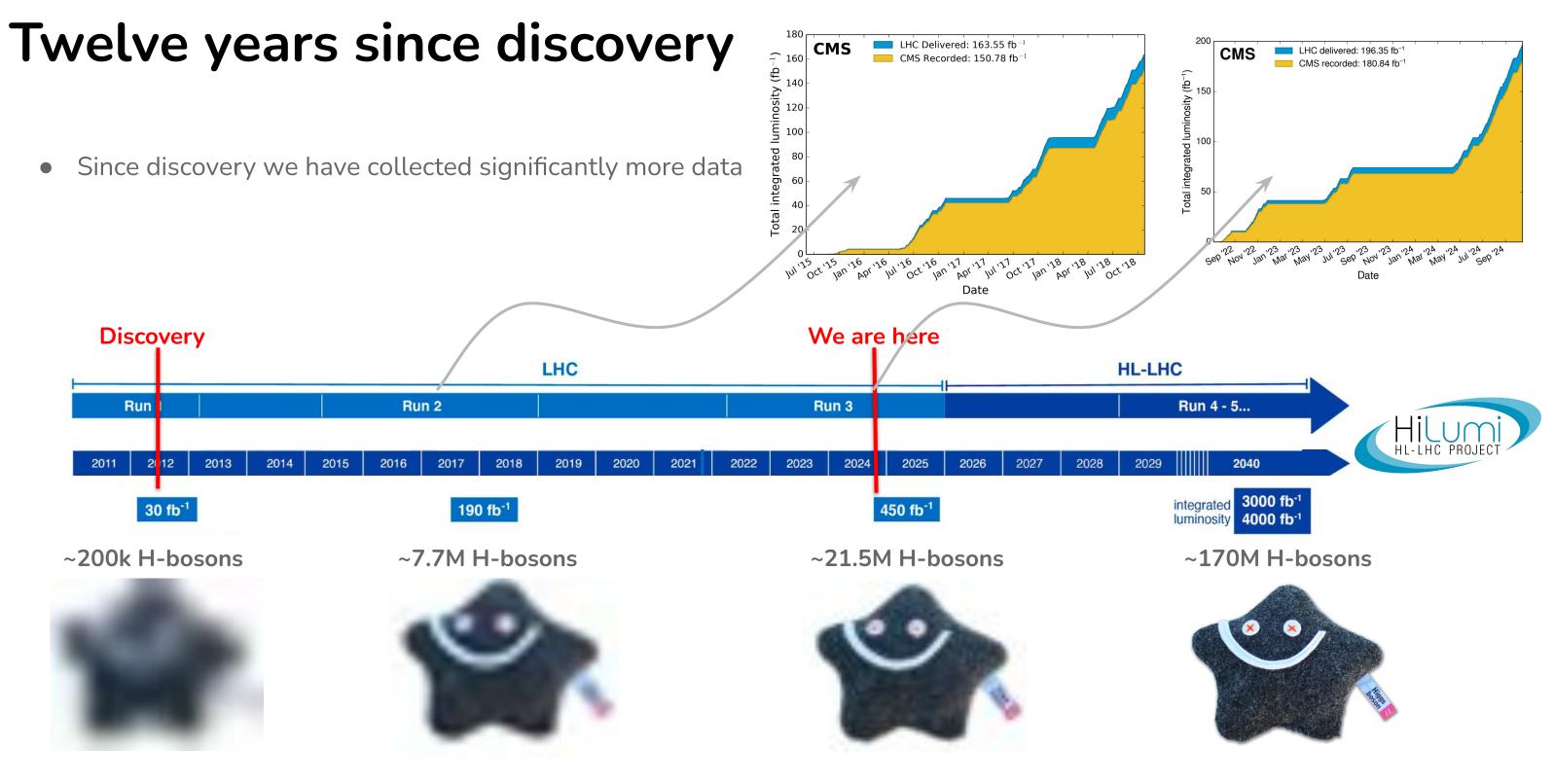
Particle Physics Seminar - UoB



• Entered era of precision measurements in the Higgs sector

Jonathon Langford

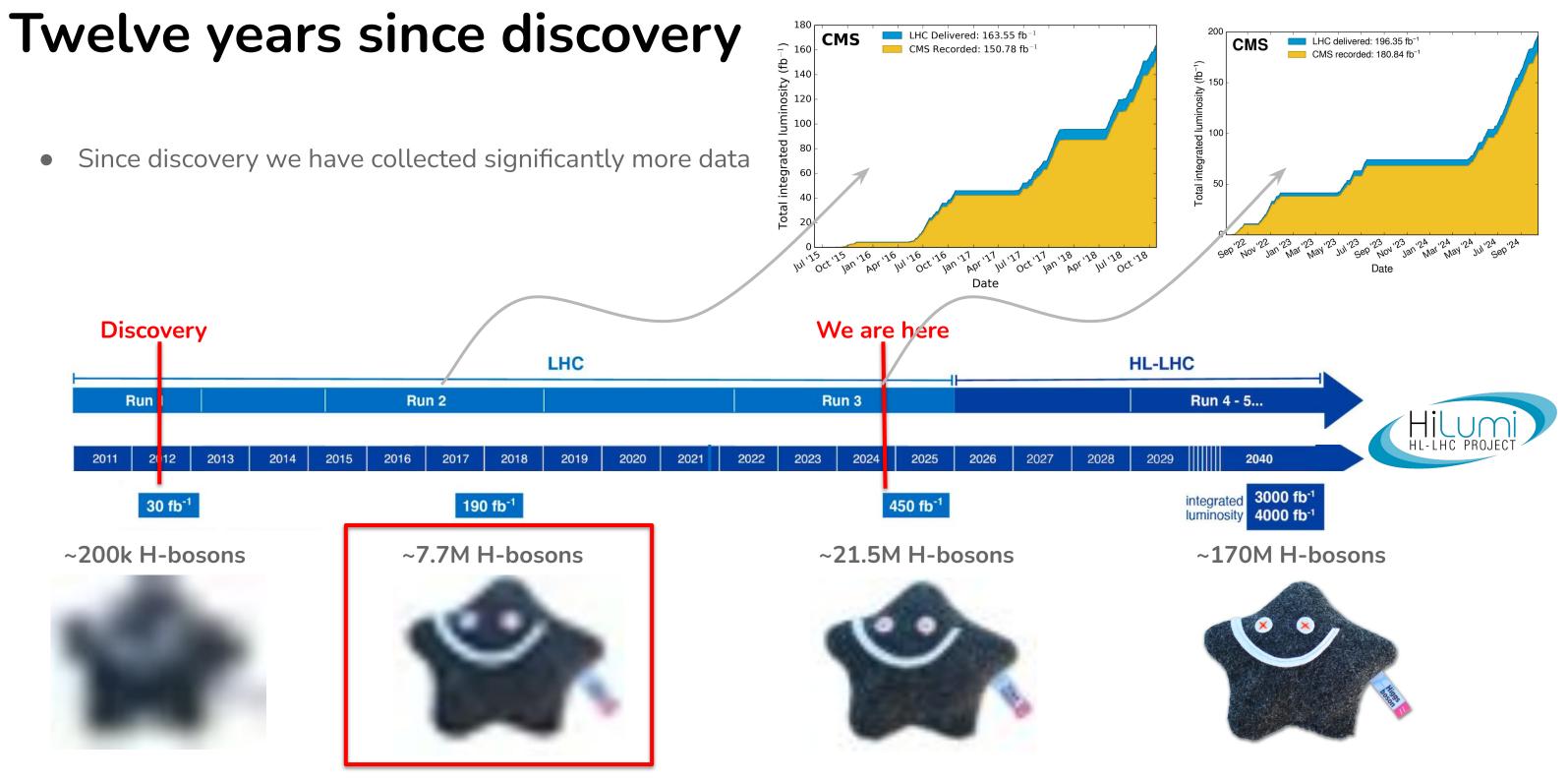
Particle Physics Seminar - UoB



• Entered era of precision measurements in the Higgs sector \rightarrow Still much more to come!

Jonathon Langford

Particle Physics Seminar - UoB



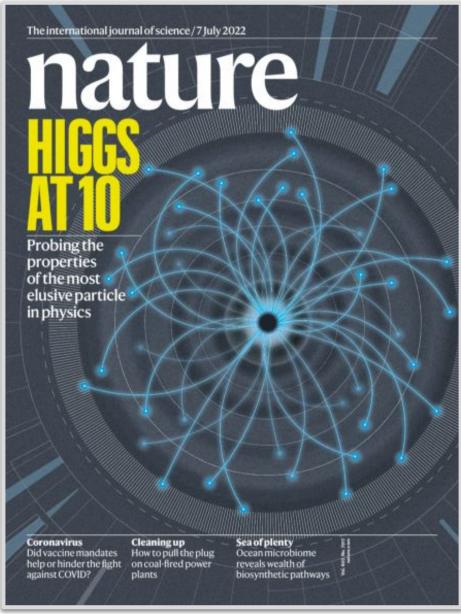
• Entered era of precision measurements in the Higgs sector \rightarrow Still much more to come!

Jonathon Langford

Particle Physics Seminar - UoB

Higgs boson combination

- Ultimate precision comes from statistically combining Higgs boson analyses across different decay channels
- Celebrated ten years since discovery with statistical combination paper in [Nature 607 (2022) 60-68]

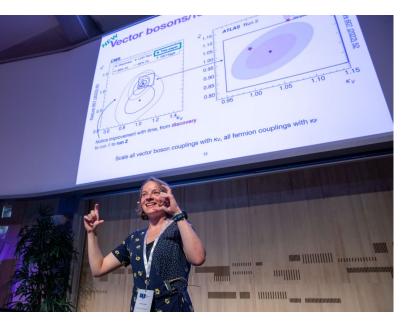


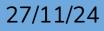
Papers from ATLAS and theory community in same journal edition

Jonathon Langford

Particle Physics Seminar - UoB

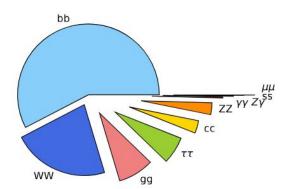
July 4th 2022





Nature input analyses

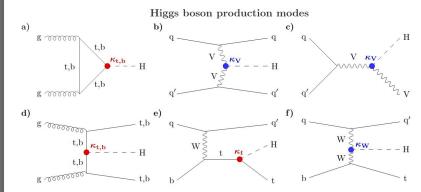
• Combination of Higgs boson analyses using the full Run 2 dataset (2016-2018) = 138 fb^{-1}

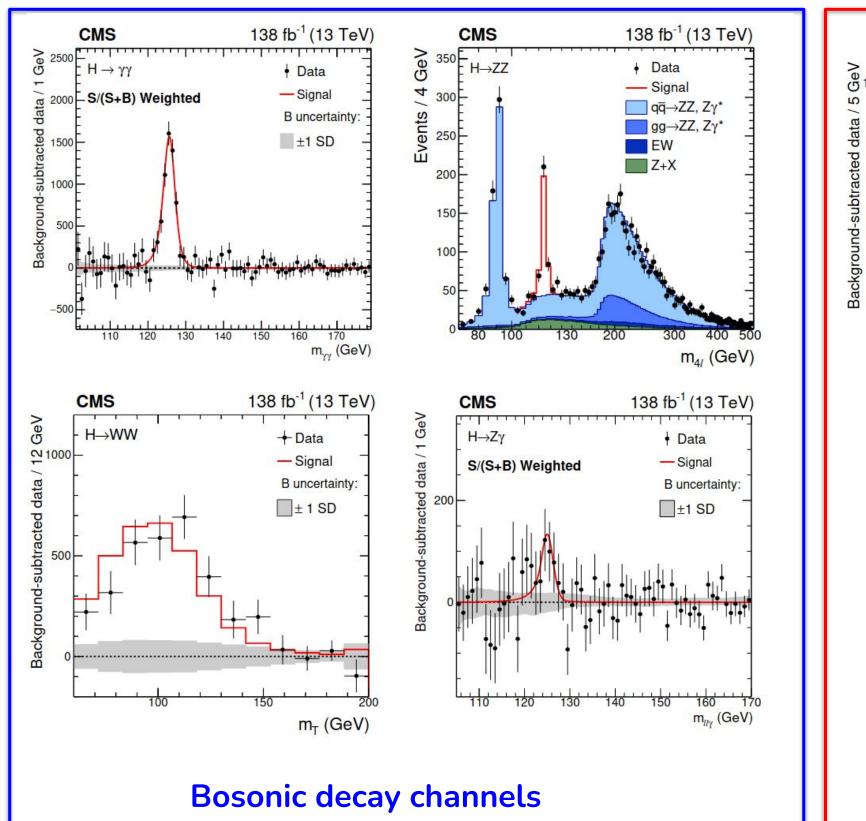


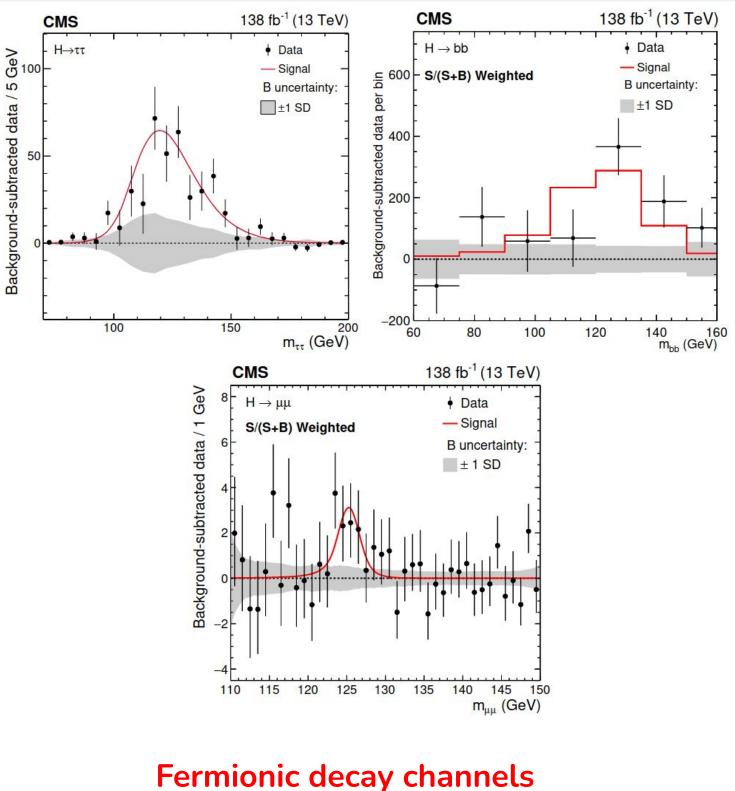
Analysis	Decay tags	Production tags
Single Higgs boson production	, ,	0
$ m H ightarrow \gamma \gamma [42]$	$\gamma\gamma$	ggH, $p_T(H) \times N_j$ bins VBF/VH hadronic, $p_T(Hjj)$ bins WH leptonic, $p_T(V)$ bins ZH leptonic ttH $p_T(H)$ bins, tH ggH, $p_T(H) \times N_j$ bins
$H \rightarrow ZZ \rightarrow 4\ell$ [43]	4µ, 2e2µ, 4	VBF, m_{jj} bins VH hadronic VH leptonic, $p_{T}(V)$ bins ttH
$\mathrm{H} ightarrow \mathrm{WW} ightarrow \ell u \ell u$ [44]	$e\mu/ee/\mu\mu$ $\mu\mu+jj/ee+jj/e\mu+jj$ 3ℓ 4ℓ	ggH ≤ 2-jets VBF VH hadronic WH leptonic ZH leptonic
$ m H ightarrow m Z\gamma$ [45]	$Z\gamma$	ggH VBF
m H ightarrow au au [46]	$e\mu$, $e\tau_h$, $\mu\tau_h$, $\tau_h\tau_h$	ggH, $p_T(H) \times N_j$ bins VH hadronic VBF
$H \rightarrow bb [47-51]$	$\begin{array}{c} W(\ell\nu)H(bb)\\ Z(\nu\nu)H(bb), Z(\ell\ell)H(bb)\\ bb\end{array}$	VH, high- $p_{T}(V)$ WH leptonic ZH leptonic ttH, $\rightarrow 0, 1, 2\ell + jets$ ggH, high- $p_{T}(H)$ bins
$ m H ightarrow \mu\mu$ [52]	μμ	ggH VBF
ttH production with H \rightarrow leptons [53]	$\begin{array}{c} 2\ell\mathrm{SS}, 3\ell, 4^{\ell} \\ 1\ell + \tau_\mathrm{h}, 2\ell\mathrm{SS}{+}1\tau_\mathrm{h} & \tau_\mathrm{h} \end{array}$	ttH
$H \rightarrow Inv. [71, 72]$	$p_{\mathrm{T}}^{\mathrm{miss}}$	ggH VBF VH hadronic ZH leptonic

Jonathon Langford

Particle Physics Seminar - UoB







Jonathon Langford

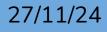
Particle Physics Seminar - UoB

- Analysis region = selected set of p-p collision data events, $d_r \rightarrow (1)$ Signal region (SR) designed to be enriched in Higgs boson events (2) Control region (CR) designed to control background predictions in SR
- Define likelihood for each analysis region:

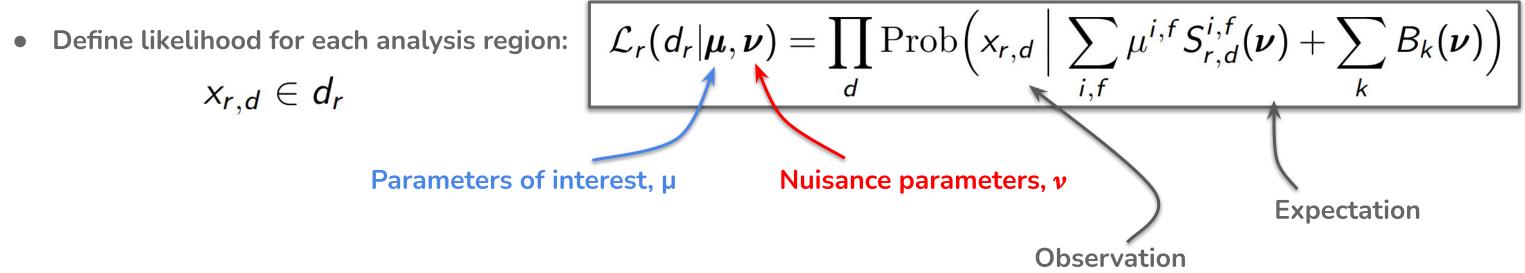
$$x_{r,d} \in d_r$$

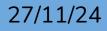
$$\left| \mathcal{L}_{r}(d_{r}|\boldsymbol{\mu},\boldsymbol{\nu}) = \prod_{d} \operatorname{Prob}\left(x_{r,d} \mid \sum_{i,f} \mu^{i,j}\right) \right|$$

 $S_{r,d}^{i,f}(\boldsymbol{\nu}) + \sum_{k} B_{k}(\boldsymbol{\nu})$



Analysis region = selected set of p-p collision data events, $d_r \rightarrow (1)$ Signal region (SR) designed to be enriched in Higgs boson events (2) Control region (CR) designed to control background predictions in SR



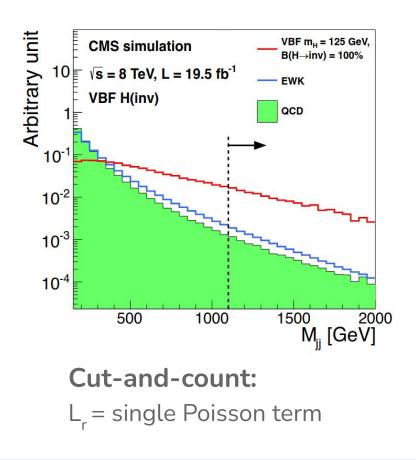


- Analysis region = selected set of p-p collision data events, $d_r \rightarrow (1)$ Signal region (SR) designed to be enriched in Higgs boson events (2) Control region (CR) designed to control background predictions in SR
- Define likelihood for each analysis region:

 $x_{r,d} \in d_r$

$$\mathcal{L}_r(d_r|\boldsymbol{\mu},\boldsymbol{\nu}) = \prod_d \operatorname{Prob}\left(x_{r,d} \mid \sum_{i,f} \mu'\right)$$

The **data** (d_r) in each analysis region can be...



138 fb⁻¹ (13 TeV) CMS N_{events} 30 20 10 Ratio w.r.t. bkg. ---- Observed Bkg. unc. - ggH 1.5 10 20 2D discriminant Bin Index **Binned (histogram):** L_r = product of Poisson terms over bin counts

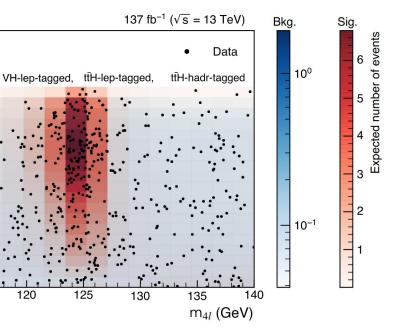
D^{kin} bkg 105 < m_{4l} < 140 GeV 1.00 0.75 0.50 0.25 115

CMS

Jonathon Langford

Particle Physics Seminar - UoB

 $^{i,f}S^{i,f}_{r,d}(\boldsymbol{
u}) + \sum B_k(\boldsymbol{
u}) \Big)$



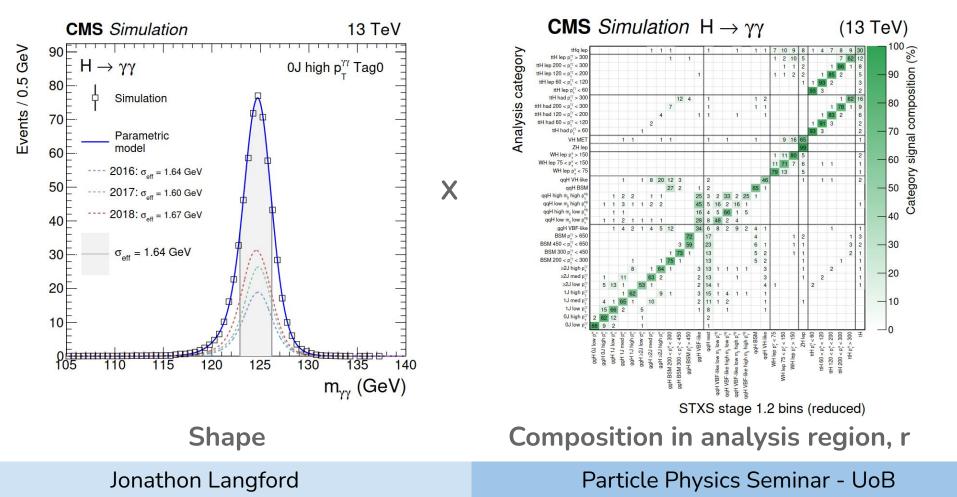
Unbinned observables: $L_r = (extended) product of$ Poisson terms over events

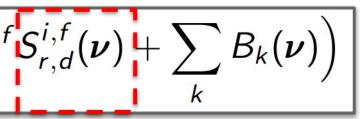
- Analysis region = selected set of p-p collision data events, $d_r \rightarrow (1)$ Signal region (SR) designed to be enriched in Higgs boson events (2) Control region (CR) designed to control background predictions in SR
- Define likelihood for each analysis region:

$$x_{r,d} \in d_r$$

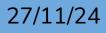
$$\mathcal{L}_r(d_r|\boldsymbol{\mu},\boldsymbol{\nu}) = \prod_d \operatorname{Prob}\Big(x_{r,d} \Big| \sum_{i,f} \mu^{i,f}\Big)$$

Signal model for Higgs boson production process i, in decay channel f (derived from Monte-Carlo simulation)





X Efficiency X Acceptance X Luminosity

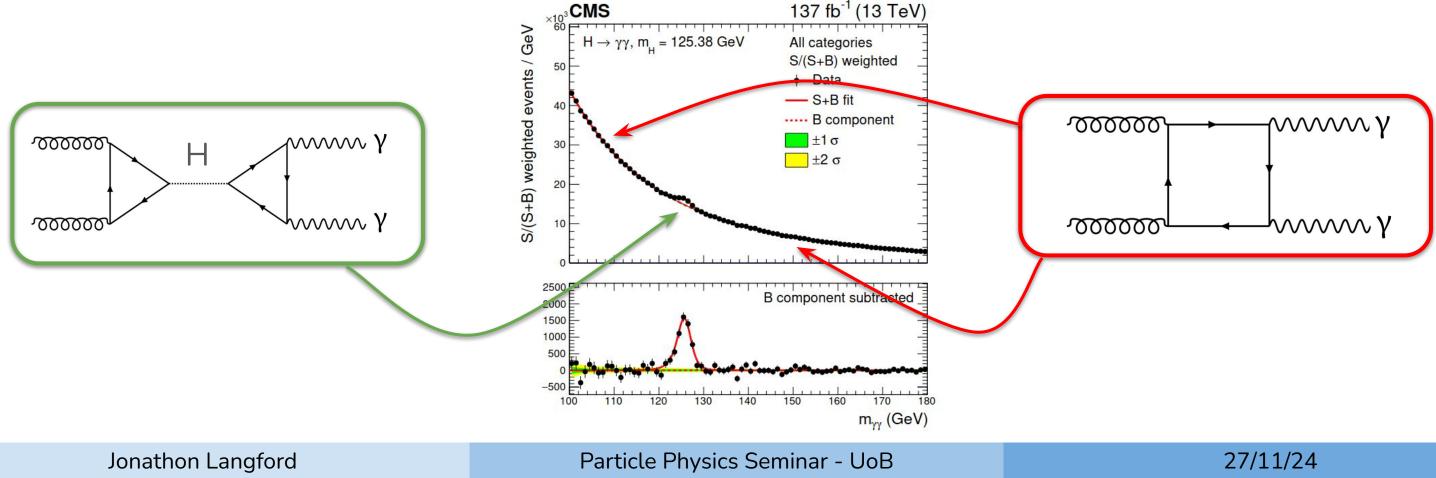


- Analysis region = selected set of p-p collision data events, $d_r \rightarrow (1)$ Signal region (SR) designed to be enriched in Higgs boson events (2) Control region (CR) designed to control background predictions in SR
- Define likelihood for each analysis region:

$$x_{r,d} \in d_r$$

$$\mathcal{L}_r(d_r|\boldsymbol{\mu},\boldsymbol{\nu}) = \prod_d \operatorname{Prob}\left(x_{r,d} \mid \sum_{i,f} \mu^{i,f} S_{r,d}^{i,f}(\boldsymbol{\nu}) + \sum_k B_k(\boldsymbol{\nu})\right)$$

Background model: majority are data-driven e.g. mass sidebands to estimate background under signal



- Analysis region = selected set of p-p collision data events, $d_r \rightarrow (1)$ Signal region (SR) designed to be enriched in Higgs boson events (2) Control region (CR) designed to control background predictions in SR
- Define likelihood for each analysis region:

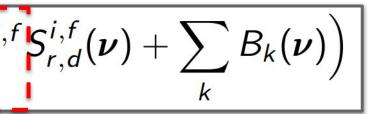
$$x_{r,d} \in d_r$$

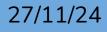
$$\mathcal{L}_r(d_r|\boldsymbol{\mu},\boldsymbol{\nu}) = \prod_d \operatorname{Prob}\Big(x_{r,d} \Big| \sum_{i,f} \mu^{i,f}\Big|_{r,f}$$

Parameters of interest: "signal-strength" formalism measures rate relative to SM prediction

$$\mu^{i,f} = \mu^{i} \cdot \mu^{f} = \frac{\sigma^{i}}{\sigma_{\rm SM}^{i}} \cdot \frac{\mathcal{B}(H \to f)}{\mathcal{B}(H \to f)_{\rm SM}}$$

Jonathon Langford





- Analysis region = selected set of p-p collision data events, $d_r \rightarrow (1)$ Signal region (SR) designed to be enriched in Higgs boson events (2) Control region (CR) designed to control background predictions in SR
- Define likelihood for each analysis region:

$$x_{r,d} \in d_r$$

$$\mathcal{L}_r(d_r|\boldsymbol{\mu},\boldsymbol{\nu}) = \prod_d \operatorname{Prob}\Big(x_{r,d} \Big| \sum_{i,f} \mu^{i,f}\Big)$$

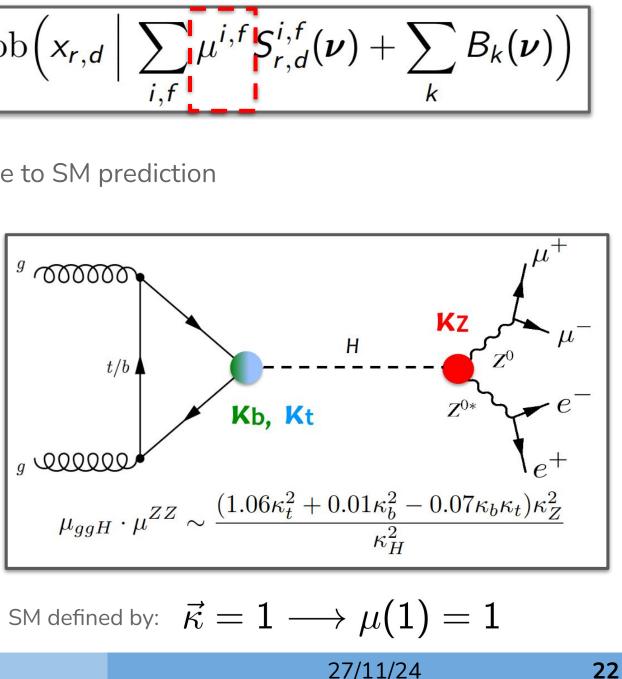
Parameters of interest: "signal-strength" formalism measures rate relative to SM prediction

$$\mu^{i,f} = \mu^{i} \cdot \mu^{f} = \frac{\sigma^{i}}{\sigma_{SM}^{i}} \cdot \frac{\mathcal{B}(H \to f)}{\mathcal{B}(H \to f)_{SM}}$$

- Extract different interpretations by parameterising signal strengths
 - E.g. Coupling modifiers (kappa-framework): Ο

$$\mu \longrightarrow \mu(\vec{\kappa})$$

Jonathon Langford



$$\mathcal{L}_r(d_r|\boldsymbol{\mu},\boldsymbol{\nu}) = \prod_d \operatorname{Prob}\left(x_{r,d} \mid \sum_{i,f}\right)$$

• Combination likelihood calculated as the product of likelihoods across analysis regions

$$\mathcal{L}(\mathcal{D}|\boldsymbol{\mu}, \boldsymbol{
u}) = \prod_{r} \mathcal{L}_{r} \times \operatorname{Gauss}(\boldsymbol{\tilde{
u}}|\boldsymbol{
u})$$

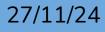
 $\left(\mu^{i,f}S^{i,f}_{r,d}(\boldsymbol{\nu})+\sum_{k}B_{k}(\boldsymbol{\nu})\right)$

$$\mathcal{L}_r(d_r|\boldsymbol{\mu},\boldsymbol{\nu}) = \prod_d \operatorname{Prob}\left(x_{r,d} \mid \sum_{i,f} \right)$$

Combination likelihood calculated as the product of likelihoods across analysis regions

$$\mathcal{L}(\mathcal{D}|oldsymbol{\mu},oldsymbol{
u}) = \prod_r \mathcal{L}_r \ imes \ ext{Gauss}(oldsymbol{ ilde{
u}}|oldsymbol{
u})$$

Crucial ingredient: **nuisance parameters** → Account for systematic uncertainty in signal/background normalisation and shape



$$\mathcal{L}_r(d_r|\boldsymbol{\mu},\boldsymbol{\nu}) = \prod_d \operatorname{Prob}\Big(x_{r,d} \Big| \sum_{i,f}$$

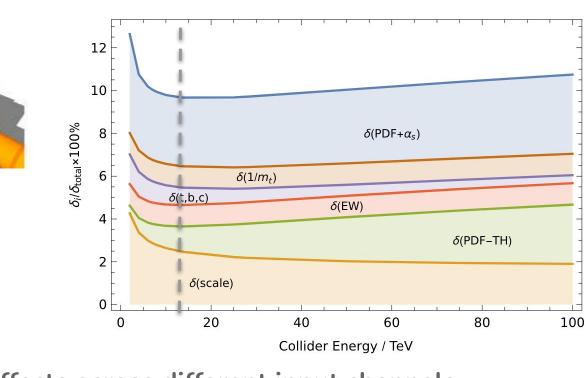
Combination likelihood calculated as the product of likelihoods across analysis regions

$$\mathcal{L}(\mathcal{D}|\boldsymbol{\mu}, \boldsymbol{
u}) = \prod_{r} \mathcal{L}_{r} \times \operatorname{Gauss}(\boldsymbol{\tilde{
u}}|\boldsymbol{
u})$$

- Crucial ingredient: **nuisance parameters** \rightarrow Account for systematic uncertainty in signal/background normalisation and shape
 - 1. Experimental/detector systematics: Object efficiencies, energy scales, luminosity, ...
 - Signal theory uncertainties: 2. Inclusive x-section, QCD scale, PDF, UEPS, branching fraction, ...
 - **Background theory uncertainties:** 3.

Cover extrapolation from CR to SR phase space for data-driven estimates

Combinations typically have O(1000)'s nuisance parameters \rightarrow Correlate effects across different input channels

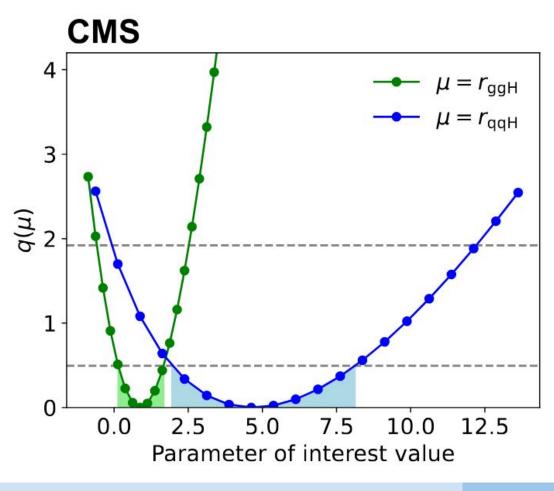


Jonathon Langford

Particle Physics Seminar - UoB

A computational challenge

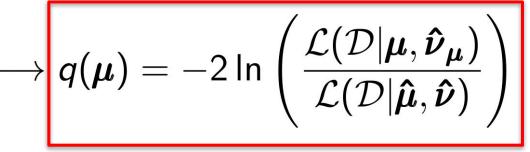
- Nature combination has ~850 analysis regions and ~9500 parameters in the model (mostly constrained nuisance params)
- Fitting the likelihood is a computationally expensive task:
 - ~30 Gb to build likelihood, (~10 Gb, ~10 hours) to fit per parameter point Ο
 - Parallelisation is key! Ο



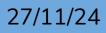
Jonathon Langford

Particle Physics Seminar - UoB

 $\mathcal{L}(\mathcal{D}|oldsymbol{\mu},oldsymbol{
u})$ –

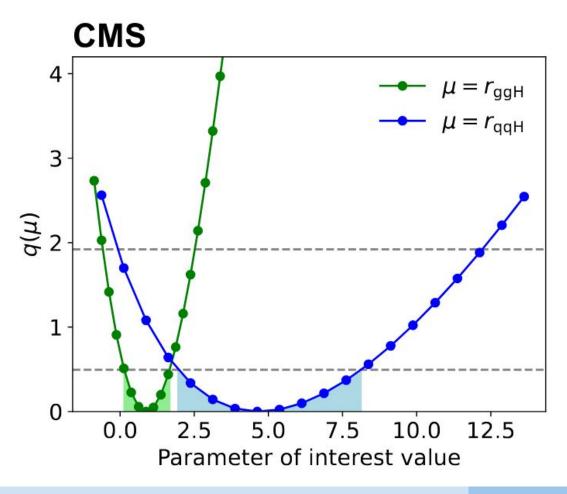


Profiled likelihood ratio



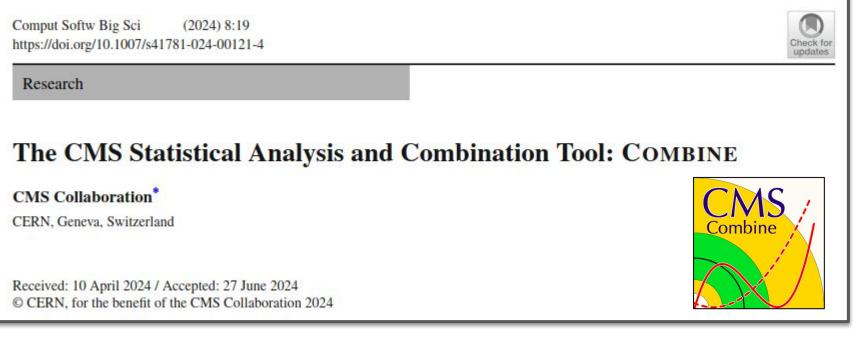
A computational challenge

- Nature combination has ~850 analysis regions and ~9500 parameters in the model (mostly constrained nuisance params)
- Fitting the likelihood is a computationally expensive task:
 - \sim 30 Gb to build likelihood, (\sim 10 Gb, \sim 10 hours) to fit per parameter point \bigcirc
 - Parallelisation is key! \bigcirc



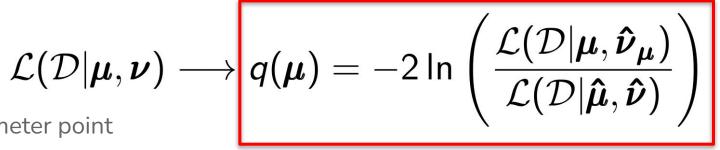
Jonathon Langford

<u>Combine</u>: statistical fitting tool developed in CMS



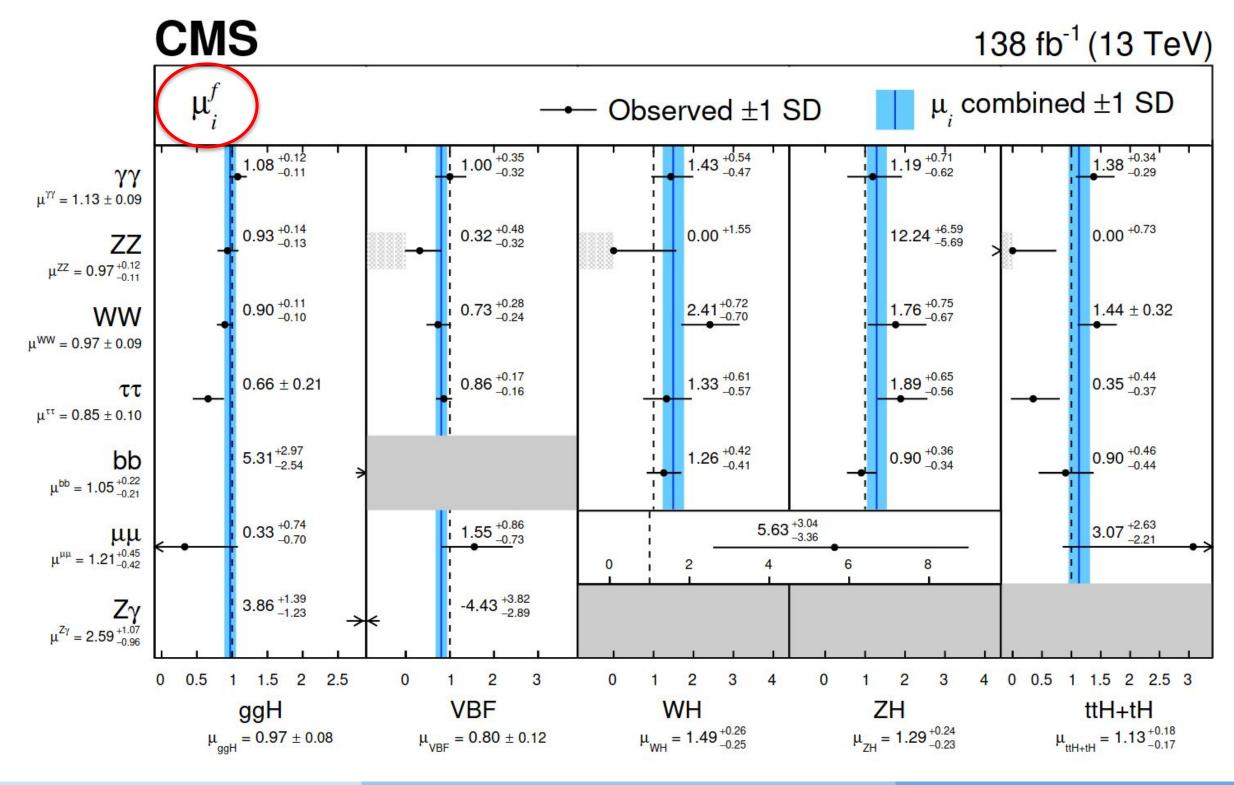
Now being used outside of the collaboration!

Particle Physics Seminar - UoB



Profiled likelihood ratio

A combined fit

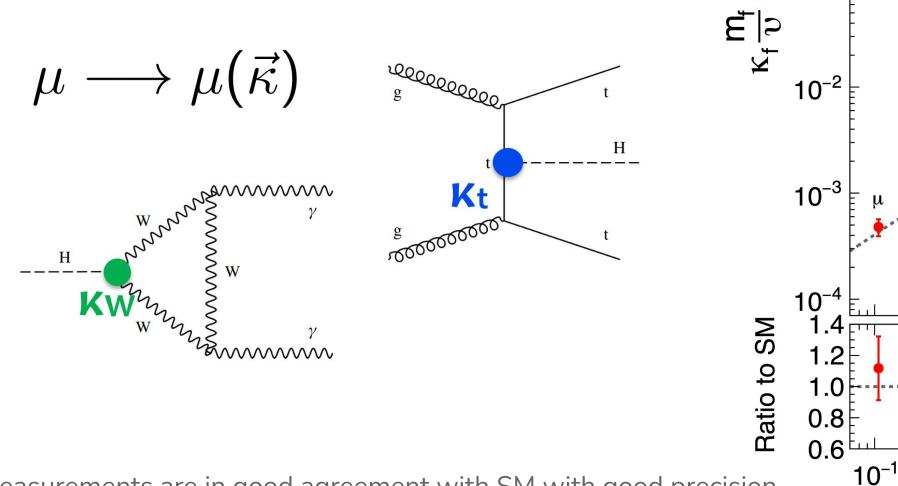


Jonathon Langford

Particle Physics Seminar - UoB

Higgs boson couplings

- In SM \rightarrow Higgs interactions strengths (couplings) to SM particles are proportional to mass of those particles
- Probe this relationship with the **kappa-framework**



• Measurements are in good agreement with SM with good precision

Jonathon Langford

Particle Physics Seminar - UoB

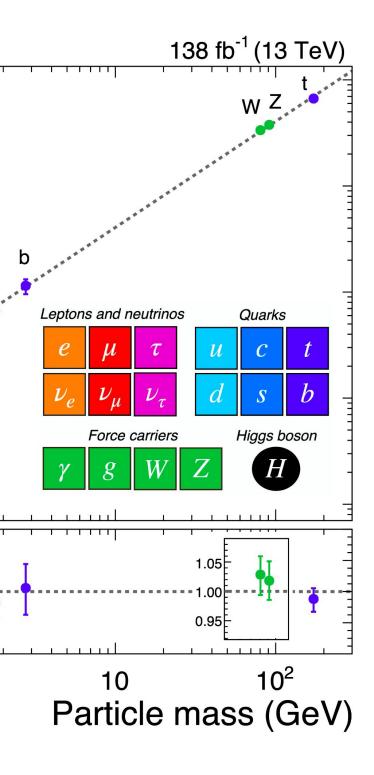
CMS

m_H=125.38 GeV

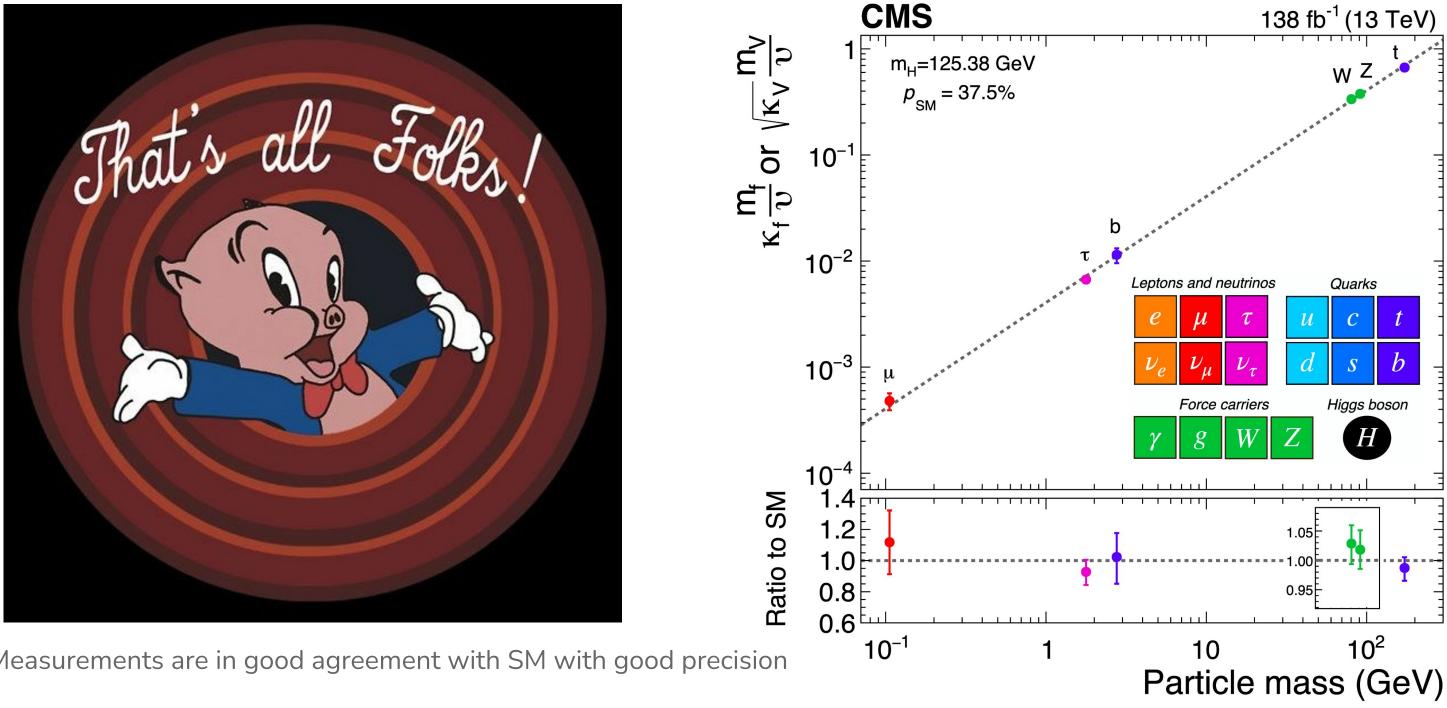
 $p_{_{\rm SM}} = 37.5\%$

or $\sqrt{\kappa_v} \frac{m_v}{\upsilon}$

10-1



Higgs boson couplings



- Measurements are in good agreement with SM with good precision
- Are we not done?

Jonathon Langford

Particle Physics Seminar - UoB

Higgs boson couplings



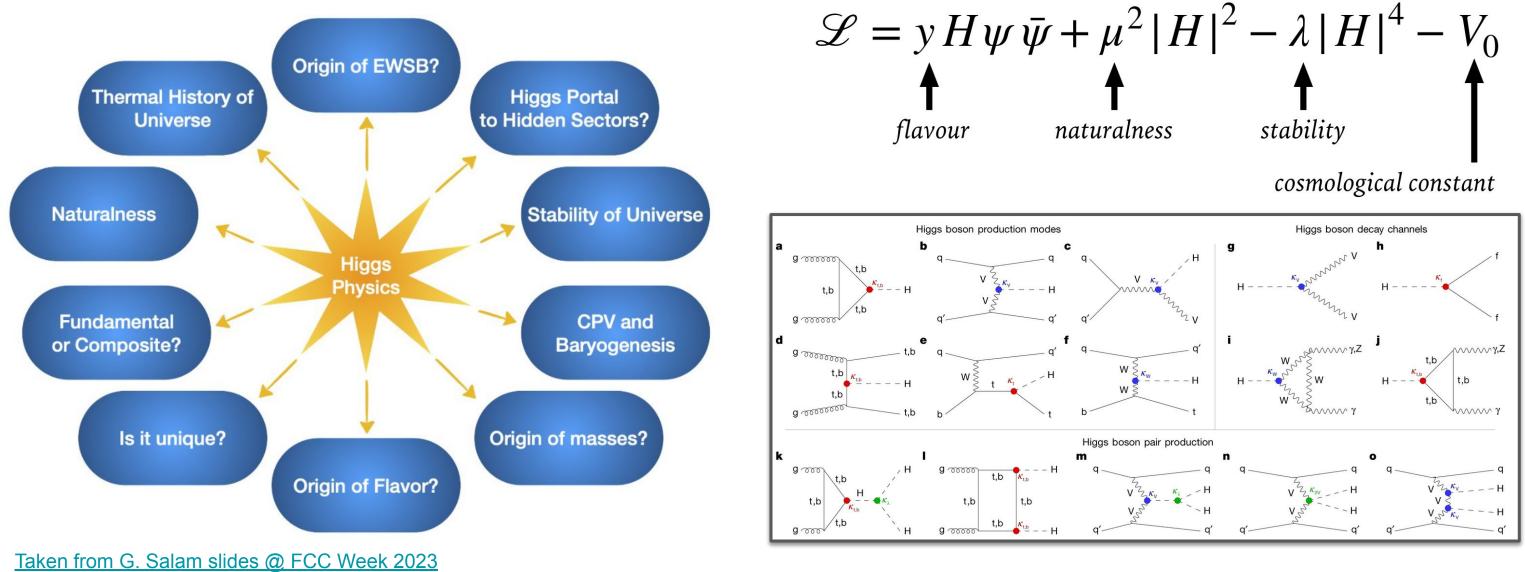
- Are we not done?

Jonathon Langford

Particle Physics Seminar - UoB

The open questions

"Almost every problem of the Standard Model originates from Higgs boson interactions"



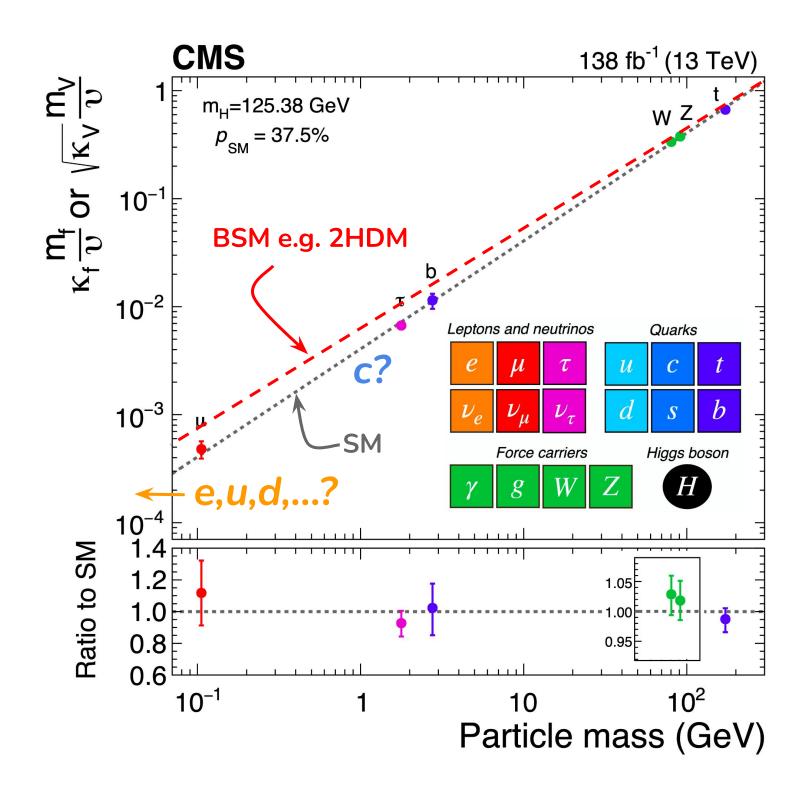
Precision measurements of Higgs boson offer a **unique tool to search for new fundamental physics**

Jonathon Langford

The open questions

• Are the Higgs interactions SM-like?

Do all SM particles lie on that line?



Jonathon Langford

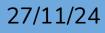
Overview of analyses

Combination and interpretation of fiducial differential Higgs boson production cross sections at $\sqrt{s} = 13$ TeV

2. [CMS-PAS-SMP-24-003]:

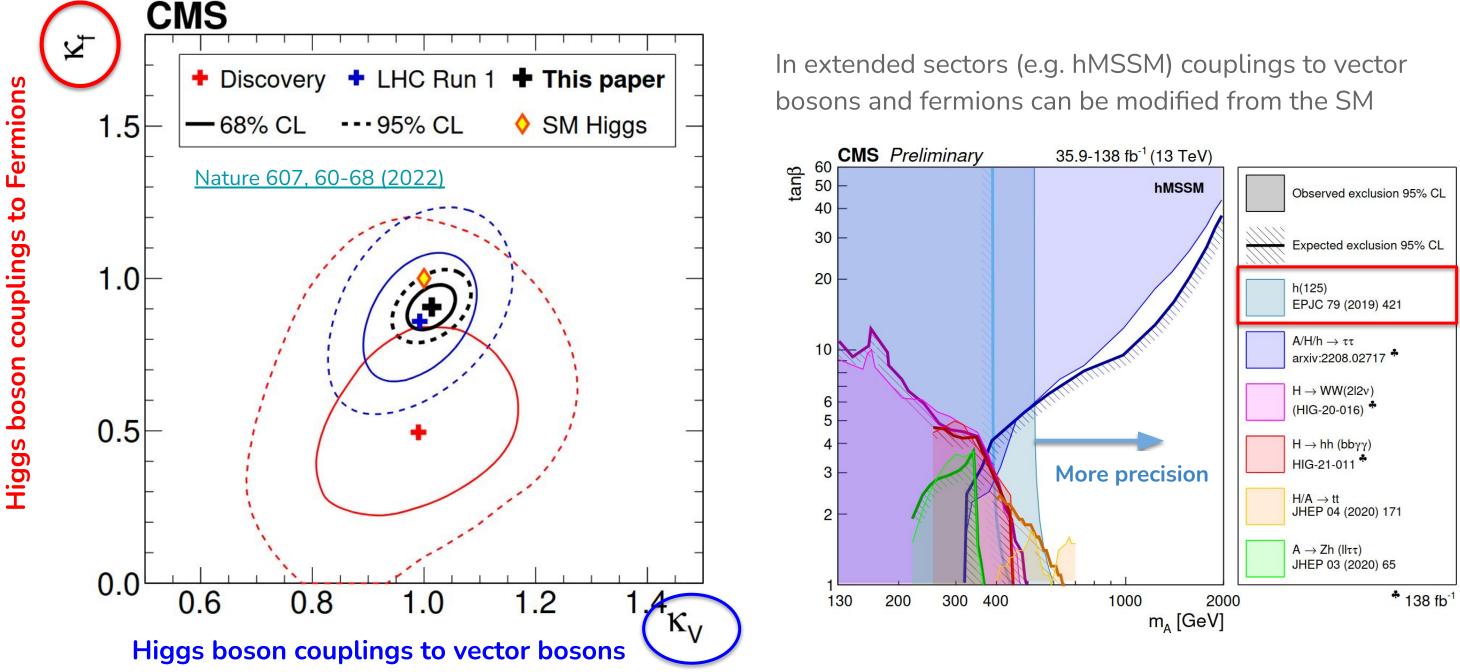
Combined effective field theory interpretation of Higgs boson, electroweak vector boson, top quark and multi-jet measurements

Jonathon Langford



Higgs couplings to probe BSM physics

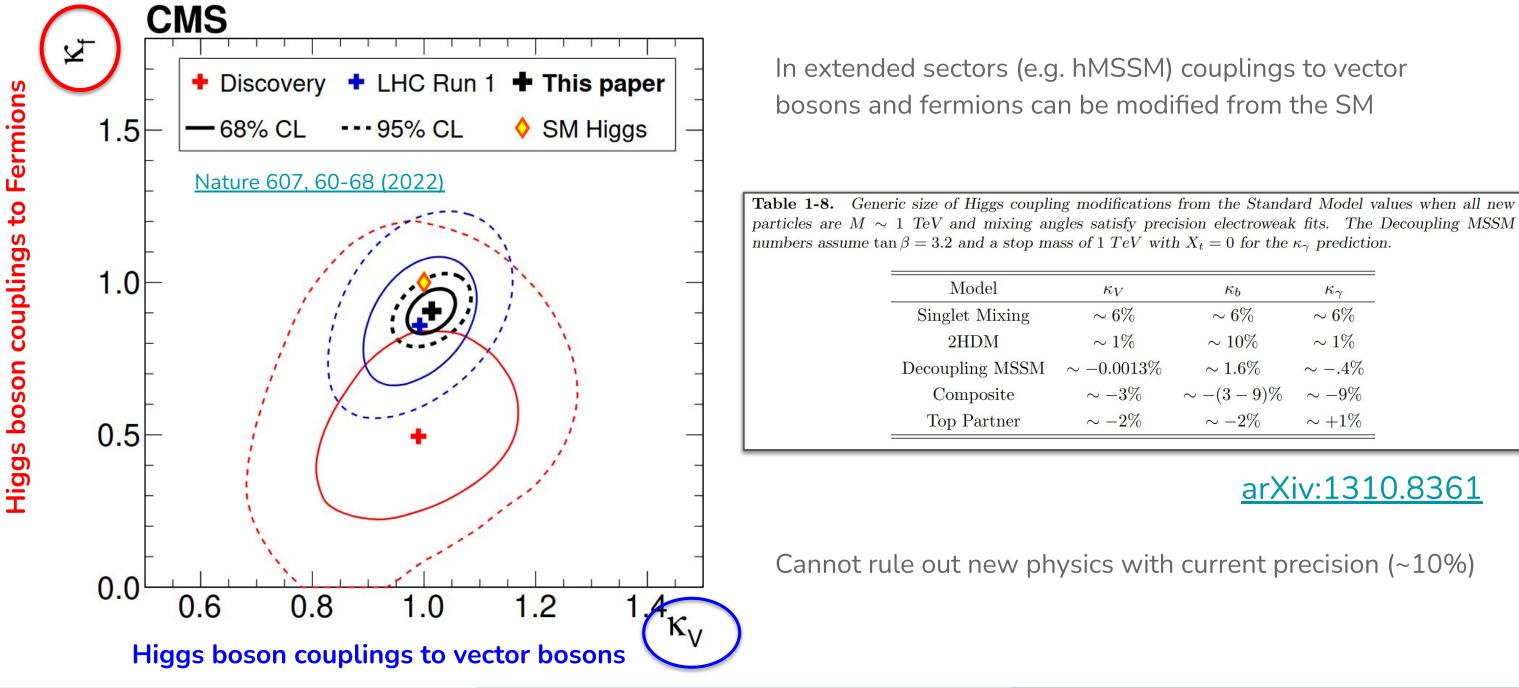
Precision measurements of Higgs boson interactions provide complimentary approach to direct searches



Jonathon Langford

Higgs couplings to probe BSM physics

Precision measurements of Higgs boson interactions provide complimentary approach to direct searches



Jonathon Langford

Particle Physics Seminar - UoB

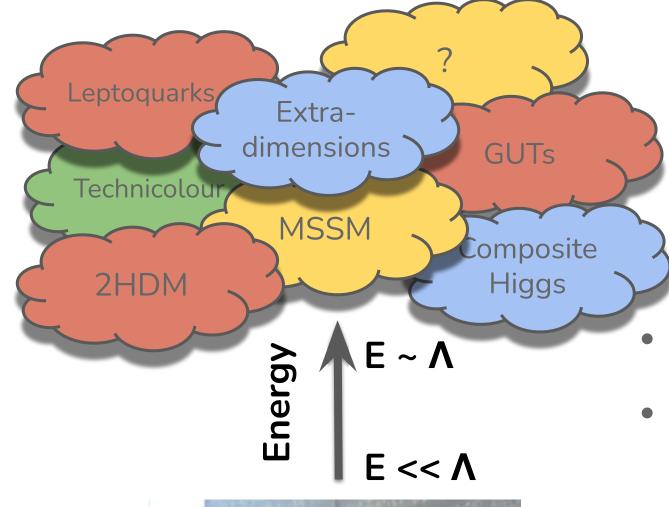
	κ_b	κ_γ
	$\sim 6\%$	$\sim 6\%$
	$\sim 10\%$	$\sim 1\%$
3%	$\sim 1.6\%$	$\sim4\%$
)	$\sim -(3-9)\%$	$\sim -9\%$
)	$\sim -2\%$	$\sim +1\%$

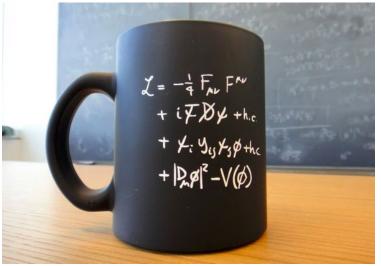
arXiv:1310.8361



Particle Physics Seminar - UoB

Jonathon Langford





With no direct observation of new physics (NP) at the LHC we turn to: **Effective Field Theory**

$$\mathcal{L}_{\mathrm{EFT}} = \mathcal{L}_{\mathrm{SM}} + \sum_{i} \frac{c_{i}^{(5)}}{\Lambda} \mathcal{O}_{i}^{(5)} + \sum_{i} \frac{c_{i}^{(6)}}{\Lambda^{2}} \mathcal{O}_{i}^{(6)}$$

- Assume NP exists at a mass scale, Λ , beyond energy-reach of collider
- **Coherent expansion in 1/\Lambda of SM Lagrangian** to include higher-dim operators
 - Integrate out short-distance new physics Ο
 - Look for imprints in SM interactions \bigcirc
 - Systematically probe space of BSM theories 0
- Model-independent approach (*)

(*) - Valid for $E < \Lambda$. Assumes some flavour scheme. Obeys SM symmetries

Jonathon Langford

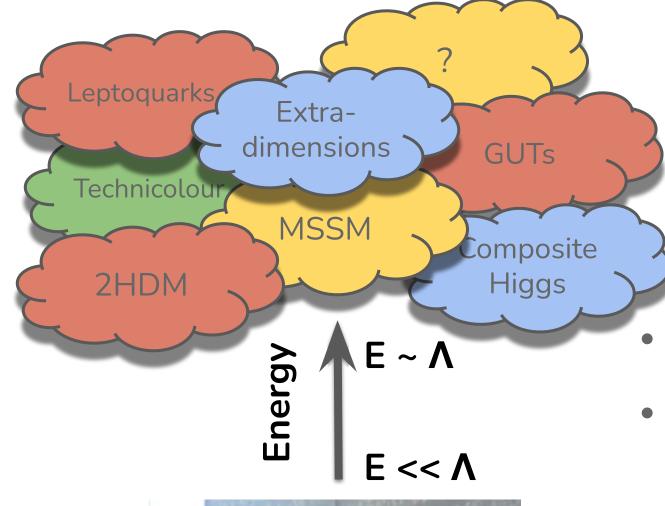
SM

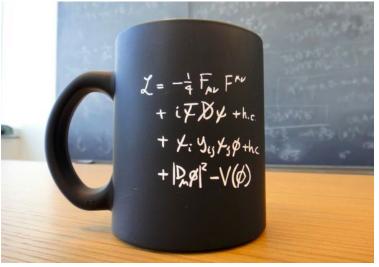
Particle Physics Seminar - UoB

 $+\sum_{i}\frac{c_{i}^{(7)}}{\Lambda^{3}}\mathcal{O}_{i}^{(7)}+\sum_{i}\frac{c_{i}^{(8)}}{\Lambda^{4}}\mathcal{O}_{i}^{(8)}+...$

27/11/24

38





With no direct observation of new physics (NP) at the LHC we turn to:

Effective Field Theory

$$\mathcal{L}_{\rm EFT} = \mathcal{L}_{\rm SM} + \sum_{i} \frac{c_i^{(5)}}{\Lambda} \mathcal{O}_i^{(5)} + \sum_{i} \frac{c_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)}$$

Odd terms violate B-L conservation

- Assume NP exists at a mass scale, Λ , beyond energy-reach of collider
- **Coherent expansion in 1/A of SM Lagrangian** to include higher-dim operators
 - Integrate out short-distance new physics Ο
 - Look for imprints in SM interactions \bigcirc
 - Systematically probe space of BSM theories \bigcirc
- Model-independent approach (*)

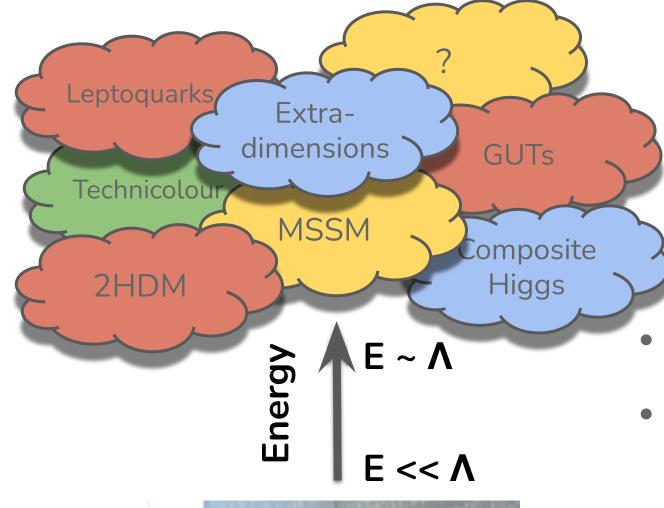
(*) - Valid for $E < \Lambda$. Assumes some flavour scheme. Obeys SM symmetries

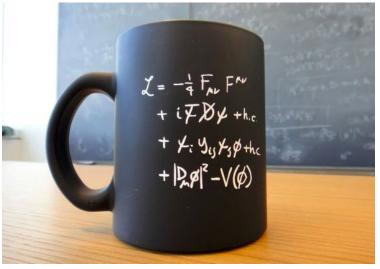
Jonathon Langford

SM

Particle Physics Seminar - UoB

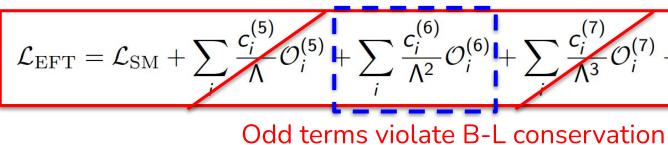
 $-\mathcal{O}_{i}^{(7)}$ $\sum \frac{c_i^{(0)}}{\Lambda 4} \mathcal{O}_i^{(8)} + \dots$





With no direct observation of new physics (NP) at the LHC we turn to:

Effective Field Theory



- Assume NP exists at a mass scale, Λ , beyond energy-reach of collider
- **Coherent expansion in 1/A of SM Lagrangian** to include higher-dim operators
 - Integrate out short-distance new physics Ο
 - Look for imprints in SM interactions \bigcirc
 - Systematically probe space of BSM theories 0
- Model-independent approach (*)

(*) - Valid for $E < \Lambda$. Assumes some flavour scheme. Obeys SM symmetries

Jonathon Langford

SM

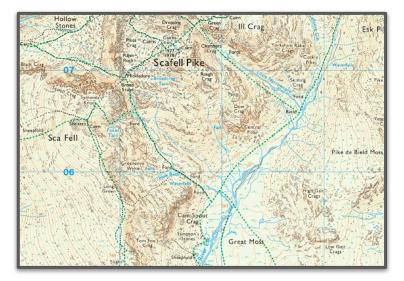
Particle Physics Seminar - UoB

 $\frac{C_{i}^{(7)}}{3}\mathcal{O}_{i}^{(7)} + \sum \frac{c_{i}^{(8)}}{\Lambda^{4}}\mathcal{O}_{i}^{(8)} + \dots$ $-\mathcal{O}_i^{(6)} + \sum \frac{c_i^{(7)}}{c_i}$

A hiker's guide to EFT

Complete theory: map of mountain range down to details of cracks in rock

- A hiker does not need this level of detail
- Introduce 10m grid on terrain and use average values for each square



Effective theory:

- Discard information with length scale below some cut-off
- But capture relevant physics!

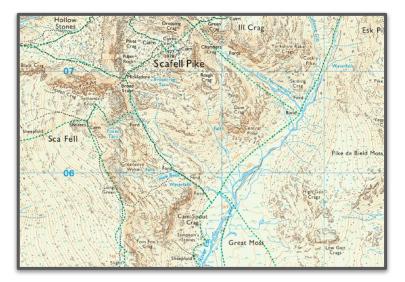
Jonathon Langford

Particle Physics Seminar - UoB

A hiker's guide to EFT

Complete theory: map of mountain range down to details of cracks in rock

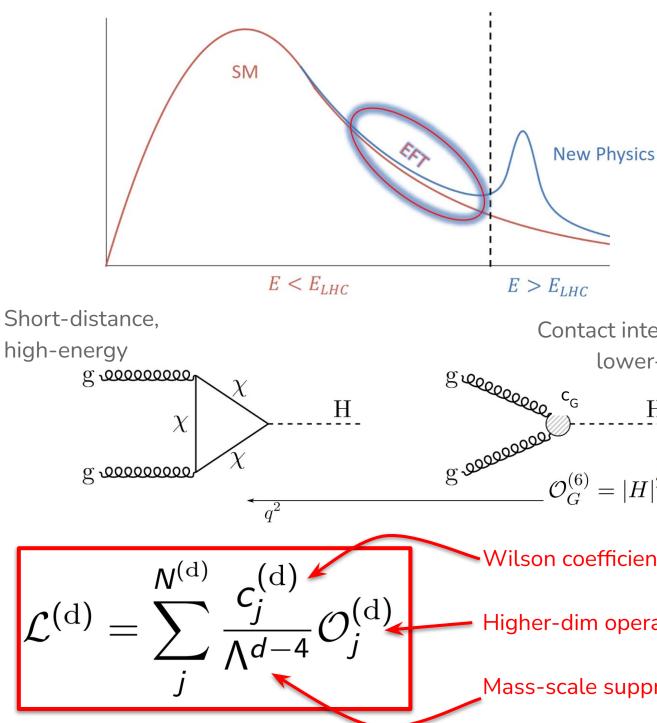
- A hiker does not need this level of detail
- Introduce 10m grid on terrain and use average values for each square



Effective theory:

- Discard information with length scale below some cut-off
- But capture relevant physics!

Apply same principle to TeV+ scale physics



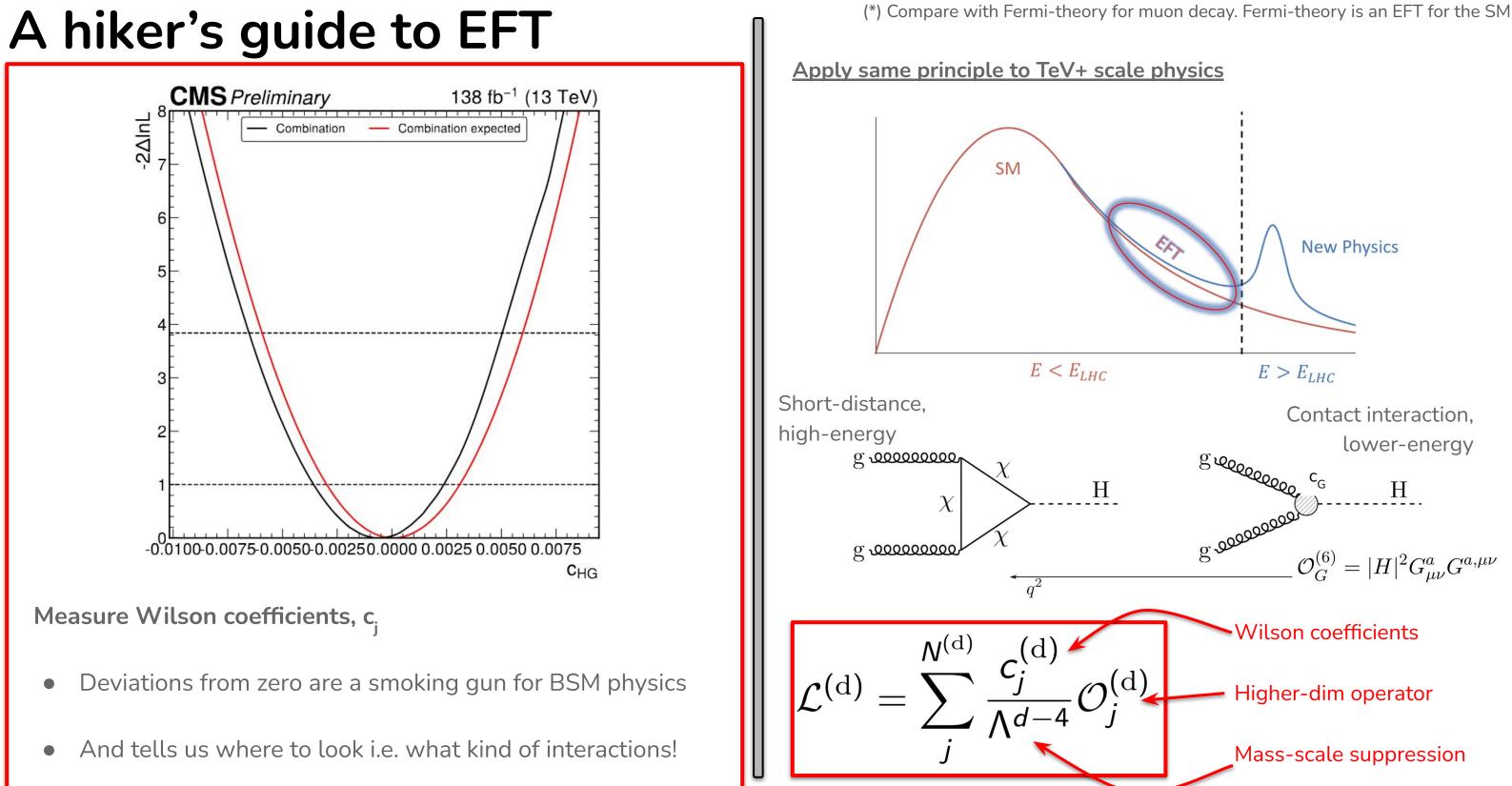
Jonathon Langford

Particle Physics Seminar - UoB

(*) Compare with Fermi-theory for muon decay. Fermi-theory is an EFT for the SM

Contact interaction, lower-energy Η $\mathcal{O}_{G}^{(6)} = |H|^2 G^a_{\mu\nu} G^{a,\mu\nu}$

Wilson coefficients Higher-dim operator Mass-scale suppression 27/11/24



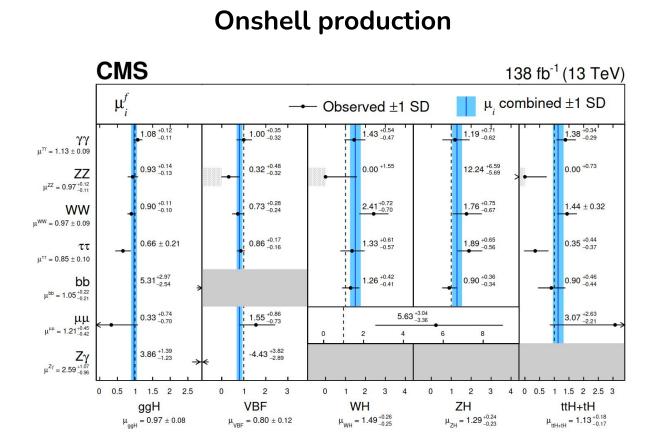
Jonathon Langford

Particle Physics Seminar - UoB

Contact interaction, lower-energy Η $\mathcal{O}_{G}^{(6)} = |H|^2 G^a_{\mu\nu} G^{a,\mu\nu}$

 Wilson coefficients Higher-dim operator Mass-scale suppression 27/11/24

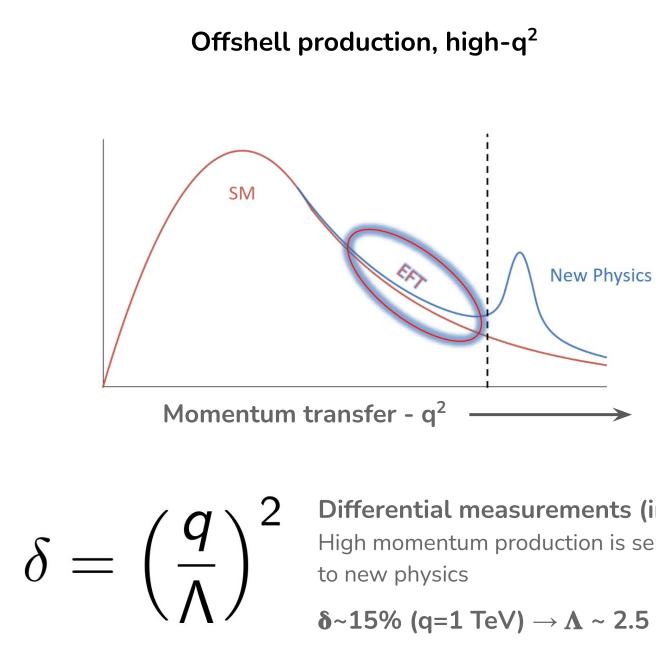
Importance of going differential



 $\delta = \left(\frac{V}{\Lambda}\right)$

Inclusive measurements (in bulk) High precision yields precision on new physics scale

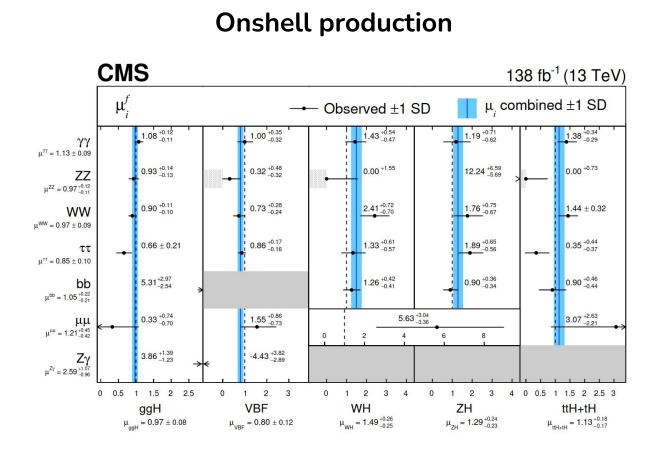
 $\delta \sim 1\% \rightarrow \Lambda \sim 2.5 \text{ TeV}$

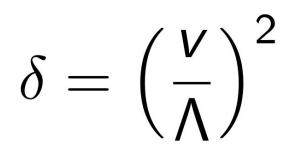


Differential measurements (in tail) High momentum production is sensitive

 δ ~15% (q=1 TeV) \rightarrow Λ ~ 2.5 TeV

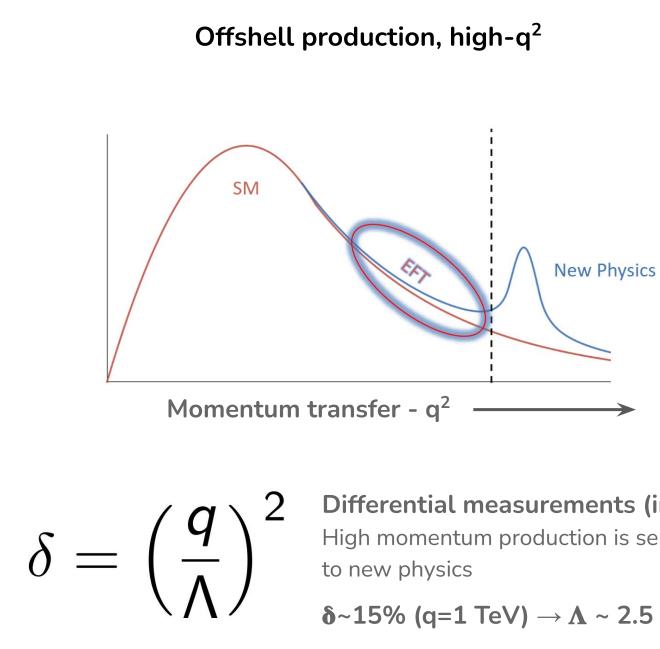
Importance of going differential





Inclusive measurements (in bulk) High precision yields precision on new physics scale

 $\delta \sim 1\% \rightarrow \Lambda \sim 2.5 \text{ TeV}$



Use differential Higgs boson measurements to exploit sensitivity to EFT

Jonathon Langford

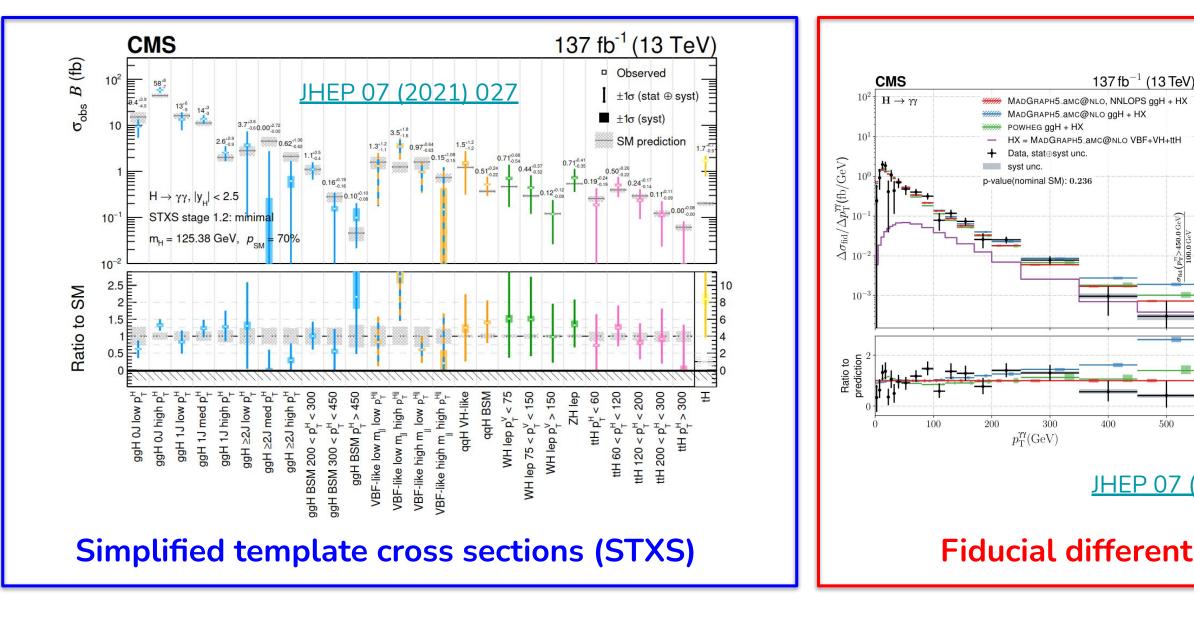
Particle Physics Seminar - UoB

Differential measurements (in tail) High momentum production is sensitive

 δ ~15% (q=1 TeV) \rightarrow Λ ~ 2.5 TeV

Differential Higgs boson measurements

Large Run 2 dataset has paved the way for precise differential Higgs boson measurements

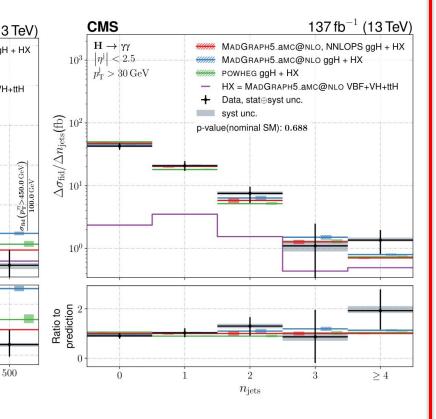


Larger model-dependence

Jonathon Langford

Particle Physics Seminar - UoB

 $H \rightarrow \gamma \gamma$



JHEP 07 (2023) 091

Fiducial differential cross sections

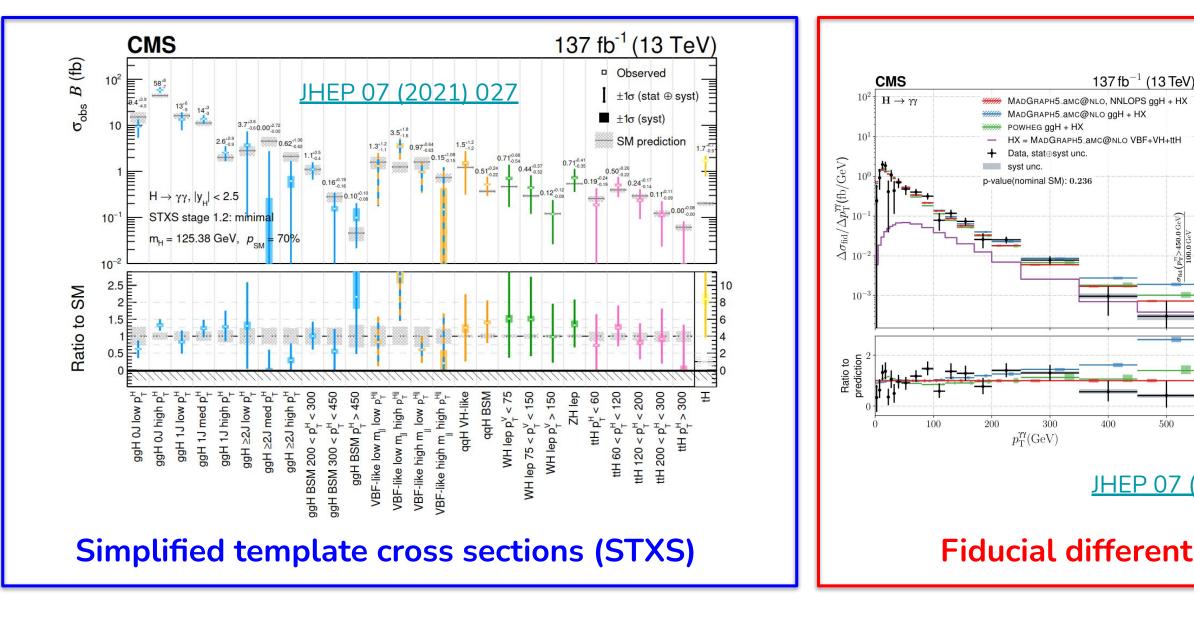
Most model-independent

27/11/24

46

Differential Higgs boson measurements

Large Run 2 dataset has paved the way for precise differential Higgs boson measurements

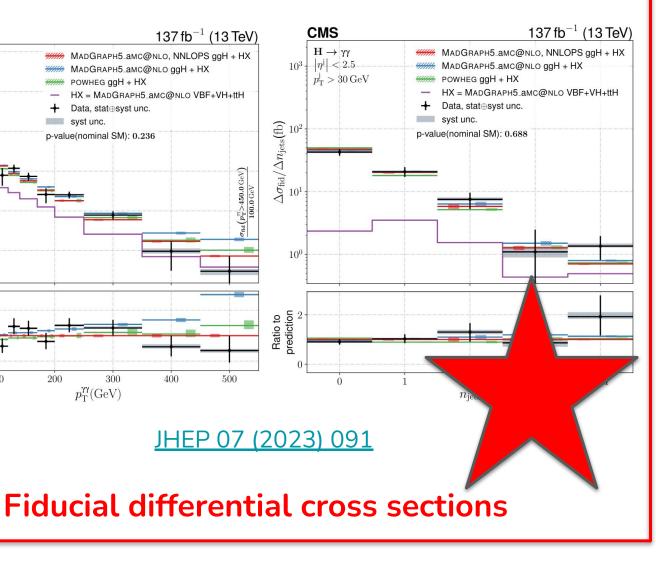


Larger model-dependence

Jonathon Langford

Particle Physics Seminar - UoB

 $H \rightarrow \gamma \gamma$



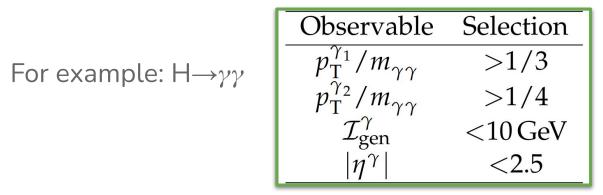
Most model-independent

27/11/24

47

Combination of fiducial differential cross sections

"Fiducial" = measurements performed in specific fiducial phase space, designed to be close to experimental phase space



- $H \rightarrow \gamma \gamma \text{ JHEP 07 (2023) 091}, H \rightarrow ZZ^* \rightarrow 4l \text{ JHEP 08 (2023) 040}, H \rightarrow WW^* \rightarrow e\mu \nu \nu \text{ JHEP 03 (2021) 003}, H \rightarrow \tau \tau \text{ Phys. Rev. Lett. 128 (2022) 081805} and H \rightarrow \tau \tau \text{ (boosted)} \text{ Phys. Lett. B 857 (2024) 138964}$
 - Analyses use full dataset collected 2016–2018 corresponding to 138 fb⁻¹ Ο
 - Fiducial regions defined by loose selections \rightarrow measurements are mostly sensitive to ggH production Ο
- Differential cross sections extracted through simultaneous maximum likelihood fit
 - Common parameters of interest ($\mu = d\sigma/d\sigma_{SM}$) for all channels with correlated nuisance parameter scheme Ο

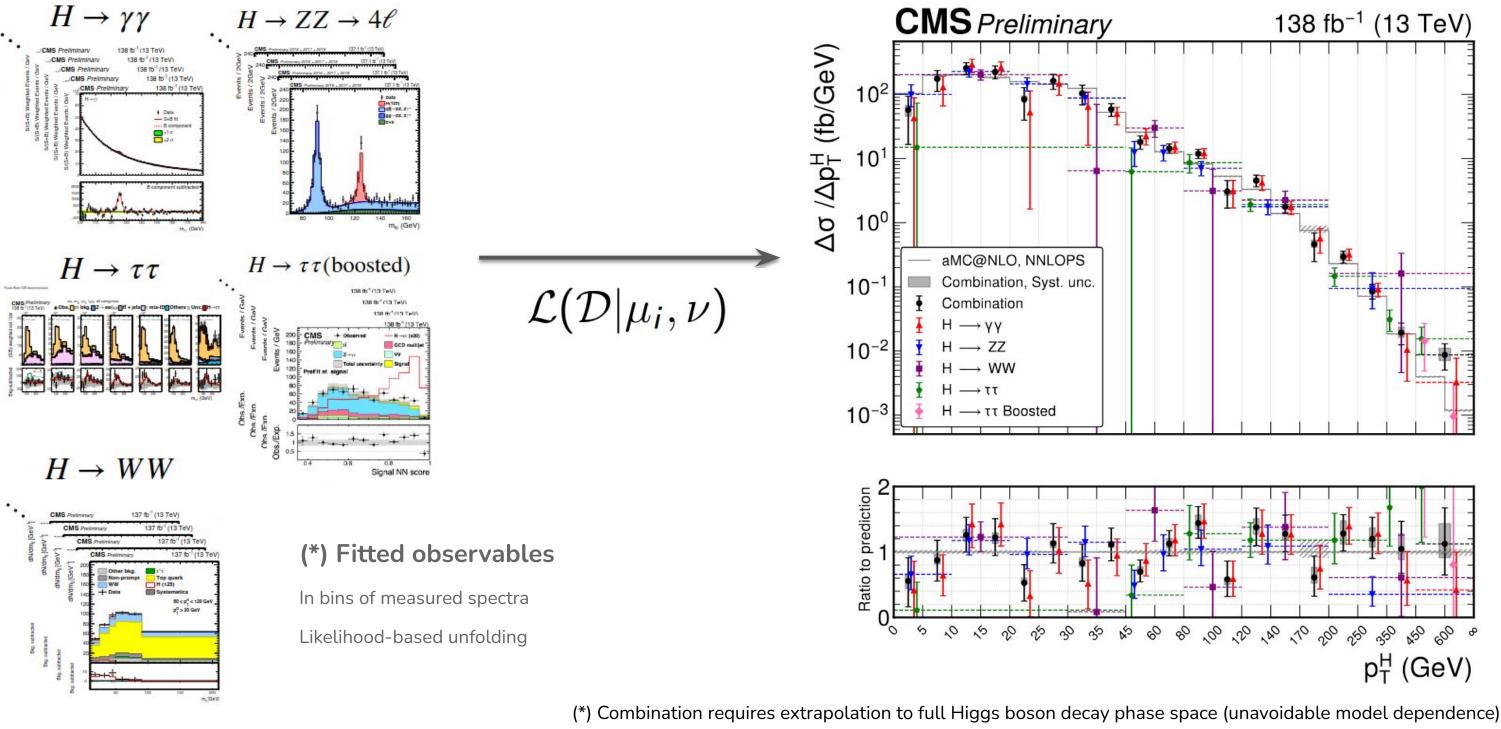
$$\circ$$
 Measurements: $p_T^H, N_{
m jets}, |y_H|, p_T^{j1}, m_{jj}, |\Delta\eta_{jj}|, au_C^j$

Jonathon Langford

 \bigcirc

Total Higgs-boson decay phase space

Combination of fiducial differential cross sections

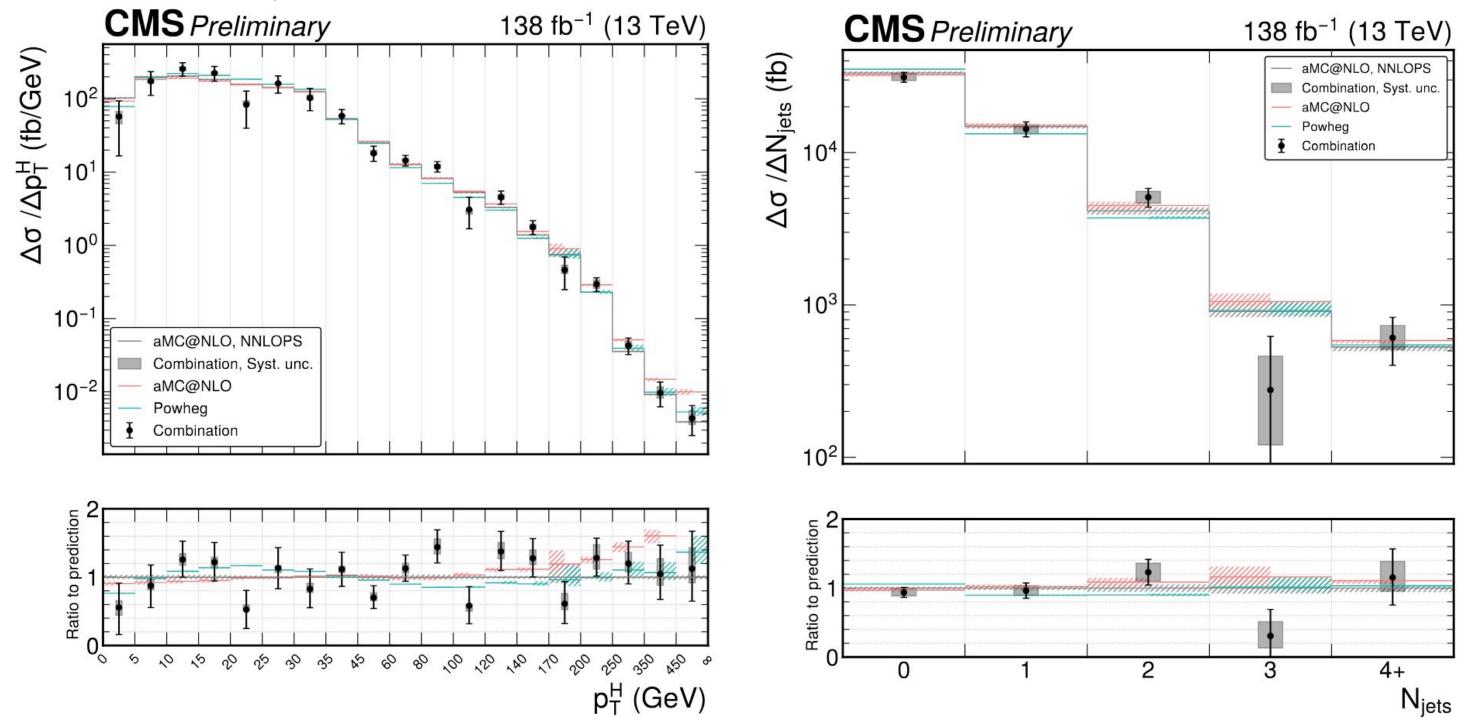


Jonathon Langford

Particle Physics Seminar - UoB

Additional systematic uncertainties from scale variations are included to cover this extrapolation

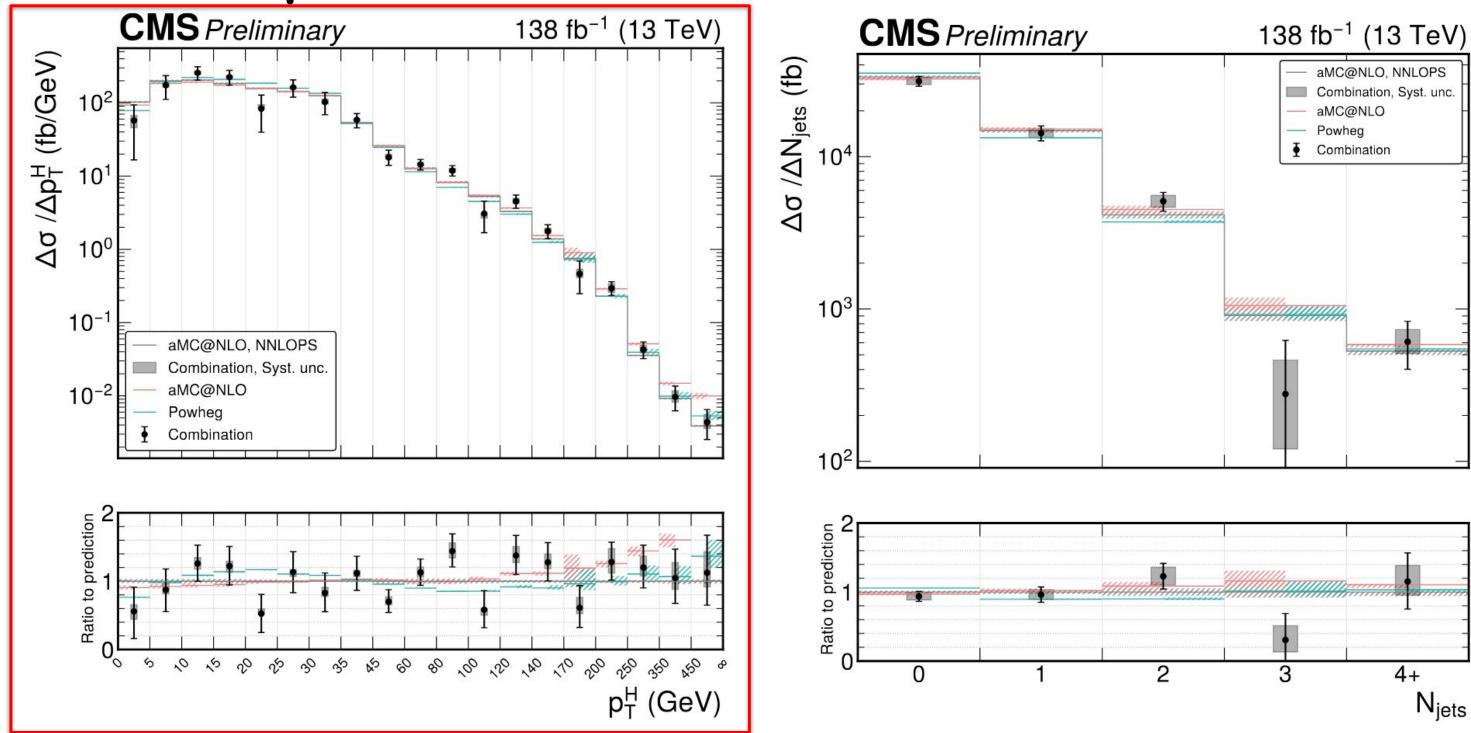
Combined spectra



Jonathon Langford

Particle Physics Seminar - UoB

Combined spectra



• Shape distortions in measured pTH spectra used to constrain EFT Wilson coefficients

Jonathon Langford

Particle Physics Seminar - UoB

- Standard Model Effective Field Theory (SMEFT)
 - Used to **parametrise distortions** in p_T^H spectrum
 - \circ Flavour symmetry: $\mathcal{U}(2)^3_{q,u,d} imes \mathcal{U}(3)^2_{I,e}$
 - Consider all relevant CP-even operators for Higgs boson interactions

 $\mathcal{L}_6^{(6)} - \psi^2 X H$

 $\mathcal{L}_6^{(7)}-\psi^2 H^2 D$

$$\mathcal{L}_6^{(8a)} - (\bar{L}L)(\bar{L}L)$$

Jonathon Langford

Particle Physics Seminar - UoB

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{j=0} \frac{c_j^{(6)}}{\Lambda^2} O_j^{(6)}$$

 $\mathcal{L}_{6}^{(1)} - X^{3}$ $\mathcal{L}_{6}^{(3)} - H^{4}D^{2}$

 $\mathcal{L}_{6}^{(4)} - X^{2}H^{2}$

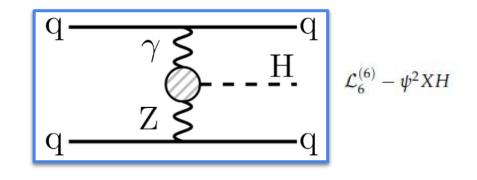
 $\mathcal{L}_6^{(5)} - \psi^2 H^3$

Class

Operator	Wilson coefficient	
$arepsilon^{ijk}W^{i u}_{\mu}W^{j ho}_{ u}W^{k\mu}_{ ho}$	c _W	
$(D^{\mu}H^{\dagger}H)(H^{\dagger}D_{\mu}H)$	c _{HD}	
$(H^{\dagger}H)\Box(H^{\dagger}H)$	c _{H□}	
$H^{\dagger}HG^{a}_{\mu\nu}G^{a\mu\nu}$	c _{HG}	
$H^{\dagger}HB_{\mu\nu}B^{\mu\nu}$	c _{HB}	
$H^{\dagger}HW^{i}_{\mu u}W^{i\mu u}$	C _{HW}	
$H^{\dagger}\sigma^{i}HW^{i}_{\mu\nu}B^{i\mu\nu}$	C _{HWB}	
$(H^{\dagger}H)(\bar{Q}Hb)$	$\operatorname{Re}(c_{bH})$	
	$Im(c_{bH})$	
$(H^{\dagger}H)(\bar{Q}Ht)$	$\operatorname{Re}(c_{tH})$	
$(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$	$\operatorname{Re}(c_{eH})$	
and a second second second second	$\operatorname{Im}(c_{eH})$	
$(H^{\dagger}H)(\bar{q}Y_{u}^{\dagger}u\tilde{H})$	$\operatorname{Re}(c_{uH})$	
$(\bar{Q}\sigma^{\mu\nu}T^at)\tilde{H}G^a_{\mu\nu}$	$\operatorname{Re}(c_{tG})$	
$(\bar{Q}\sigma^{\mu\nu}b)HB_{\mu\nu}$	$\operatorname{Re}(c_{bB})$	
$(\bar{Q}\sigma^{\mu\nu}t)HB_{\mu\nu}$	$\operatorname{Re}(c_{tB})$	
$(\bar{Q}\sigma^{\mu\nu}b)\sigma^{i}HW^{i}_{\mu\nu}$	$\operatorname{Re}(c_{bW})$	
Charles of the Kerth	$\operatorname{Im}(c_{bW})$	
$(\bar{Q}\sigma^{\mu\nu}t)\sigma^{i}\tilde{H}W^{i}_{\mu\nu}$	$\operatorname{Re}(c_{tW})$	
$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{l}_{p}\gamma^{\mu}l_{r})$	$c_{Hl}^{(1)}$	
$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{i}H)(\bar{l}_{p}\sigma^{i}\gamma^{\mu}l_{r})$ $(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}_{p}\gamma^{\mu}q_{r})$ $(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}_{p}\gamma^{\mu}q_{r})$	$c_{Hl}^{(3)}$	
$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}_{\nu}\gamma^{\mu}q_{r})$	$c_{H_{a}}^{(1)}$	
$(H^{\dagger}iD^{\dagger}H)(\bar{a}\sigma^{\dagger}\gamma^{\mu}a)$	c ⁽³⁾	
$(IIII)(\bar{q}_p + \bar{q}_p)$	$C_{Hq}^{(0)}$	
$(H^{r}D_{\mu}H)(Q_{p}\gamma^{r}Q_{r})$	CHQ	
$(H^{\tau}i D^{\mu}_{\mu}H)(Q_{p}\sigma^{\mu}\gamma^{\mu}Q_{r})$	CHQ	
$(H^{\dagger}i D_{\mu}H)(\bar{u}_{p}\gamma^{\mu}u_{r})$	c_{Hu}	
$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$	C _{Hd}	
$(H^{\dagger}i\overleftarrow{D}_{\mu}H)(\bar{e}_{p}\gamma^{\mu}e_{r})$	c _{He}	
$(H^{\dagger}i\overset{\mu}{D}_{\mu}H)(q_{p}e^{-}\gamma^{\mu}q_{r})$ $(H^{\dagger}i\overset{\mu}{D}_{\mu}H)(\bar{Q}_{p}\gamma^{\mu}Q_{r})$ $(H^{\dagger}i\overset{\mu}{D}_{\mu}H)(\bar{Q}_{p}\sigma^{i}\gamma^{\mu}Q_{r})$ $(H^{\dagger}i\overset{\mu}{D}_{\mu}H)(\bar{u}_{p}\gamma^{\mu}u_{r})$ $(H^{\dagger}i\overset{\mu}{D}_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$ $(H^{\dagger}i\overset{\mu}{D}_{\mu}H)(\bar{e}_{p}\gamma^{\mu}e_{r})$ $(H^{\dagger}i\overset{\mu}{D}_{\mu}H)(\bar{b}\gamma^{\mu}b)$ $(H^{\dagger}i\overset{\mu}{D}_{\mu}H)(\bar{t}\gamma^{\mu}t)$	c _{Hb}	
$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{t}\gamma^{\mu}t)$	c _{Ht}	
$(\bar{l}_p \gamma_\mu l_r)(\bar{l}_s \gamma^\mu l_t)$	c'_{ll}	

- Standard Model Effective Field Theory (SMEFT)
 - Used to **parametrise distortions** in p_T^H spectrum
 - Flavour symmetry: $\mathcal{U}(2)^3_{q,u,d} imes \mathcal{U}(3)^2_{I,e}$
 - Consider all relevant CP-even operators for Higgs boson interactions

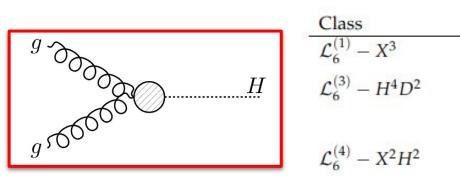
$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{j=0}^{C_{j}^{(6)}} \frac{c_{j}^{(6)}}{\Lambda^{2}} O_{j}^{(6)}$$



$$\begin{array}{c} q \\ W \\ q \\ \end{array} \\ \\ H \\ \\ \mathcal{L}_{6}^{(8a)} - (\bar{L}L)(\bar{L}L) \end{array}$$

Particle Physics Seminar - UoB

Jonathon Langford



 $\mathcal{L}_{6}^{(5)} - \psi^{2}H^{3}$

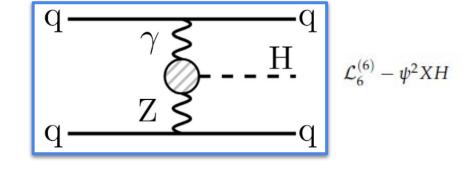
 $\mathcal{L}_6^{(7)} - \psi^2 H^2 D$

Operator	Wilson coefficient	
$\epsilon^{ijk}W^{i u}_{\mu}W^{j ho}_{ u}W^{k\mu}_{ ho}$	CW	
$(D^{\mu}H^{\dagger}H)(H^{\dagger}D_{\mu}H)$	c _{HD}	
$(H^{\dagger}H)\Box(H^{\dagger}H)$	CHE	
$H^{\dagger}HG^{a}_{\mu u}G^{a\mu u}$	c _{HG}	
$H^{\dagger}HB_{\mu\nu}B^{\mu\nu}$	c _{HB}	
$H^{\dagger}HW^{i}_{\mu\nu}W^{i\mu\nu}$	C _{HW}	
$H^{\dagger}\sigma^{i}H\dot{W}^{i}_{\mu u}B^{i\mu u}$	C _{HWB}	
$(H^{\dagger}H)(\bar{Q}Hb)$	$Re(c_{bH})$	
	$\operatorname{Im}(c_{bH})$	
$(H^{\dagger}H)(\bar{Q}Ht)$	$\operatorname{Re}(c_{tH})$	
$(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$	$\operatorname{Re}(c_{eH})$	
and the second second second	$\operatorname{Im}(c_{eH})$	
$(H^{\dagger}H)(\bar{q}Y_{u}^{\dagger}u\tilde{H})$	$\operatorname{Re}(c_{uH})$	
$(\bar{Q}\sigma^{\mu\nu}T^at)\tilde{H}G^a_{\mu\nu}$	$\operatorname{Re}(c_{tG})$	
$(\bar{Q}\sigma^{\mu\nu}b)HB_{\mu\nu}$	$\operatorname{Re}(c_{bB})$	
$(\bar{Q}\sigma^{\mu\nu}t)HB_{\mu\nu}$	$\operatorname{Re}(c_{tB})$	
$(\bar{Q}\sigma^{\mu\nu}b)\sigma^{i}HW^{i}_{\mu\nu}$	$\operatorname{Re}(c_{bW})$	
Contraction (18) Keath	$\operatorname{Im}(c_{bW})$	
$(\bar{Q}\sigma^{\mu\nu}t)\sigma^{i}\tilde{H}W^{i}_{\mu\nu}$	$\operatorname{Re}(c_{tW})$	
$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{l}_{p}\gamma^{\mu}l_{r})$	$c_{Hl}^{(1)}$	
$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{i}H)(\bar{l}_{p}\sigma^{i}\gamma^{\mu}l_{r})$	$c_{Hl}^{(3)}$	
$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{i}H)(\bar{l}_{p}\sigma^{i}\gamma^{\mu}l_{r}) (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}_{p}\gamma^{\mu}q_{r})$	$c_{H_{q}}^{(1)}$	
$(H^{\dagger}i\overleftrightarrow{D}^{i}_{\mu}H)(\bar{q}_{p}\sigma^{i}\gamma^{\mu}q_{r})$	C ⁽³⁾	
$(\Pi^{\dagger}, D^{\dagger}, \Pi^{\dagger})(\bar{q}_{p}, \eta^{\dagger}, \eta^{\dagger})$	$c_{Hq}^{(3)}$	
$(H^{\dagger}i \overset{\frown}{D}_{\mu}H)(\overline{Q}_{p}\gamma^{\mu}Q_{r})$	CHQ	
$(H^{\dagger}i\overleftrightarrow{D}^{i}_{\mu}H)(\bar{Q}_{p}\sigma^{i}\gamma^{\mu}Q_{r})$	CHQ	
$(H^{\dagger}i\overleftarrow{D}_{\mu}H)(\bar{u}_{p}\gamma^{\mu}u_{r})$	c _{Hu}	
$(H^{\dagger}i\overleftarrow{D}_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$	C _{Hd}	
$(H^{\dagger}i\overleftarrow{D}_{\mu}H)(\bar{e}_{p}\gamma^{\mu}e_{r})$	c _{He}	
$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{b}\gamma^{\mu}b)$	c _{Hb}	
$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(Q_{p}O^{\dagger}\gamma^{\mu}Q_{r})$ $(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{u}_{p}\gamma^{\mu}u_{r})$ $(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$ $(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}_{p}\gamma^{\mu}e_{r})$ $(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{b}\gamma^{\mu}b)$ $(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{t}\gamma^{\mu}t)$	c _{Ht}	
$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	c'_{II}	

- Standard Model Effective Field Theory (SMEFT)
 - Used to **parametrise distortions** in p_T^H spectrum \bigcirc
 - Flavour symmetry: $\mathcal{U}(2)^3_{q,u,d} \times \mathcal{U}(3)^2_{I,e}$ 0
 - Consider all relevant CP-even operators for Higgs boson interactions Ο

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{j=0} \frac{c_j^{(6)}}{\Lambda^2} O_j^{(6)}$$

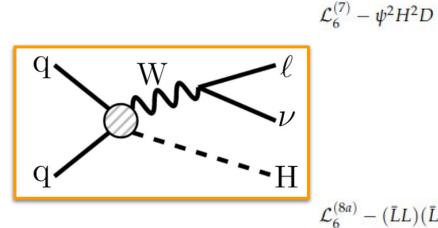
$$\mathcal{M} = \mathcal{M}_{\mathrm{SM}} + \mathcal{M}_{\mathrm{EFT}} \qquad \qquad \mathcal{M}_{\mathrm{EFT}} = \sum_{i} \alpha_{i} c_{i}$$



_____*H*

g Door

g1000L



 $\mathcal{L}_6^{(8a)} - (\bar{L}L)(\bar{L}L)$

Class

 $\mathcal{L}_{6}^{(1)} - X^{3}$

 $\mathcal{L}_{6}^{(3)} - H^4 D^2$

 $\mathcal{L}_6^{(4)} - X^2 H^2$

 $\mathcal{L}_6^{(5)} - \psi^2 H^3$

Particle Physics Seminar - UoB

Jonathon Langford

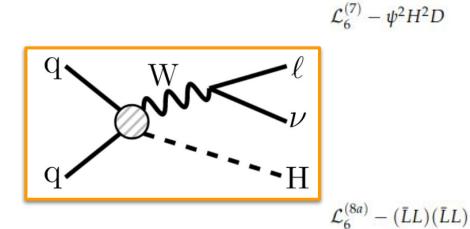
Operator	Wilson coefficient	
$\epsilon^{ijk}W^{i\nu}_{\mu}W^{j ho}_{\nu}W^{k\mu}_{ ho}$	CW	
$(D^{\mu}H^{\dagger}H)(H^{\dagger}D_{\mu}H)$	c _{HD}	
$(H^{\dagger}H)\Box(H^{\dagger}H)$	CH	
$H^{\dagger}HG^{a}_{\mu u}G^{a\mu u}$	c _{HG}	
$H^{\dagger}HB_{\mu\nu}B^{\mu\nu}$	c _{HB}	
$H^{\dagger}HW^{i}_{\mu\nu}W^{i\mu\nu}$	C _{HW}	
$H^{\dagger}\sigma^{i}HW^{i}_{\mu u}B^{i\mu u}$	C _{HWB}	
$(H^{\dagger}H)(\bar{Q}Hb)$	$Re(c_{bH})$	
	$\operatorname{Im}(c_{bH})$	
$(H^{\dagger}H)(\bar{Q}Ht)$	$\operatorname{Re}(c_{tH})$	
$(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$	$\operatorname{Re}(c_{eH})$	
and the second second second	$\operatorname{Im}(c_{eH})$	
$(H^{\dagger}H)(\bar{q}Y_{u}^{\dagger}u\tilde{H})$	$\operatorname{Re}(c_{uH})$	
$(\bar{Q}\sigma^{\mu\nu}T^{a}t)\tilde{H}G^{a}_{\mu\nu}$	$\operatorname{Re}(c_{tG})$	
$(\bar{Q}\sigma^{\mu\nu}b)HB_{\mu\nu}$	$\operatorname{Re}(c_{bB})$	
$(\bar{Q}\sigma^{\mu\nu}t)HB_{\mu\nu}$	$\operatorname{Re}(c_{tB})$	
$(\bar{Q}\sigma^{\mu\nu}b)\sigma^{i}HW^{i}_{\mu\nu}$	$\operatorname{Re}(c_{bW})$	
(1.1.2.1.2.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	$\operatorname{Im}(c_{bW})$	
$(\bar{Q}\sigma^{\mu\nu}t)\sigma^{i}\tilde{H}W^{i}_{\mu\nu}$	$\operatorname{Re}(c_{tW})$	
$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{l}_{p}\gamma^{\mu}l_{r})$	$c_{Hl}^{(1)}$	
$(H^{\dagger}i D^{\prime}{}^{i}{}_{\mu}H)(\bar{l}_{p}\sigma^{i}\gamma^{\mu}l_{r})$	$c_{Hl}^{(3)}$	
$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{i}H)(\bar{l}_{p}\sigma^{i}\gamma^{\mu}l_{r}) (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}_{p}\gamma^{\mu}q_{r})$	$c_{H_{q}}^{(1)}$	
$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{i}H)(\bar{q}_{p}\sigma^{i}\gamma^{\mu}q_{r})$	C ⁽³⁾	
$(H^{\dagger}; D^{\prime}, H)(\bar{O}, A^{\dagger}, O)$	$c_{Hq}^{(3)}$	
$(H^{\dagger}i\overset{\frown}{D}_{\mu}H)(Q_{p}\gamma^{\mu}Q_{r})$	CHQ (3)	
$(H^{\prime}i D^{\prime}_{\mu}H)(Q_{p}\sigma^{\prime}\gamma^{\mu}Q_{r})$	c _{HQ}	
$(H^{\dagger}iD_{\mu}H)(\bar{u}_{p}\gamma^{\mu}u_{r})$	c_{Hu}	
$(H^{\dagger}iD_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$	c _{Hd}	
$(H^{\dagger}i D_{\mu} H)(\bar{e}_{p} \gamma^{\mu} e_{r})$	c _{He}	
$(H^{\dagger}i\overleftarrow{D}_{\mu}H)(\bar{b}\gamma^{\mu}b)$	c _{Hb}	
$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{i}H)(\overrightarrow{Q}_{p}\tau^{i}\varphi^{\mu}Q_{r})$ $(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\overrightarrow{Q}_{p}\sigma^{i}\gamma^{\mu}Q_{r})$ $(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\overrightarrow{u}_{p}\gamma^{\mu}u_{r})$ $(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\overrightarrow{d}_{p}\gamma^{\mu}d_{r})$ $(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\overrightarrow{e}_{p}\gamma^{\mu}e_{r})$ $(H^{\dagger}i\overleftarrow{D}_{\mu}H)(\overrightarrow{b}\gamma^{\mu}b)$ $(H^{\dagger}i\overleftarrow{D}_{\mu}H)(\overrightarrow{t}\gamma^{\mu}t)$	c _{Ht}	
$(\bar{l}_p \gamma_\mu l_r)(\bar{l}_s \gamma^\mu l_t)$	c'_{ll}	

- Standard Model Effective Field Theory (SMEFT)
 - Used to **parametrise distortions** in p_T^H spectrum
 - \circ Flavour symmetry: $\mathcal{U}(2)^3_{q,u,d} imes \mathcal{U}(3)^2_{I,e}$
 - Consider all relevant CP-even operators for Higgs boson interactions

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{j=0}^{C_{j}^{(6)}} \frac{c_{j}^{(6)}}{\Lambda^{2}} O_{j}^{(6)}$$

$$\mathcal{M} = \mathcal{M}_{\mathrm{SM}} + \mathcal{M}_{\mathrm{EFT}} \qquad \qquad \mathcal{M}_{\mathrm{EFT}} = \sum_{i} \alpha_{i} c_{i}$$

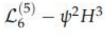
$$\begin{split} |\mathcal{M}|^2 &= |\mathcal{M}_{\rm SM}|^2 + (\mathcal{M}_{\rm SM}^* \mathcal{M}_{\rm EFT} + \mathcal{M}_{\rm SM} \mathcal{M}_{\rm EFT}^*) + |\mathcal{M}_{\rm EFT}|^2 \\ &= |\mathcal{M}_{\rm SM}|^2 + \sum_i (\mathcal{M}_{\rm SM}^* \alpha_i + \mathcal{M}_{\rm SM} \alpha_i^*) c_i \\ &+ \sum_i |\alpha_i|^2 c_i^2 + \sum_{i \neq j} (\alpha_i^* \alpha_j + \alpha_i \alpha_j^*) c_i c_j \end{split}$$

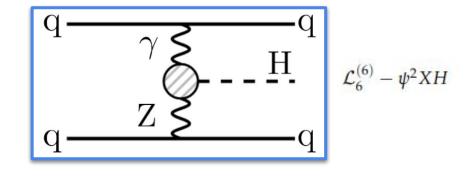


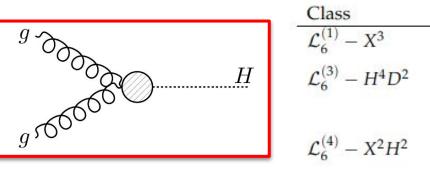
Particle Physics Seminar - UoB

Jonathon Langford

for Higgs boson interactions







Operator	Wilson coefficient	
$\epsilon^{ijk}W^{i u}_{\mu}W^{j ho}_{ u}W^{k\mu}_{ ho}$	CW	
$(D^{\mu}H^{\dagger}H)(H^{\dagger}D_{\mu}H)$	c _{HD}	
$(H^{\dagger}H)\Box(H^{\dagger}H)$	CHE	
$H^{\dagger}HG^{a}_{\mu u}G^{a\mu u}$	c _{HG}	
$H^{\dagger}HB_{\mu\nu}B^{\mu\nu}$	c _{HB}	
$H^{\dagger}HW^{i}_{\mu\nu}W^{i\mu\nu}$	C _{HW}	
$H^{\dagger}\sigma^{i}H\dot{W}^{i}_{\mu u}B^{i\mu u}$	C _{HWB}	
$(H^{\dagger}H)(\bar{Q}Hb)$	$Re(c_{bH})$	
	$\operatorname{Im}(c_{bH})$	
$(H^{\dagger}H)(\bar{Q}Ht)$	$\operatorname{Re}(c_{tH})$	
$(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$	$\operatorname{Re}(c_{eH})$	
and the second second second	$\operatorname{Im}(c_{eH})$	
$(H^{\dagger}H)(\bar{q}Y_{u}^{\dagger}u\tilde{H})$	$\operatorname{Re}(c_{uH})$	
$(\bar{Q}\sigma^{\mu\nu}T^at)\tilde{H}G^a_{\mu\nu}$	$\operatorname{Re}(c_{tG})$	
$(\bar{Q}\sigma^{\mu\nu}b)HB_{\mu\nu}$	$\operatorname{Re}(c_{bB})$	
$(\bar{Q}\sigma^{\mu\nu}t)HB_{\mu\nu}$	$\operatorname{Re}(c_{tB})$	
$(\bar{Q}\sigma^{\mu\nu}b)\sigma^{i}HW^{i}_{\mu\nu}$	$\operatorname{Re}(c_{bW})$	
Contraction (18) Keath	$\operatorname{Im}(c_{bW})$	
$(\bar{Q}\sigma^{\mu\nu}t)\sigma^{i}\tilde{H}W^{i}_{\mu\nu}$	$\operatorname{Re}(c_{tW})$	
$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{l}_{p}\gamma^{\mu}l_{r})$	$c_{Hl}^{(1)}$	
$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{i}H)(\bar{l}_{p}\sigma^{i}\gamma^{\mu}l_{r})$	$c_{Hl}^{(3)}$	
$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{i}H)(\bar{l}_{p}\sigma^{i}\gamma^{\mu}l_{r}) (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}_{p}\gamma^{\mu}q_{r})$	$c_{H_{q}}^{(1)}$	
$(H^{\dagger}i\overleftrightarrow{D}^{i}_{\mu}H)(\bar{q}_{p}\sigma^{i}\gamma^{\mu}q_{r})$	C ⁽³⁾	
$(\Pi^{\dagger}, D^{\dagger}, \Pi^{\dagger})(\bar{q}_{p}, \eta^{\dagger}, \eta^{\dagger})$	$c_{Hq}^{(3)}$	
$(H^{\dagger}i \overset{\frown}{D}_{\mu}H)(\overline{Q}_{p}\gamma^{\mu}Q_{r})$	CHQ	
$(H^{\dagger}i\overleftrightarrow{D}^{i}_{\mu}H)(\bar{Q}_{p}\sigma^{i}\gamma^{\mu}Q_{r})$	$c_{HQ}^{(3)}$	
$(H^{\dagger}i\overleftarrow{D}_{\mu}H)(\bar{u}_{p}\gamma^{\mu}u_{r})$	c _{Hu}	
$(H^{\dagger}i\overleftarrow{D}_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$	C _{Hd}	
$(H^{\dagger}i\overleftarrow{D}_{\mu}H)(\bar{e}_{p}\gamma^{\mu}e_{r})$	c _{He}	
$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{b}\gamma^{\mu}b)$	c _{Hb}	
$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(Q_{p}O^{\dagger}\gamma^{\mu}Q_{r})$ $(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{u}_{p}\gamma^{\mu}u_{r})$ $(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$ $(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}_{p}\gamma^{\mu}e_{r})$ $(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{b}\gamma^{\mu}b)$ $(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{t}\gamma^{\mu}t)$	c _{Ht}	
$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	c'_{II}	

- Standard Model Effective Field Theory (SMEFT)
 - Used to **parametrise distortions** in p_T^H spectrum
 - \circ Flavour symmetry: $\mathcal{U}(2)^3_{q,u,d} imes \mathcal{U}(3)^2_{I,e}$
 - Consider all relevant CP-even operators for Higgs boson interactions

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{j=0} \frac{c_{j}^{(6)}}{\Lambda^{2}} O_{j}^{(6)}$$

 $\mathcal{M} = \mathcal{M}_{\mathrm{SM}} + \mathcal{M}_{\mathrm{EFT}} \qquad \qquad \mathcal{M}_{\mathrm{EFT}} = \sum_{i} \alpha_{i} c_{i}$

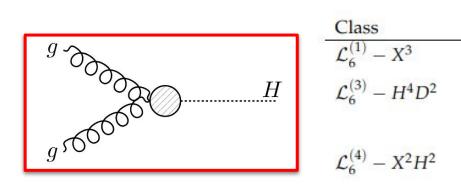
$$\mathcal{M}|^{2} = |\mathcal{M}_{SM}|^{2} + (\mathcal{M}_{SM}^{*}\mathcal{M}_{EFT} + \mathcal{M}_{SM}\mathcal{M}_{EFT}^{*}) + |\mathcal{M}_{EFT}|^{2}$$

$$= |\mathcal{M}_{SM}|^{2} + \sum_{i} (\mathcal{M}_{SM}^{*}\alpha_{i} + \mathcal{M}_{SM}\alpha_{i}^{*})c_{i}$$

$$+ \sum_{i} |\alpha_{i}|^{2}c_{i}^{2} + \sum_{i \neq j} (\alpha_{i}^{*}\alpha_{j} + \alpha_{i}\alpha_{j}^{*})c_{i}c_{j}$$

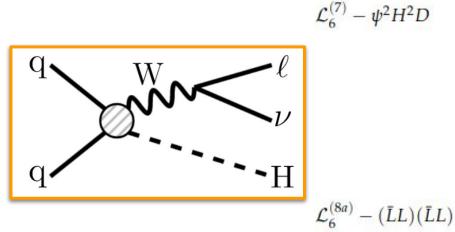
$$\mu = 1 + \sum_{i} A_{i}c_{i} + \sum_{ij} B_{ij}c_{i}c_{j}$$

Jonathon Langford



 $\begin{array}{c|c} q & & & q \\ & & & \gamma & & q \\ \hline & & & & & \\ q & & & & & \\ \hline & & & & & \\ q & & & & & \\ \end{array} \mathcal{L}_{6}^{(6)} - \psi^{2}XH \end{array}$

 $\mathcal{L}_{6}^{(5)} - \psi^{2}H^{3}$



Particle Physics Seminar - UoB

Operator	Wilson coefficient	
$\epsilon^{ijk}W^{i u}_{\mu}W^{j ho}_{ u}W^{k\mu}_{ ho}$	CW	
$(D^{\mu}H^{\dagger}H)(H^{\dagger}D_{\mu}H)$	c _{HD}	
$(H^{\dagger}H)\Box(H^{\dagger}H)$	CHE	
$H^{\dagger}HG^{a}_{\mu u}G^{a\mu u}$	c _{HG}	
$H^{\dagger}HB_{\mu\nu}B^{\mu\nu}$	c _{HB}	
$H^{\dagger}HW^{i}_{\mu\nu}W^{i\mu\nu}$	C _{HW}	
$H^{\dagger}\sigma^{i}H\dot{W}^{i}_{\mu u}B^{i\mu u}$	C _{HWB}	
$(H^{\dagger}H)(\bar{Q}Hb)$	$Re(c_{bH})$	
	$\operatorname{Im}(c_{bH})$	
$(H^{\dagger}H)(\bar{Q}Ht)$	$\operatorname{Re}(c_{tH})$	
$(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$	$\operatorname{Re}(c_{eH})$	
and the second second second	$\operatorname{Im}(c_{eH})$	
$(H^{\dagger}H)(\bar{q}Y_{u}^{\dagger}u\tilde{H})$	$\operatorname{Re}(c_{uH})$	
$(\bar{Q}\sigma^{\mu\nu}T^at)\tilde{H}G^a_{\mu\nu}$	$\operatorname{Re}(c_{tG})$	
$(\bar{Q}\sigma^{\mu\nu}b)HB_{\mu\nu}$	$\operatorname{Re}(c_{bB})$	
$(\bar{Q}\sigma^{\mu\nu}t)HB_{\mu\nu}$	$\operatorname{Re}(c_{tB})$	
$(\bar{Q}\sigma^{\mu\nu}b)\sigma^{i}HW^{i}_{\mu\nu}$	$\operatorname{Re}(c_{bW})$	
Contraction (18) Keath	$\operatorname{Im}(c_{bW})$	
$(\bar{Q}\sigma^{\mu\nu}t)\sigma^{i}\tilde{H}W^{i}_{\mu\nu}$	$\operatorname{Re}(c_{tW})$	
$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{l}_{p}\gamma^{\mu}l_{r})$	$c_{Hl}^{(1)}$	
$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{i}H)(\bar{l}_{p}\sigma^{i}\gamma^{\mu}l_{r})$	$c_{Hl}^{(3)}$	
$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{i}H)(\bar{l}_{p}\sigma^{i}\gamma^{\mu}l_{r}) (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}_{p}\gamma^{\mu}q_{r})$	$c_{H_{q}}^{(1)}$	
$(H^{\dagger}i\overleftrightarrow{D}^{i}_{\mu}H)(\bar{q}_{p}\sigma^{i}\gamma^{\mu}q_{r})$	C ⁽³⁾	
$(\Pi^{\dagger}, D^{\dagger}, \Pi^{\dagger})(\bar{q}_{p}, \eta^{\dagger}, \eta^{\dagger})$	$c_{Hq}^{(3)}$	
$(H^{\dagger}i \overset{\frown}{D}_{\mu}H)(\overline{Q}_{p}\gamma^{\mu}Q_{r})$	CHQ	
$(H^{\dagger}i\overleftrightarrow{D}^{i}_{\mu}H)(\bar{Q}_{p}\sigma^{i}\gamma^{\mu}Q_{r})$	$c_{HQ}^{(3)}$	
$(H^{\dagger}i\overleftarrow{D}_{\mu}H)(\bar{u}_{p}\gamma^{\mu}u_{r})$	c _{Hu}	
$(H^{\dagger}i\overleftarrow{D}_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$	C _{Hd}	
$(H^{\dagger}i\overleftarrow{D}_{\mu}H)(\bar{e}_{p}\gamma^{\mu}e_{r})$	c _{He}	
$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{b}\gamma^{\mu}b)$	c _{Hb}	
$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(Q_{p}O^{\dagger}\gamma^{\mu}Q_{r})$ $(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{u}_{p}\gamma^{\mu}u_{r})$ $(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$ $(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}_{p}\gamma^{\mu}e_{r})$ $(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{b}\gamma^{\mu}b)$ $(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{t}\gamma^{\mu}t)$	c _{Ht}	
$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	c'_{II}	

- Higgs boson production (differential) cross sections and decay rates are quadratic functions of Wilson coefficients
 - Parameterised by A_i (linear interference term) and B_{ii} (quadratic BSM term) factors Ο
 - Derived numerically with Monte Carlo tools using SMEFTsim and SMEFT@NLO models [EFT2Obs] Ο
 - Decay scaling calculated within fiducial phase space of each channel Ο
- Narrow-width approximation:

$$\mu_i^X(c_j) = \frac{(\sigma \times \mathcal{B})^{i, H \to X}}{(\sigma \times \mathcal{B})^{i, H \to X}_{\text{SM}}} \qquad \qquad \mu_i^X(c_j) = (1 + \sum_j A_j^{pp \to H} c_j + \sum_{jk} B_{jk}^{pp \to H} c_j c_k) \cdot \frac{(1 + \sum_j A_j^{pp \to H} c_j - 1)}{(1 + \sum_j A_j^{pp \to H} c_j - 1)}$$

 $\mu = 1 + \sum A_i c_i + \sum B_{ij} c_i c_j$

 $\frac{(1+\sum_{j}A_{j}^{H\to X}c_{j}+\sum_{jk}B_{jk}^{H\to X}c_{j}c_{k})}{(1+\sum_{i}A_{j}^{tot}c_{j}+\sum_{jk}B_{jk}^{tot}c_{j}c_{k})}$

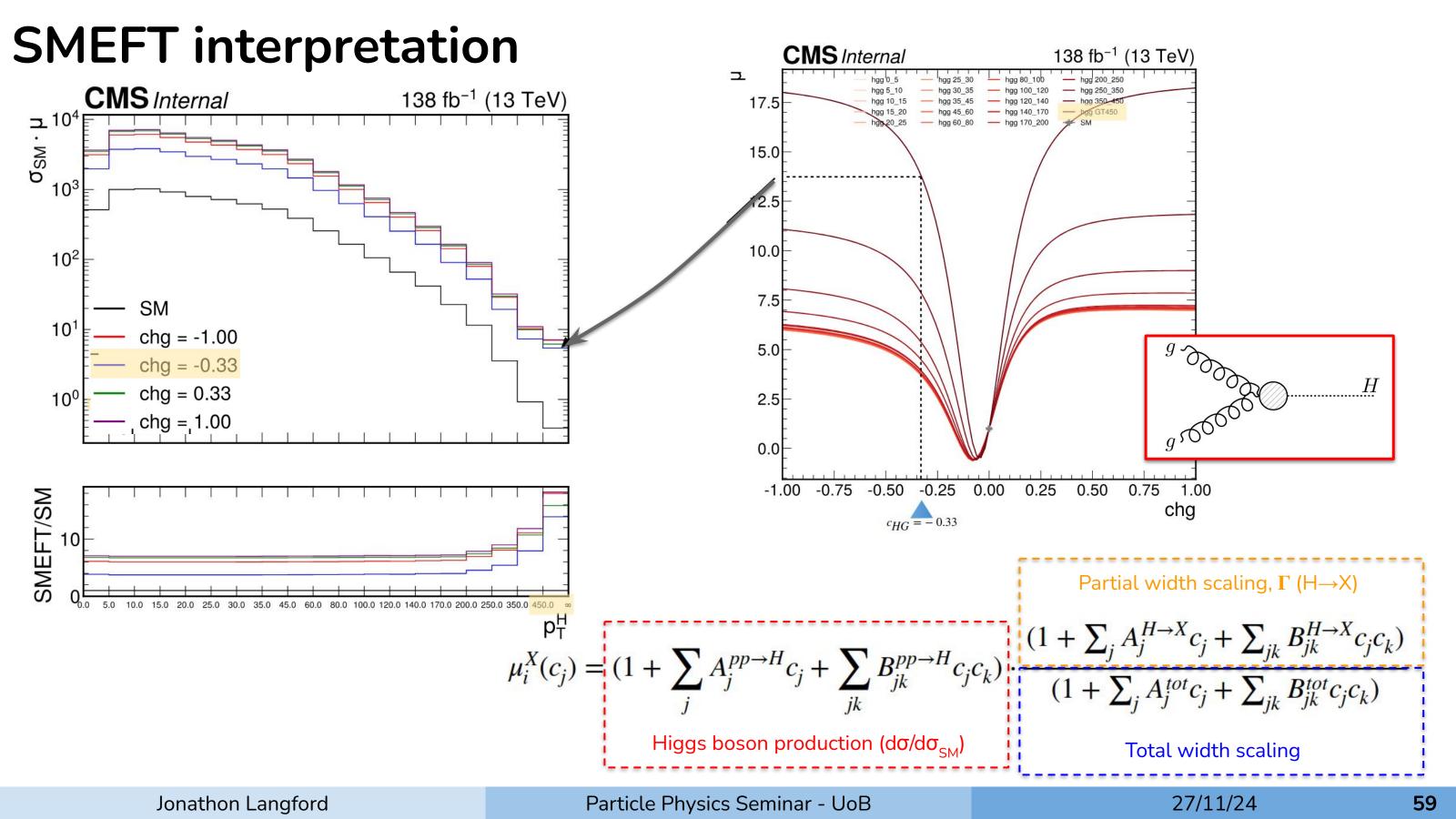
- Higgs boson production (differential) cross sections and decay rates are quadratic functions of Wilson coefficients
 - Parameterised by A_i (linear interference term) and B_{ii} (quadratic BSM term) factors Ο
 - Derived numerically with Monte Carlo tools using SMEFTsim and SMEFT@NLO models [EFT2Obs] Ο
 - Decay scaling calculated within fiducial phase space of each channel Ο
- Narrow-width approximation:

$$\mu_i^X(c_j) = \frac{(\sigma \times \mathcal{B})^{i, H \to X}}{(\sigma \times \mathcal{B})_{\rm SM}^{i, H \to X}}$$

$$\mu_i^X(c_j) = (1 + \sum_j A_j^{pp \to H} c_j + \sum_{jk} B_{jk}^{pp \to H} c_j c_k) \cdot \frac{(1 + \sum_j A_j^{pp \to H} c_j + \sum_{jk} B_{jk}^{pp \to H} c_j c_k)}{(1 + \sum_j A_j^{pp \to H} c_j + \sum_{jk} B_{jk}^{pp \to H} c_j c_k)}$$

 $A_i c_i +$ $\mu = 1 +$

Partial width scaling, Γ (H \rightarrow X) $\sum_{j} A_{j}^{H \to X} c_{j} + \sum_{jk} B_{jk}^{H \to X} c_{j} c_{k}$ + $\sum_{i} A_{j}^{tot}c_{j} + \sum_{ik} B_{jk}^{tot}c_{j}c_{k}$ Total width scaling



SMEFT constraints

• Express likelihood as function of Wilson coefficients:

 $\mathcal{L}(\mathcal{D}|\mu_i^X,\nu) \longrightarrow \mathcal{L}(\mathcal{D}|\mu_i^X(c_j),\nu)$

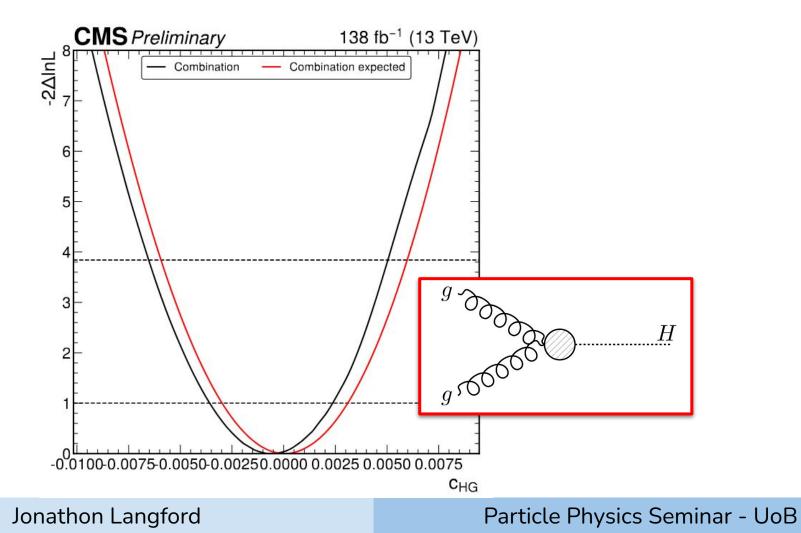
- Combined fit to all channels (within fiducial phase space)
 - Consider new physics in one operator at a time i.e. set all other WCs to SM (zero)

SMEFT constraints

• Express likelihood as function of Wilson coefficients:

$$\mathcal{L}(\mathcal{D}|\mu_i^X,\nu) \longrightarrow \mathcal{L}(\mathcal{D}|\mu_i^X(c_j),\nu)$$

- Combined fit to all channels (within fiducial phase space)
 - Consider new physics in one operator at a time i.e. set all other WCs to SM (zero)

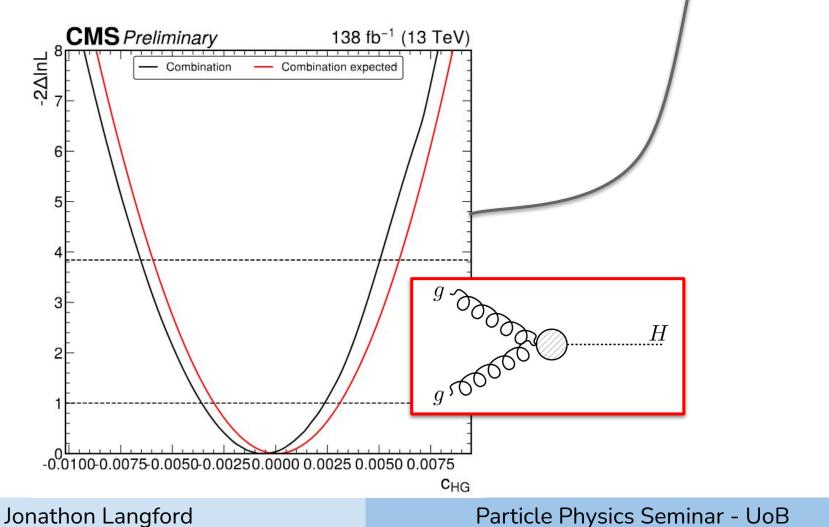


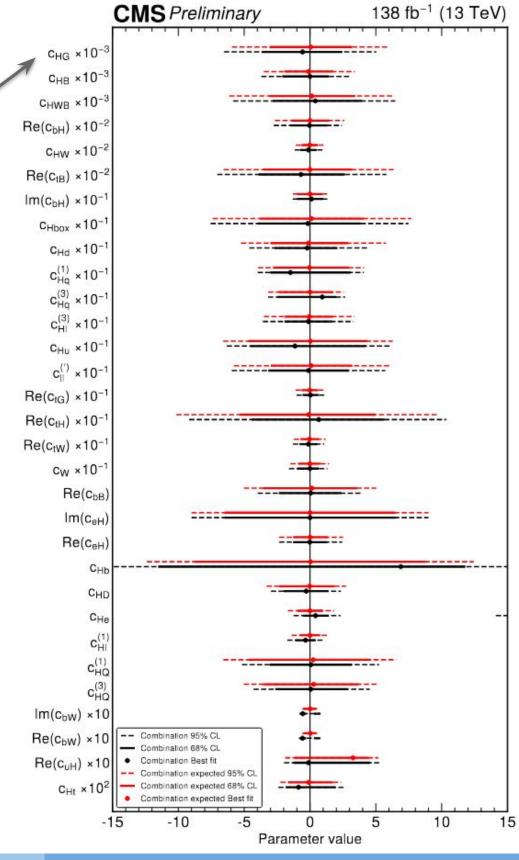
SMEFT constraints

• Express likelihood as function of Wilson coefficients:

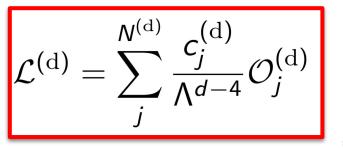
$$\mathcal{L}(\mathcal{D}|\mu_i^X,\nu) \longrightarrow \mathcal{L}(\mathcal{D}|\mu_i^X(c_j),\nu)$$

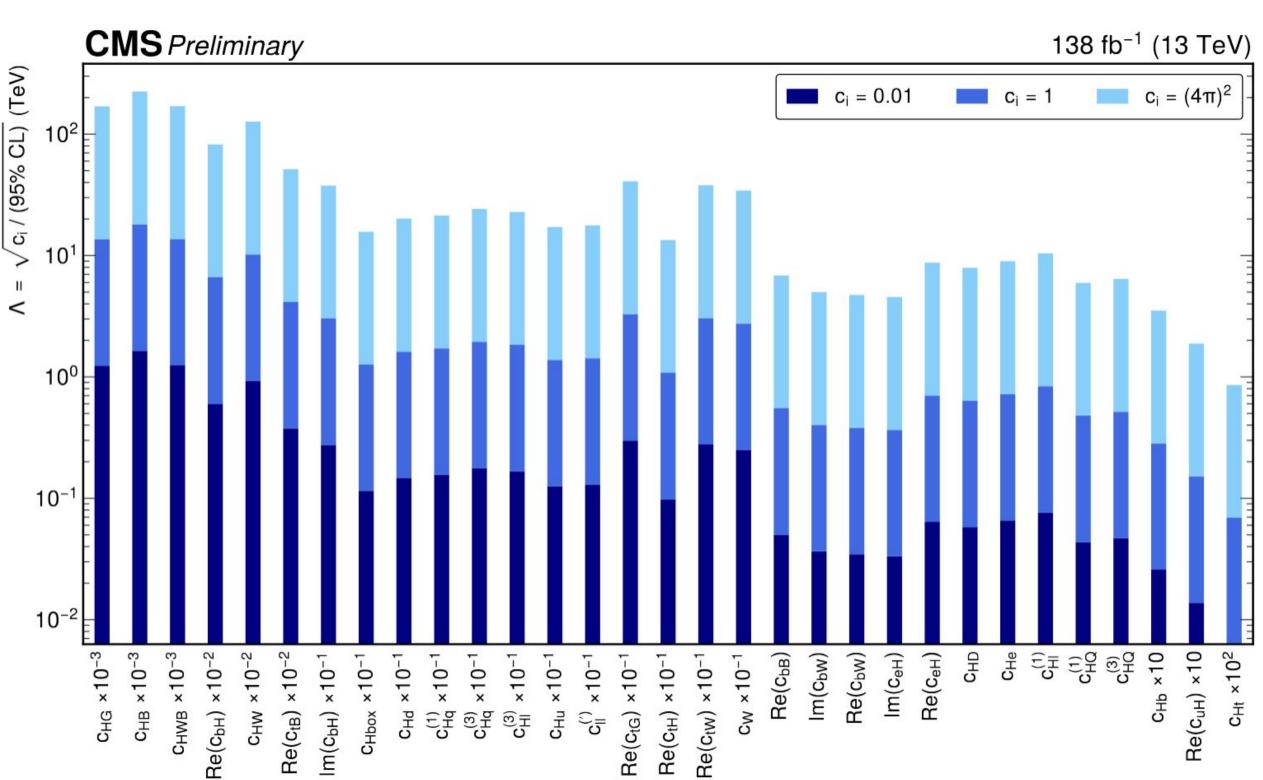
- Combined fit to all channels (within fiducial phase space)
 - Consider new physics in one operator at a time i.e. set all other WCs to SM (zero)





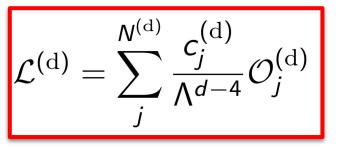
27/11/24





Jonathon Langford

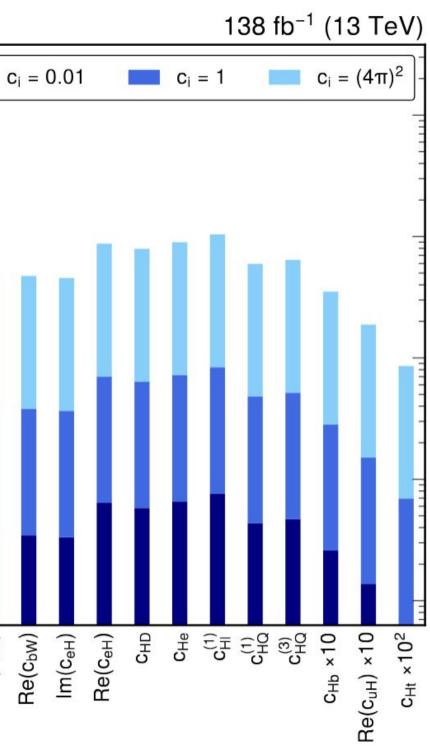
Particle Physics Seminar - UoB



CMS *Preliminary* c_i / (95% CL) (TeV) 10² 101 > = \ 10⁰ 10⁻¹ 10-2 $C_{HG} \times 10^{-3}$ CHWB ×10⁻³ $C_{HB} \times 10^{-3}$ с_{НW} ×10⁻² $C_{Hd} \times 10^{-1}$ $\begin{array}{c} c_{Hq}^{(1)} \times 10^{-1} \\ c_{Hq}^{(3)} \times 10^{-1} \\ c_{Hl}^{(3)} \times 10^{-1} \\ c_{Hl}^{(3)} \times 10^{-1} \end{array}$ $c_{Hu} \times 10^{-1}$ $c_{W} \times 10^{-1}$ Re(c_{bB}) ×10⁻² $c_{II}^{(1)} \times 10^{-1}$ Im(c_{bW}) Re(c_{bW}) ×10⁻¹ Re(c_{tB}) ×10⁻² lm(c_{bH}) ×10⁻¹ $\text{Re}(c_{tH}) \times 10^{-1}$ $Re(c_{tW}) \times 10^{-1}$ $Re(c_{tG}) \times 10^{-1}$ Re(c_{bH}) CHbox

Jonathon Langford

Particle Physics Seminar - UoB



- Available data do not contain enough information to constrain all coefficients simultaneously \rightarrow flat directions in likelihood
- PCA: eigenvector decomposition of Fisher information matrix to find constrained (and unconstrained) direction in WC space
 - Obtain linear combinations of SMEFT WCs
 - Fit constrained directions and fix unconstrained directions to zero(*)

(*) Minimal loss of generality in fit by fixing flat directions in likelihood

Jonathon Langford

Particle Physics Seminar - UoB

→ flat directions in likelihood rained) direction in WC space

- Available data do not contain enough information to constrain all coefficients simultaneously \rightarrow flat directions in likelihood
- PCA: eigenvector decomposition of Fisher information matrix to find constrained (and unconstrained) direction in WC space
 - Obtain linear combinations of SMEFT WCs
 - Fit constrained directions and fix unconstrained directions to zero(*)

• For example:
$$H \rightarrow \gamma \gamma$$

 $\mathcal{L}(\mathcal{D}|\mu_i^{\gamma\gamma}, \nu) \longrightarrow \mathcal{I}_{diff}^{\gamma\gamma} = \left[-\frac{\partial^2 \ln \mathcal{L}(\mathcal{D}|\mu_i^{\gamma\gamma}, \nu)}{\partial \theta_k \partial \theta_l} \right]$
Under Gaussian Approximation: $\mathcal{I}_{\gamma\gamma, diff} = \mathcal{H}_{\gamma\gamma, diff} = \mathcal{C}_{\gamma\gamma, diff}^{-1}$

(*) Minimal loss of generality in fit by fixing flat directions in likelihood

Jonathon Langford

Particle Physics Seminar - UoB

→ flat directions in likelihood rained) direction in WC space

- Available data do not contain enough information to constrain all coefficients simultaneously \rightarrow flat directions in likelihood
- PCA: eigenvector decomposition of Fisher information matrix to find constrained (and unconstrained) direction in WC space
 - Obtain linear combinations of SMEFT WCs
 - Fit constrained directions and fix unconstrained directions to zero(*)

• For example:
$$H \rightarrow \gamma \gamma$$

 $\mathcal{L}(\mathcal{D}|\mu_{i}^{\gamma\gamma}, \nu) \longrightarrow \mathcal{I}_{diff}^{\gamma\gamma} = \left[-\frac{\partial^{2} \ln \mathcal{L}(\mathcal{D}|\mu_{i}^{\gamma\gamma}, \nu)}{\partial \theta_{k} \partial \theta_{l}} \right]$
Under Gaussian Approximation:
 $\mathcal{I}_{\gamma\gamma,diff} = \mathcal{H}_{\gamma\gamma,diff} = C_{\gamma\gamma,diff}^{-1}$
Rotation to SMEFT basis:
 $P_{ij}^{\gamma\gamma} = A_{ij}^{gg \rightarrow H} + A_{j}^{H \rightarrow \gamma\gamma} - A_{j}^{tot}$
 $C_{\gamma\gamma,SMEFT}^{-1} = P^{\gamma\gamma T} C_{\gamma\gamma,diff}^{-1} P^{\gamma\gamma}$

(*) Minimal loss of generality in fit by fixing flat directions in likelihood

Jonathon Langford

Particle Physics Seminar - UoB

→ flat directions in likelihood rained) direction in WC space

- Available data do not contain enough information to constrain all coefficients simultaneously \rightarrow flat directions in likelihood
- PCA: eigenvector decomposition of Fisher information matrix to find constrained (and unconstrained) direction in WC space
 - Obtain linear combinations of SMEFT WCs
 - Fit constrained directions and fix unconstrained directions to zero(*)

• For example:
$$H \rightarrow \gamma \gamma$$

 $\mathcal{L}(\mathcal{D}|\mu_{i}^{\gamma\gamma}, \nu) \rightarrow \mathcal{I}_{diff}^{\gamma\gamma} = \left[-\frac{\partial^{2} \ln \mathcal{L}(\mathcal{D}|\mu_{i}^{\gamma\gamma}, \nu)}{\partial \theta_{k} \partial \theta_{l}} \right]$
Under Gaussian Approximation:
 $\mathcal{I}_{\gamma\gamma,diff} = \mathcal{H}_{\gamma\gamma,diff} = C_{\gamma\gamma,diff}^{-1}$
Rotation to SMEFT basis:
 $P_{ij}^{\gamma\gamma} = A_{ij}^{gg \rightarrow H} + A_{j}^{H \rightarrow \gamma\gamma} - A_{j}^{tot}$
 $C_{\gamma\gamma,SMEFT}^{-1} = P^{\gamma\gamma T} C_{\gamma\gamma,diff}^{-1} P^{\gamma\gamma}$
(*) Minimal loss of gen

Jonathon Langford

Particle Physics Seminar - UoB

→ flat directions in likelihood rained) direction in WC space

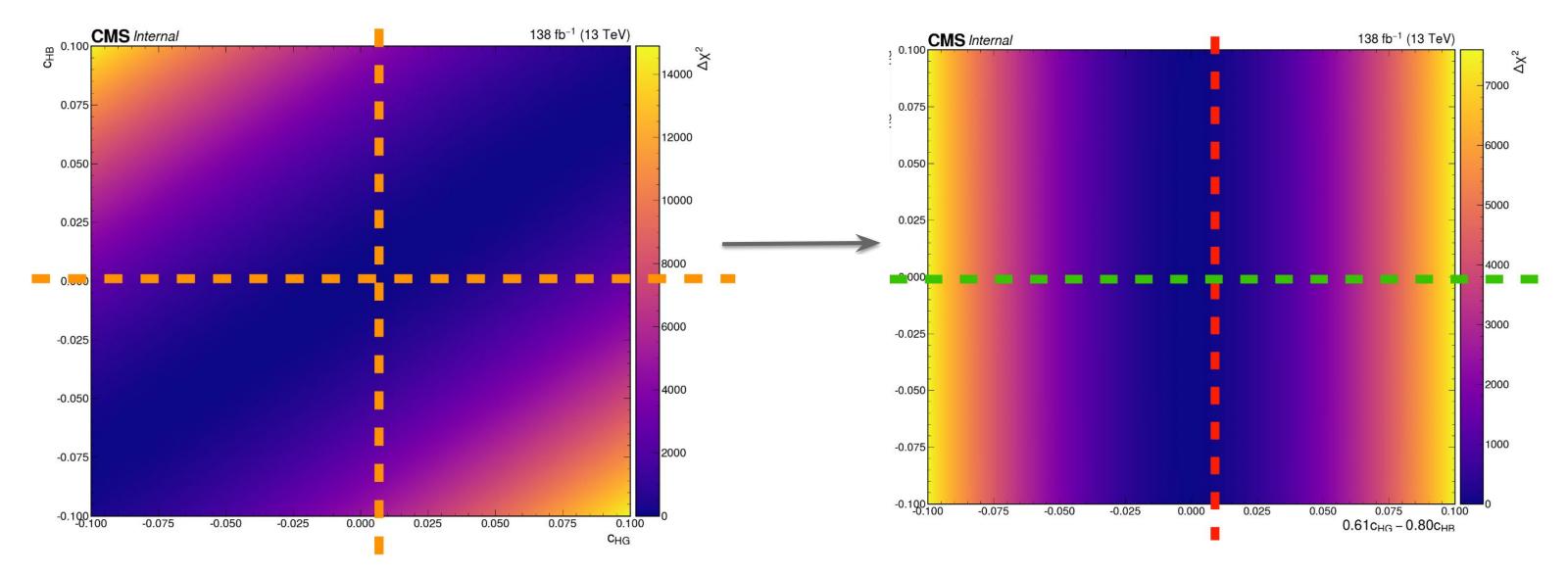
form Eigenvector decomposition:

 $= (EV_{\gamma\gamma})\Lambda_{\gamma\gamma}(EV_{\gamma\gamma})^{-1}$

nerality in fit by fixing flat directions in likelihood

• Two-dimension example:

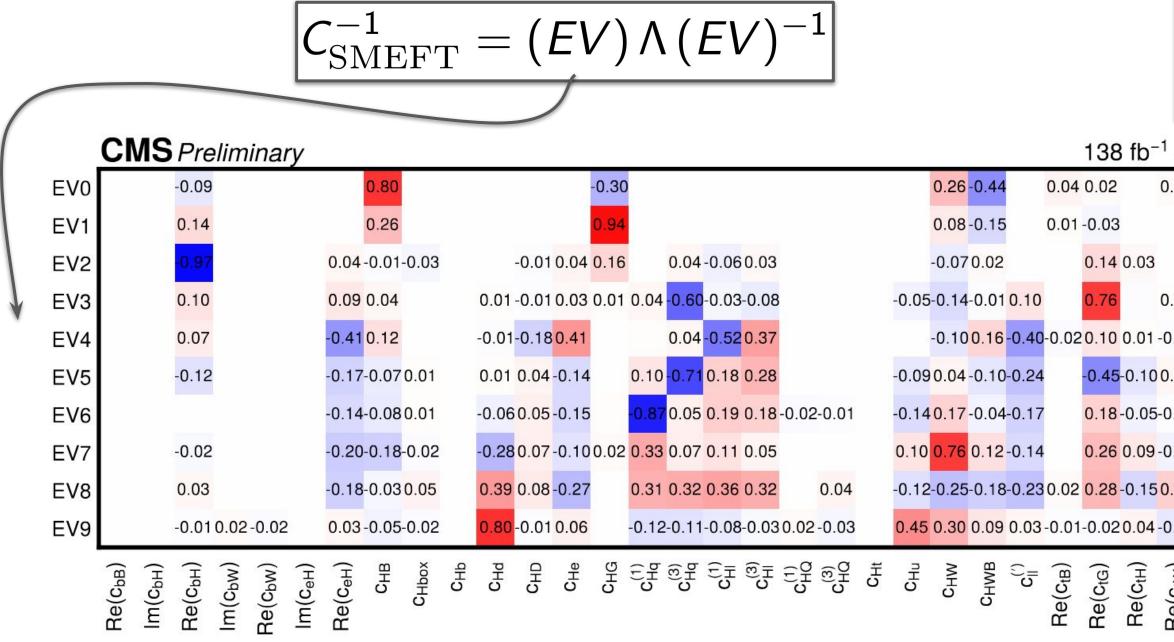
$$C_{\gamma\gamma,\text{SMEFT}}^{-1} = (EV_{\gamma\gamma})\Lambda_{\gamma\gamma}(EV_{\gamma\gamma})^{-1}$$



Jonathon Langford

Particle Physics Seminar - UoB

• Extend basis rotation to full combination: build block-diagonal information matrix



• Consider only 10 eigenvectors with highest eigenvalues (most sensitive directions) \rightarrow Others fixed to zero

Jonathon Langford

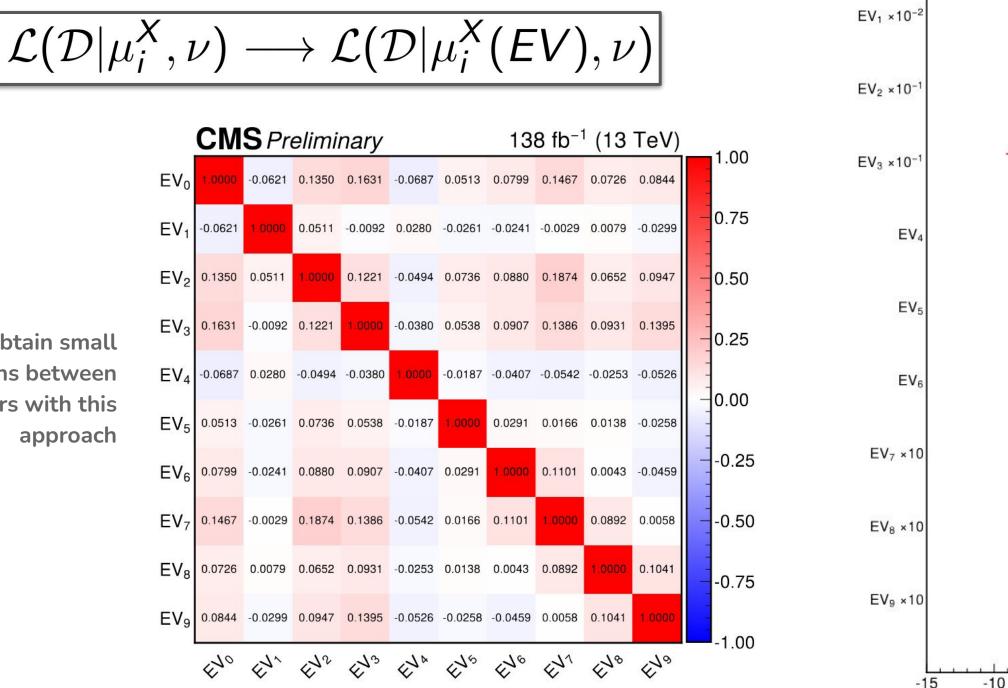
Particle Physics Seminar - UoB

$C_{\gamma\gamma,\mathrm{diff}}^{-1}$	0	
0	$C_{ZZ,\text{diff}}^{-1}$	
		·

(13	TeV)	_		
0.02	0.02	λ =	499589	9.612
		λ =	118374	4.210
		λ =	106.87	4
0.01		λ =	8.133	
0.01		λ =	2.133	
0.03		λ =	0.535	
0.02		λ =	0.096	
0.04		λ =	0.039	
).18		λ =	0.021	
0.09		λ =	0.006	
Re(c _{tw}) Re(c)	CW			

Simultaneous SMEFT constraints

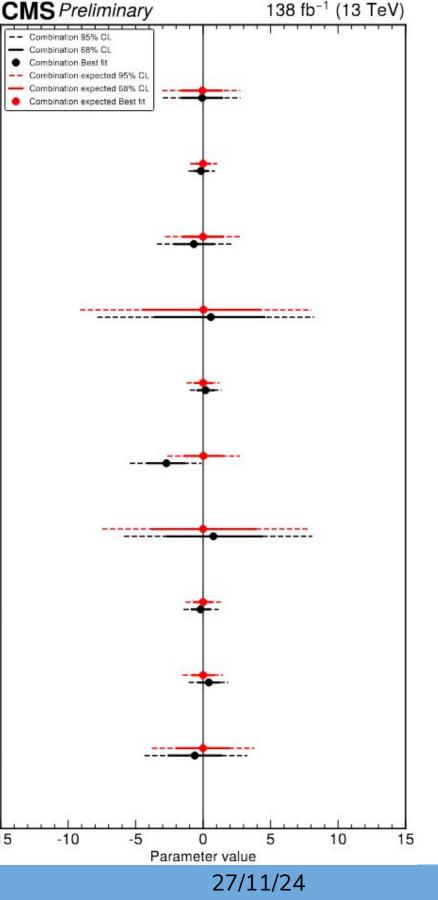
• Simultaneous fit to ten linear combinations of Wilson coefficients:



Generally obtain small correlations between eigenvectors with this approach

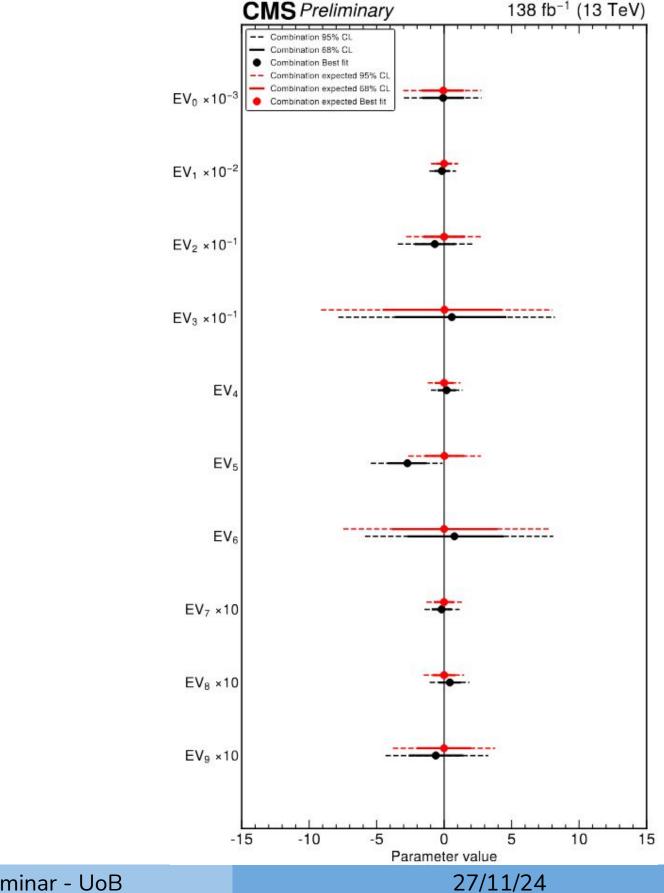
Jonathon Langford

Particle Physics Seminar - UoB



EV₀ ×10⁻

How to interpret these results?



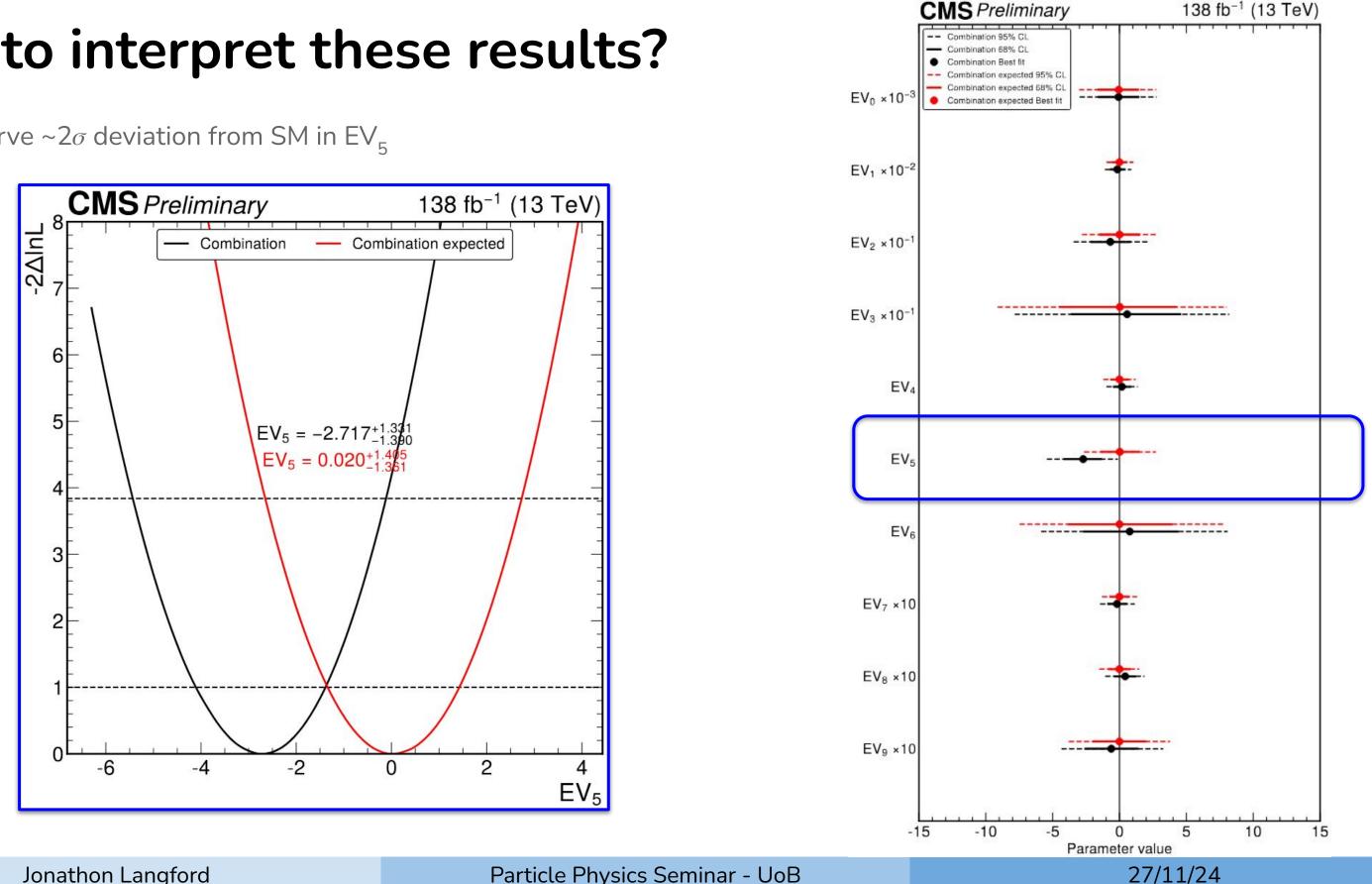
Jonathon Langford

Particle Physics Seminar - UoB

72

How to interpret these results?

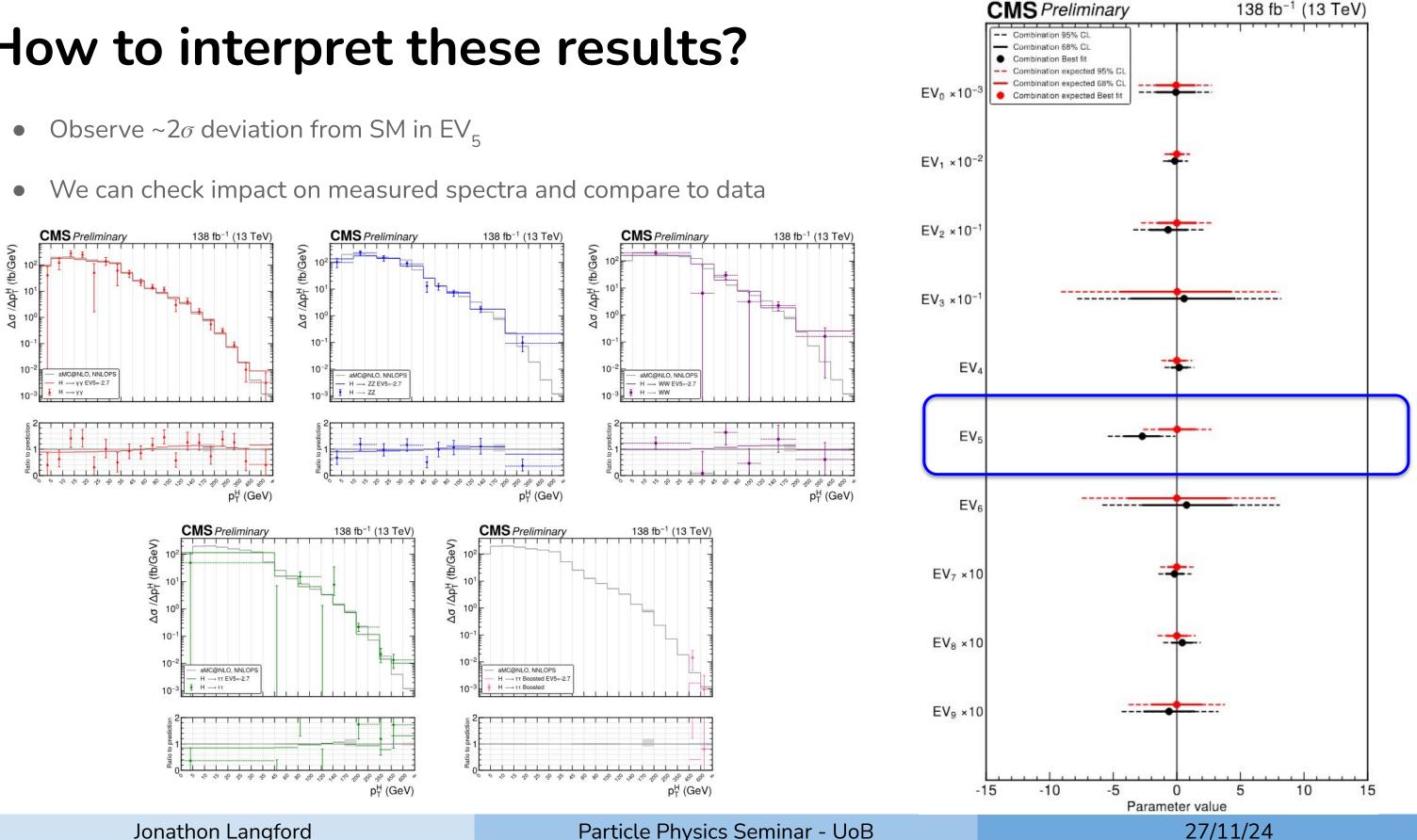
Observe ~ 2σ deviation from SM in EV₅



Jonathon Langford

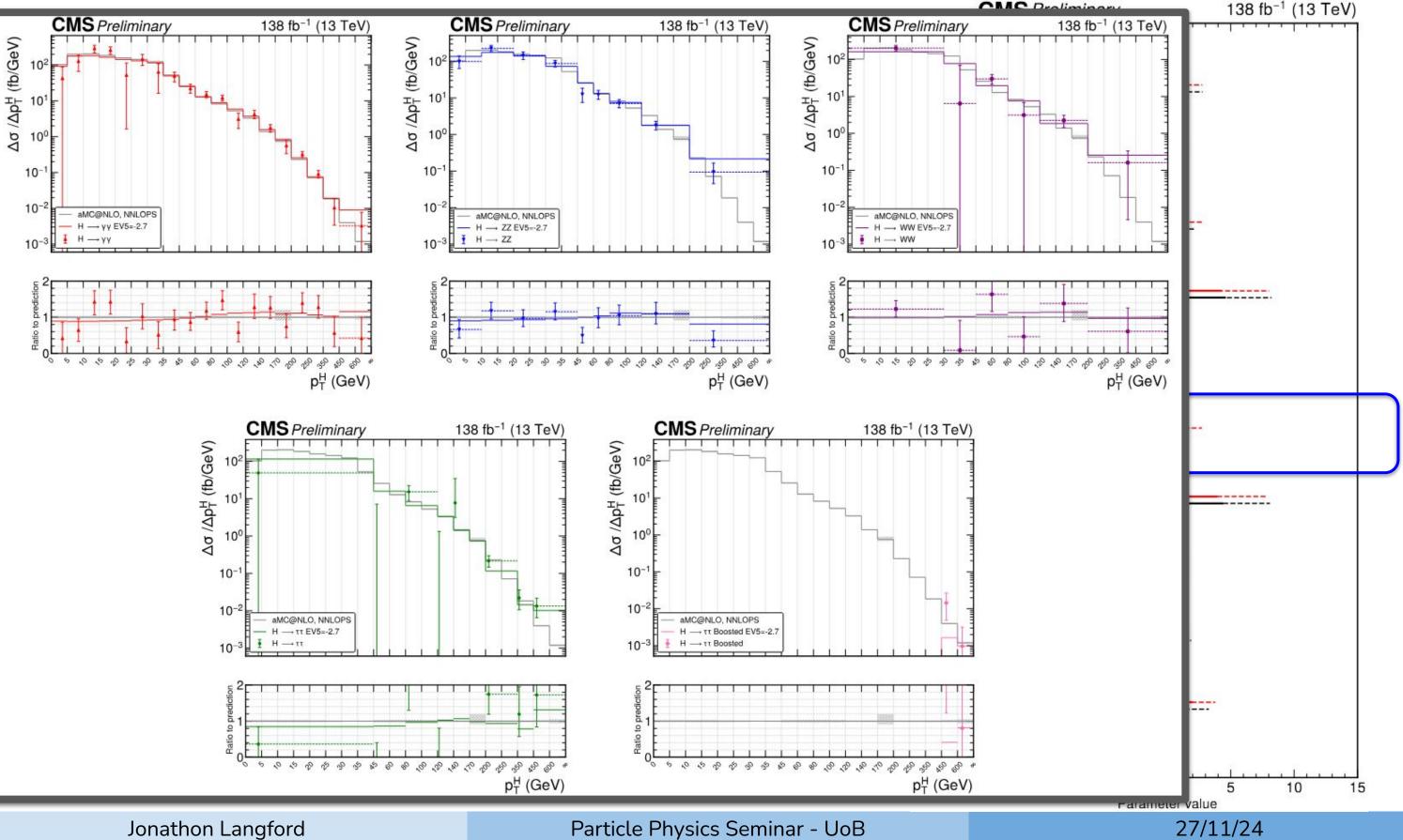
Particle Physics Seminar - UoB

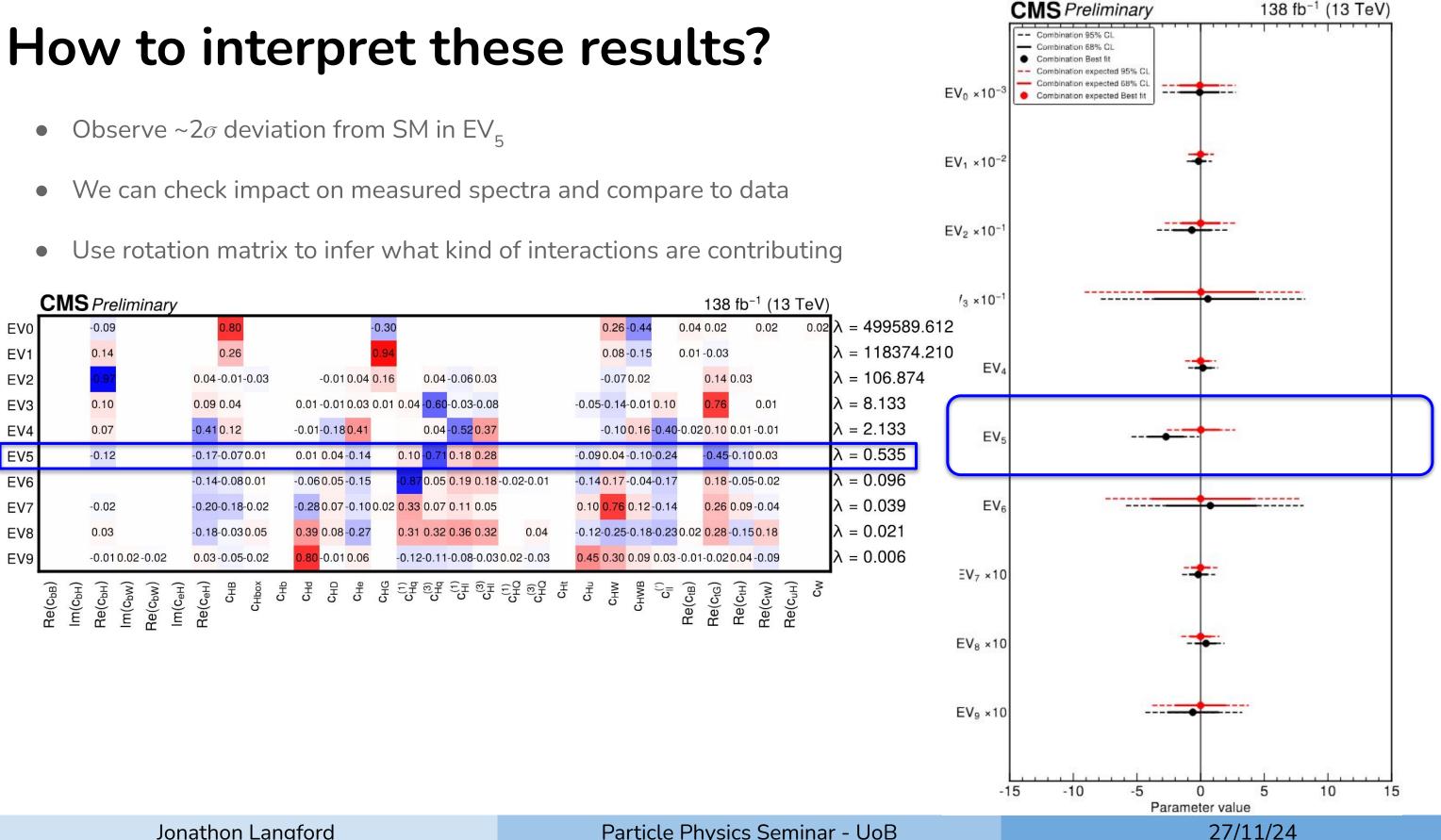
How to interpret these results?



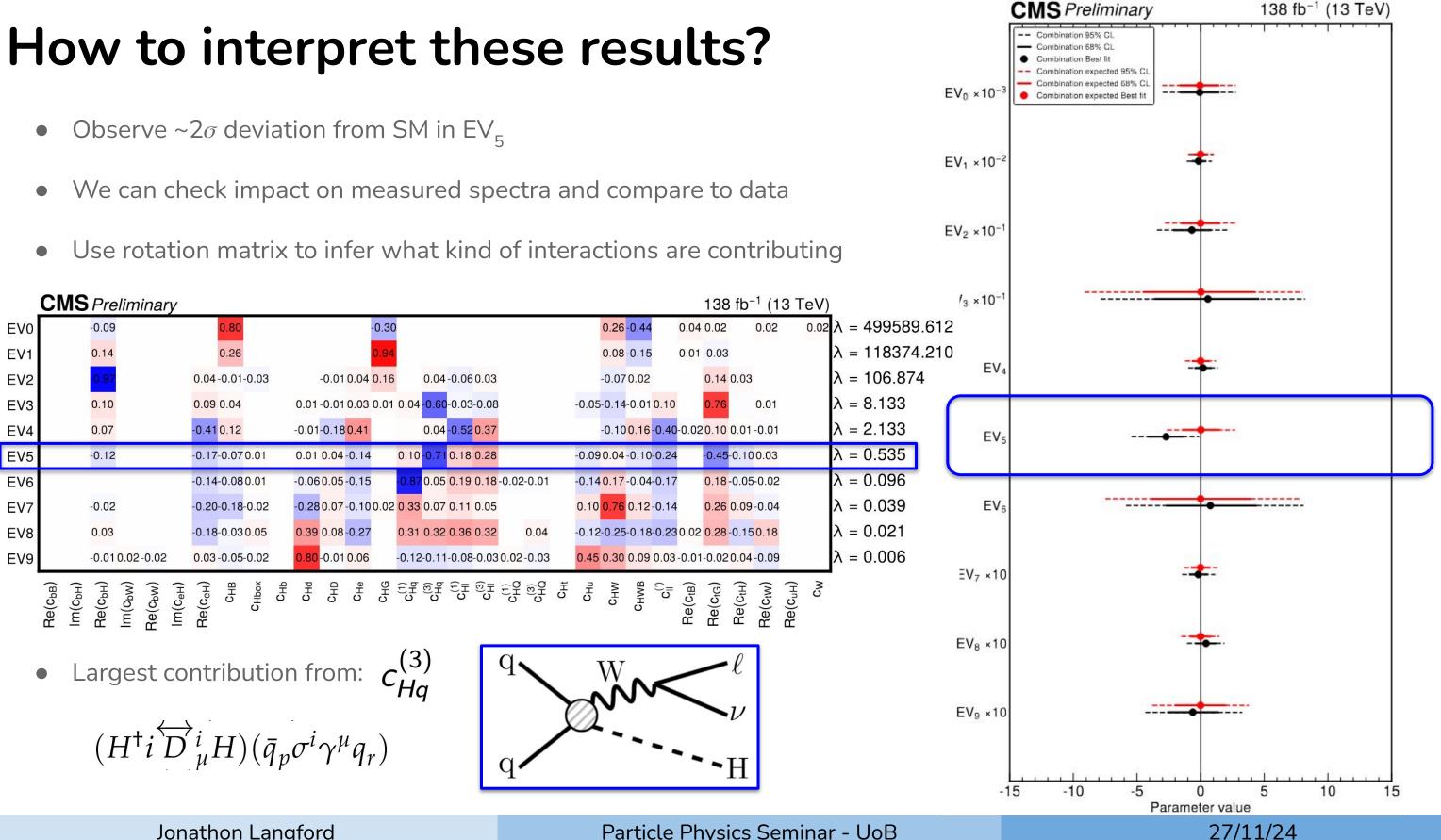
Jonathon Langford

Particle Physics Seminar - UoB





Particle Physics Seminar - UoB

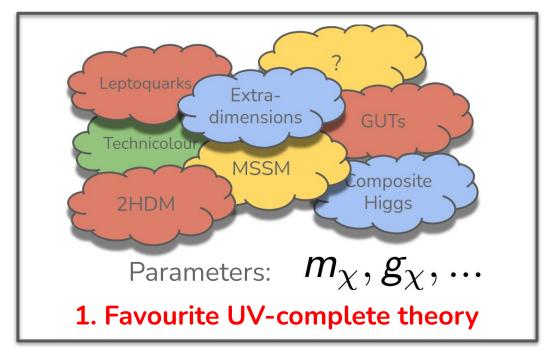


Particle Physics Seminar - UoB

EFT is a model-agnostic(*) approach to search for new physics \rightarrow <u>UV-complete matching</u>

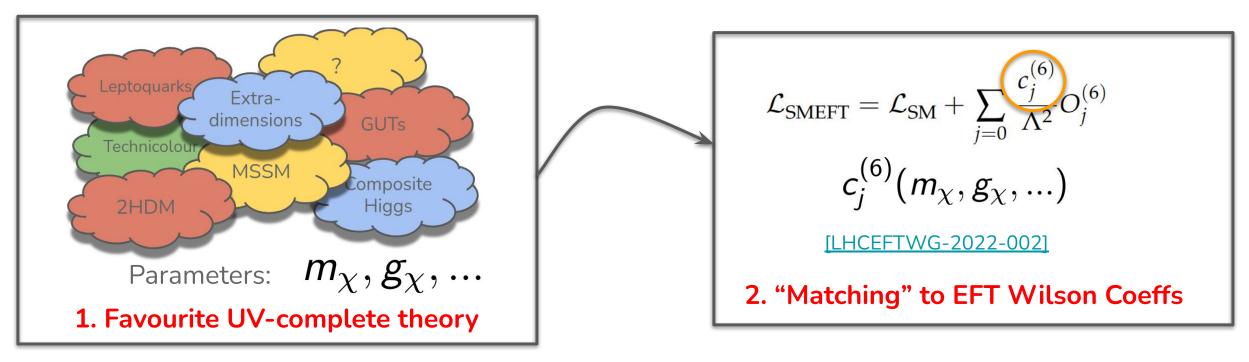
(*) - Valid for E<A. Assumes some flavour scheme. Obeys SM symmetries. Rotated basis truncation

EFT is a model-agnostic(*) approach to search for new physics \rightarrow <u>UV-complete matching</u>



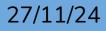
(*) - Valid for E<A. Assumes some flavour scheme. Obeys SM symmetries. Rotated basis truncation

• EFT is a model-agnostic(*) approach to search for new physics \rightarrow **<u>UV-complete matching</u>**

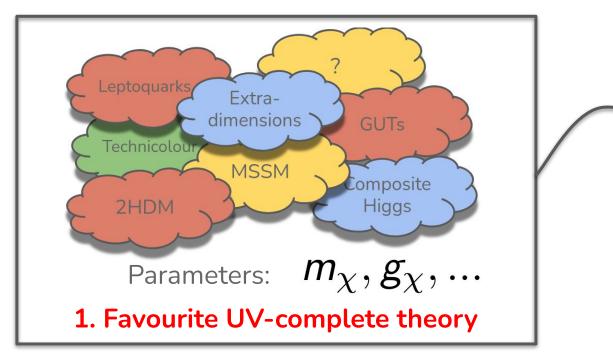


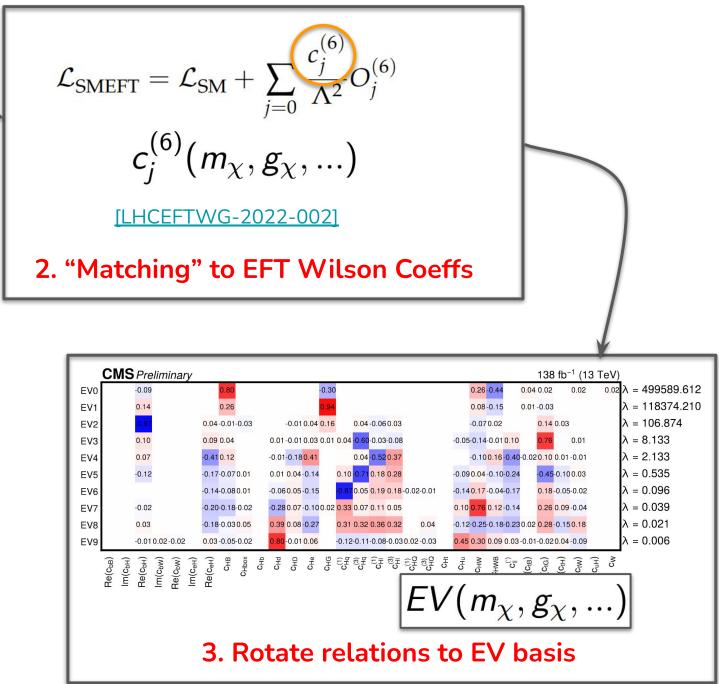
Jonathon Langford

Particle Physics Seminar - UoB



EFT is a model-agnostic(*) approach to search for new physics \rightarrow **UV-complete matching**



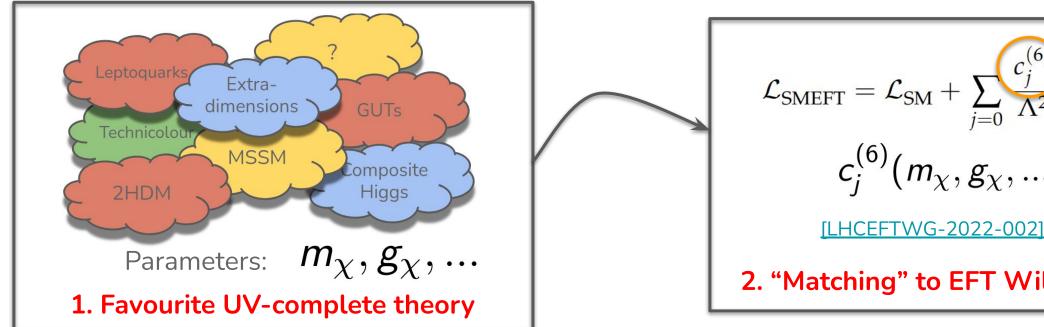


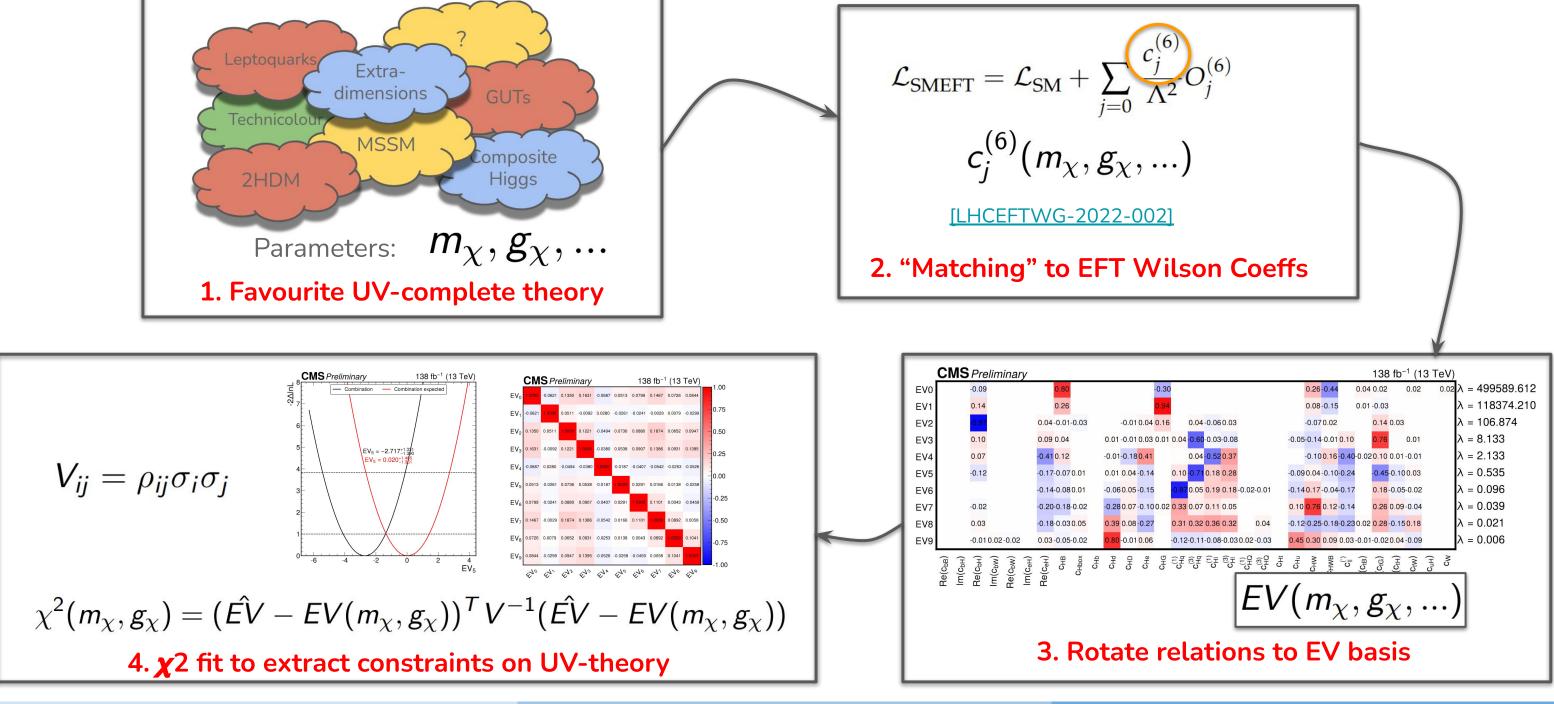
	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
	CI	ЛS	Pre	elim	ina	ry									
EV0			-0.09					0.80						-0.30	
EV1			0.14					0.26						0.94	
EV2			-0.97				0.04	-0.01	-0.03			-0.01	0.04	0.16	
EV3			0.10				0.09	0.04			0.01	-0.01	0.03	0.01	0.04
EV4			0.07				-0.41	0.12			-0.01	-0.18	0.41		
EV5			-0.12				-0.17	-0.07	0.01		0.01	0.04	-0.14		0.10
EV6							-0.14	-0.08	0.01		-0.06	0.05	-0.15		-0.87
EV7			-0.02	2			-0.20	-0.18	-0.02		-0.28	0.07	-0.10	0.02	0.33
EV8			0.03				-0.18	-0.03	0.05		0.39	0.08	-0.27		0.31
EV9			-0.01	0.02	-0.02	2	0.03	-0.05	-0.02		0.80	-0.01	0.06		-0.12
	Re(c _{bB})	Im(c _{bH})	Re(c _{bH})	Im(c _{bw})	Re(c _{bw})	Im(c _{eH})	Re(c _{eH})	CHB	CHbox	CHb	CHd	СНD	CHe	CHG	c ⁽¹⁾ CHq
							3	.	R	01	ta	it	e	r	el

Jonathon Langford

Particle Physics Seminar - UoB

EFT is a model-agnostic(*) approach to search for new physics \rightarrow <u>UV-complete matching</u>

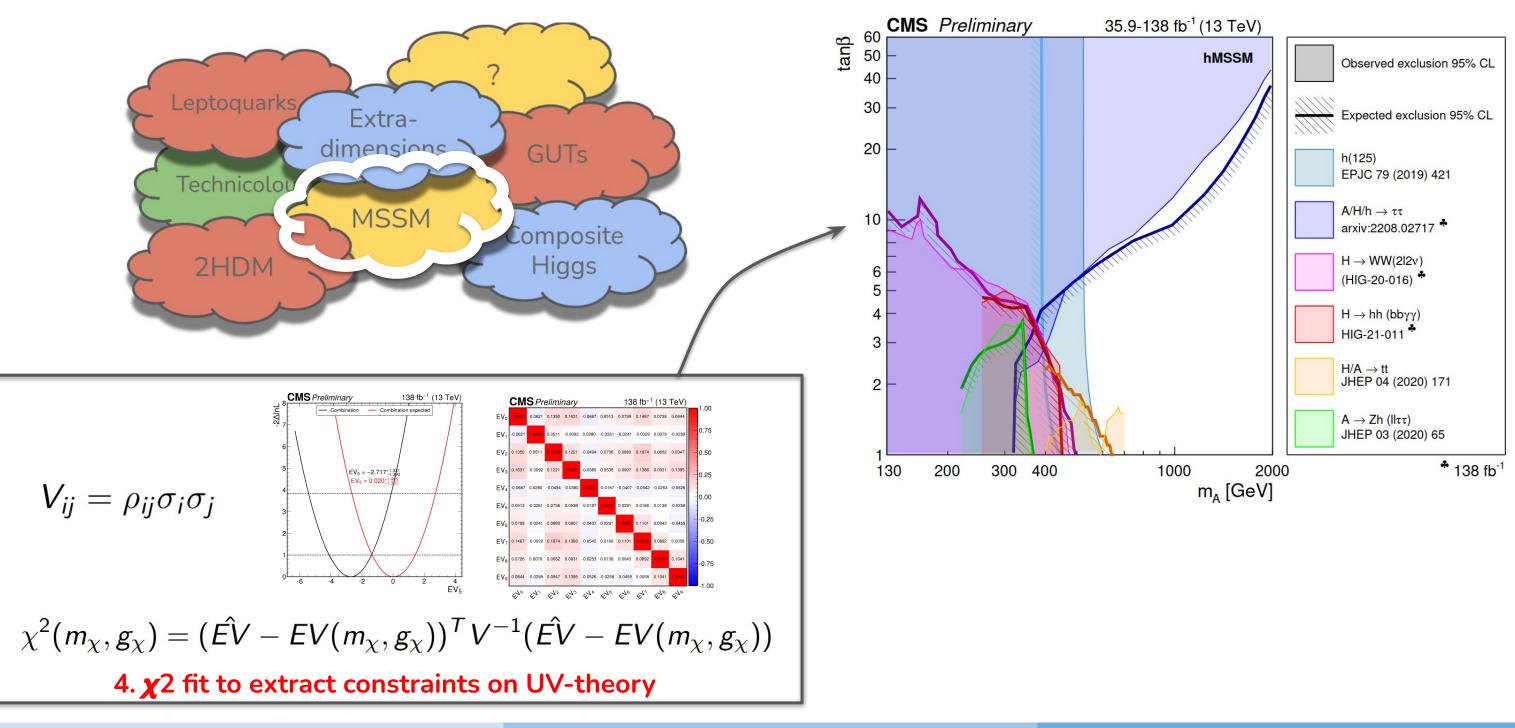




Jonathon Langford

Particle Physics Seminar - UoB

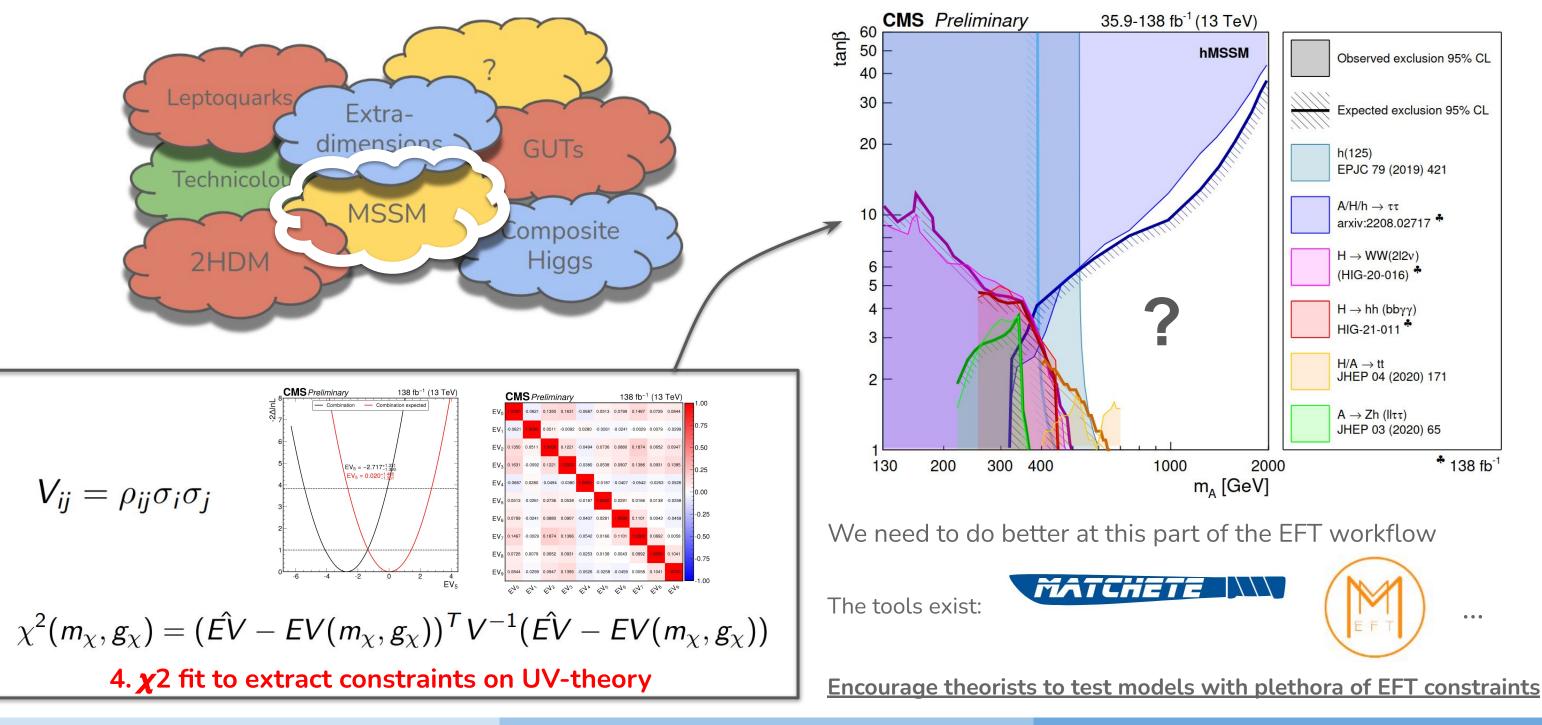
EFT is a model-agnostic(*) approach to search for new physics \rightarrow **UV-complete matching**



Jonathon Langford

Particle Physics Seminar - UoB

EFT is a model-agnostic(*) approach to search for new physics \rightarrow UV-complete matching



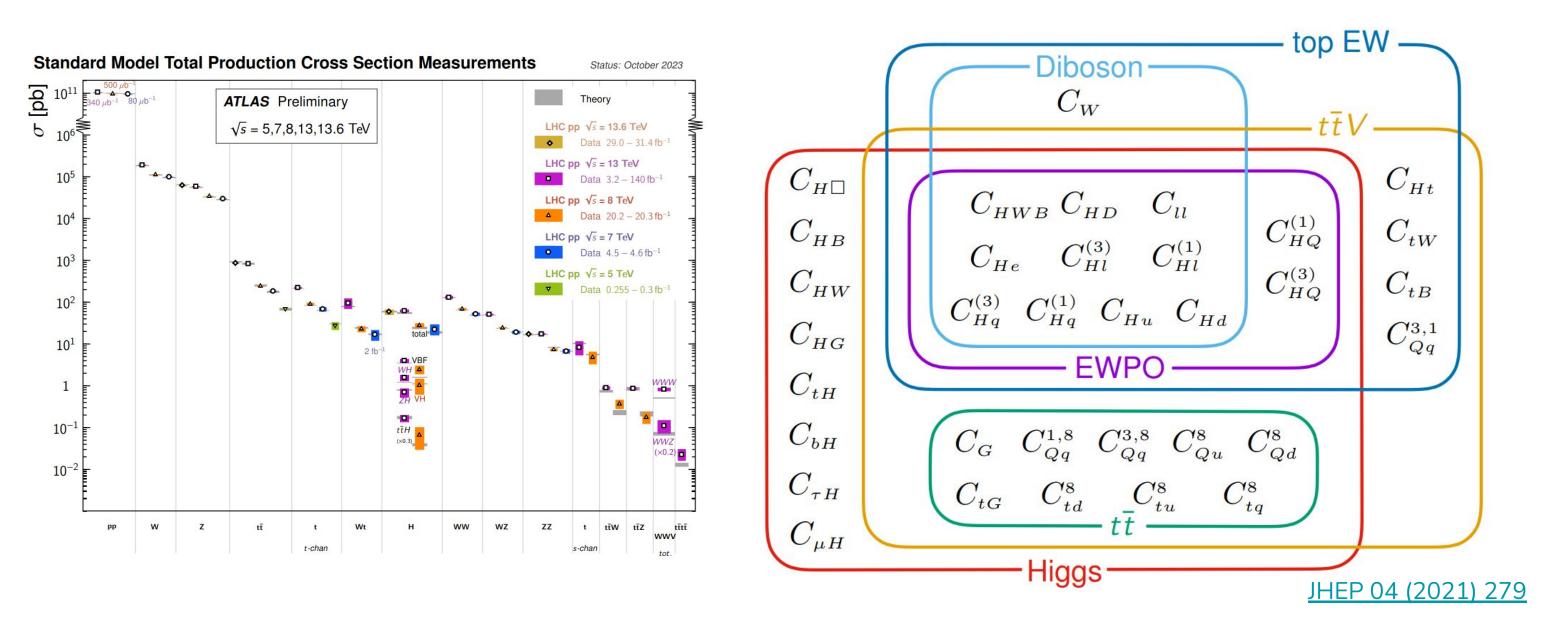
Jonathon Langford

Particle Physics Seminar - UoB

(*) - Valid for E<A. Assumes some flavour scheme. Obeys SM symmetries. Rotated basis truncation

Towards a global SMEFT fit

Beauty of EFT is it's a fully consistent expansion of the SM \rightarrow coherently correlate BSM effects across different processes



Global EFT fit by combining measurements of many different processes

Jonathon Langford

Particle Physics Seminar - UoB

Combined EFT interpretation of CMS data

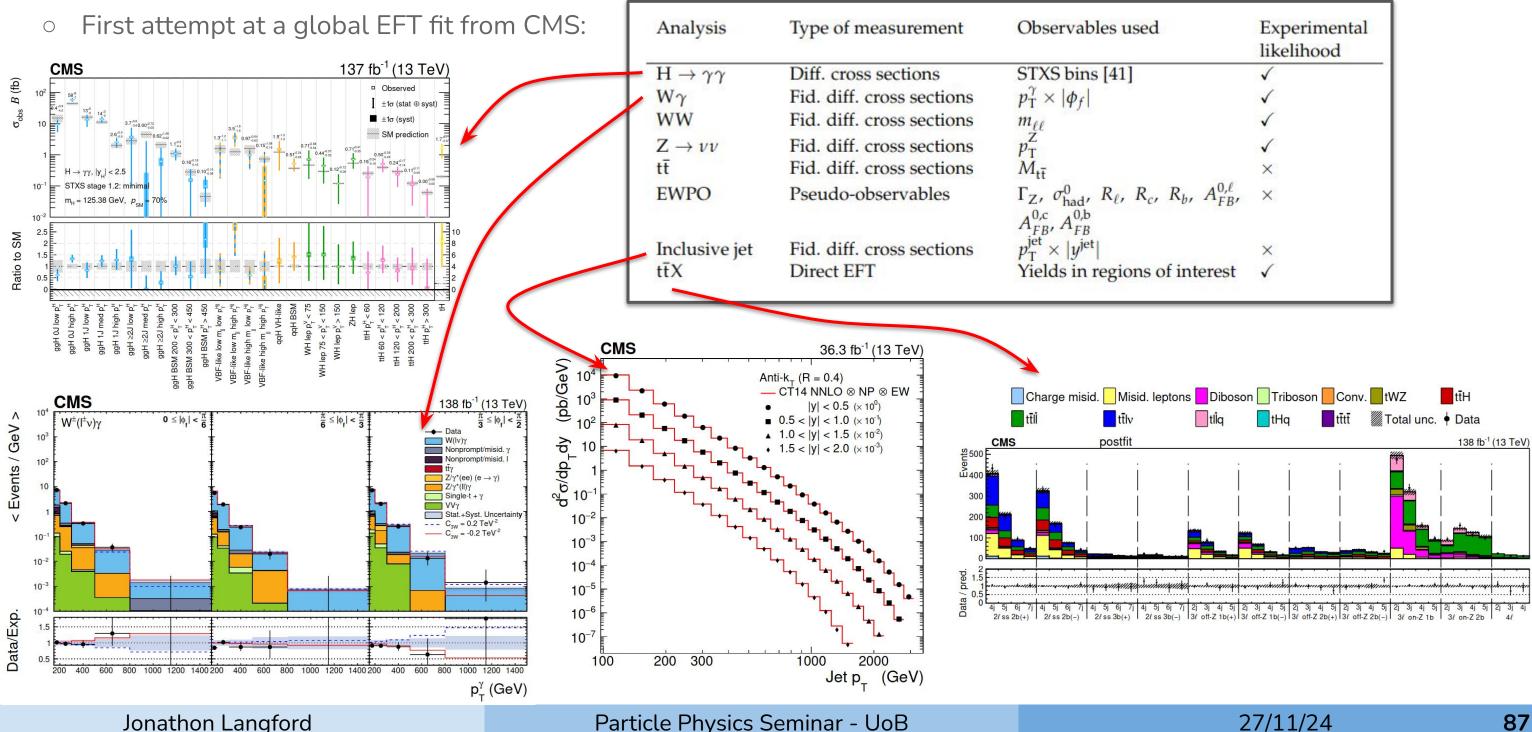
- [CMS-PAS-SMP-24-003]: Higgs boson, electroweak vector boson, top quark and multi-jet measurements
 - First attempt at a global EFT fit from CMS: \bigcirc

Analysis	Type of measurement	Observables used	Experimental likelihood
$H \rightarrow \gamma \gamma$	Diff. cross sections	STXS bins [41]	~
Wγ	Fid. diff. cross sections	$p_{\mathrm{T}}^{\gamma} imes \phi_{f} $	~
WW	Fid. diff. cross sections	$m_{\ell\ell}$	\checkmark
$Z \rightarrow \nu \nu$	Fid. diff. cross sections	p_{T}^{Z}	~
tī	Fid. diff. cross sections	M _{tt}	×
EWPO	Pseudo-observables	$ \Gamma_{Z}, \ \sigma_{had}^{0}, \ R_{\ell}, \ R_{c}, \ R_{b}, \ A_{FB}^{0,\ell}, A_{FB}^{0,c}, \ A_{FB}^{0,b} $	×
Inclusive jet	Fid. diff. cross sections	$p_{\rm T}^{\rm jet} \times y^{\rm jet} $	×
tīX	Direct EFT	Yields in regions of interest	\checkmark

NEW SEPT 24

Combined EFT interpretation of CMS data

[CMS-PAS-SMP-24-003]: Higgs boson, electroweak vector boson, top quark and multi-jet measurements

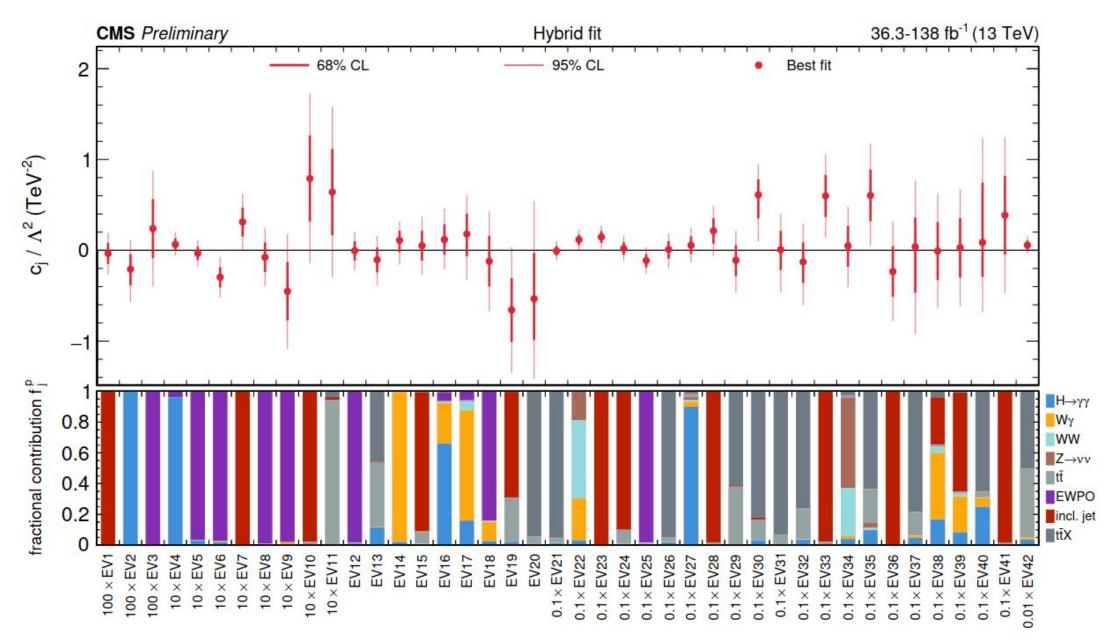


Jonathon Langford

NEW SEPT 24

Combined EFT interpretation of CMS data

Again use PCA to find constrained directions \rightarrow Many more compared to using only Higgs differential measurements



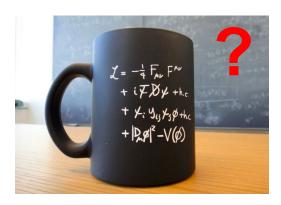
Flavour of what is to come in Run 3 \rightarrow <u>Ultimate consistency test of the SM @ LHC using global EFT fits</u>

Jonathon Langford

Particle Physics Seminar - UoB

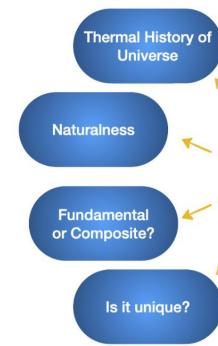
NEW SEPT 24

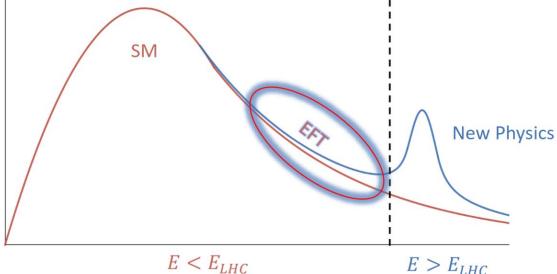
Breakdown of sensitivity from different channels



Summary

- "Almost every problem of the SM originates from Higgs boson interactions"
 - Probe answers with **precision Higgs boson measurements** Ο
- Large Run 2 dataset has opened the door to more sophisticated analyses
 - Going differential! Ο
- Ultimate precision via **Higgs boson statistical combinations**
 - Differential combination \rightarrow SMEFT interpretation Ο
- Global EFT fits for ultimate SM consistency tests

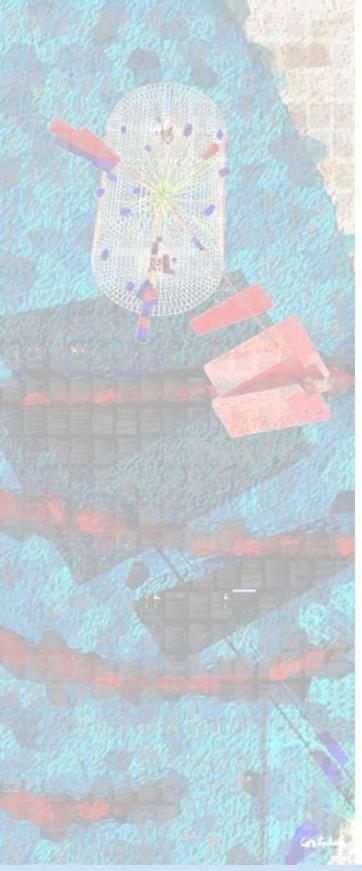




Jonathon Langford

Particle Physics Seminar - UoB

Origin of EWSB? Higgs Portal to Hidden Sectors? **Stability of Universe** Higgs Physics **CPV** and Baryogenesis **Origin of masses? Origin of Flavor?**

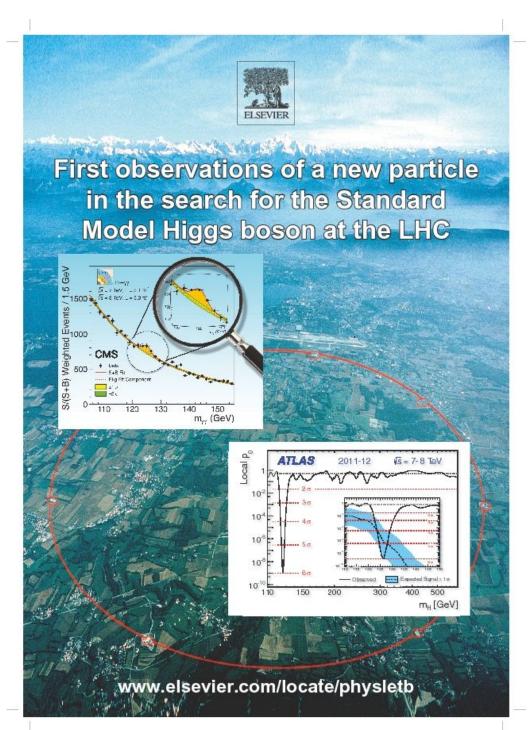


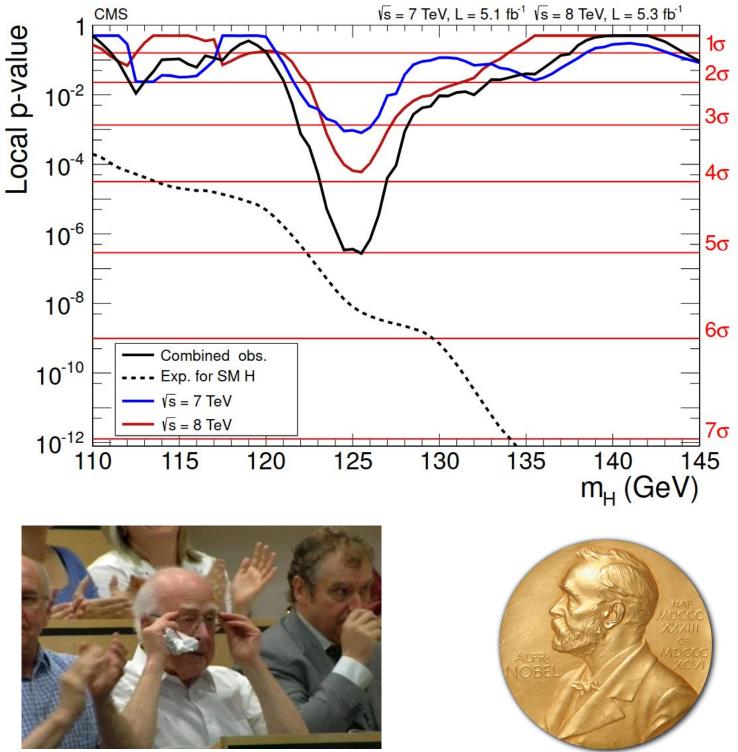
Back-Up

Particle Physics Seminar - UoB

Jonathon Langford

Discovery





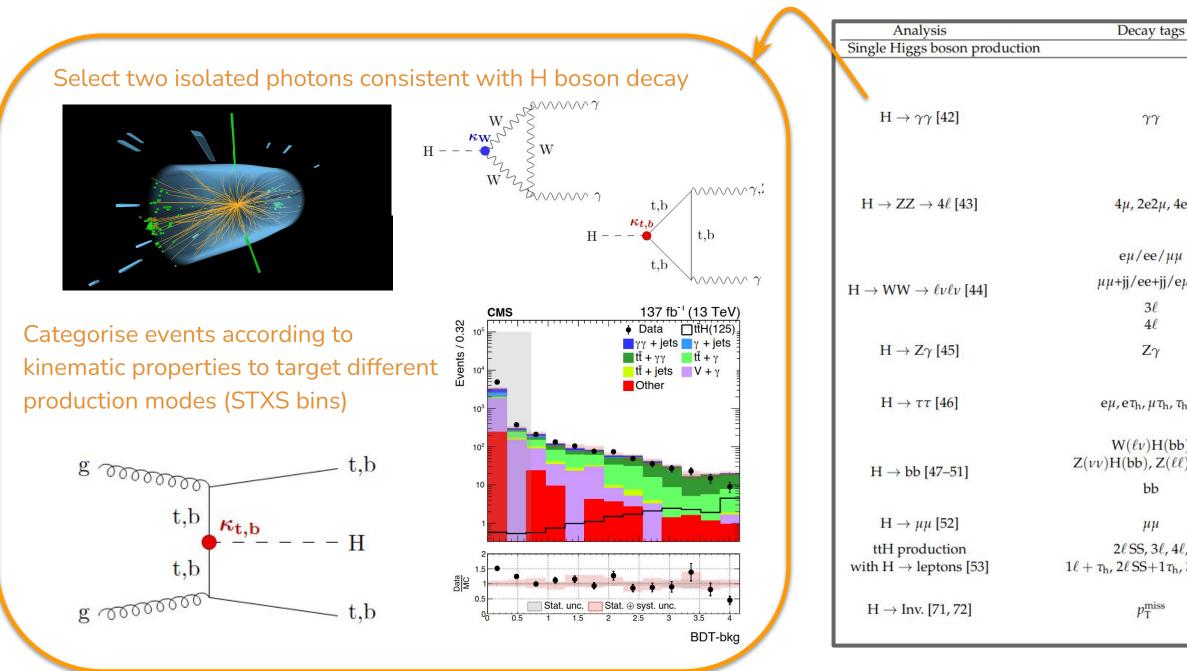
Particle Physics Seminar - UoB

Jonathon Langford

July 4th 2012

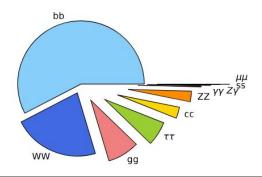
Nature input analyses [Nature 607 (2022) 60-68]

Combination of Higgs boson analyses using the full Run 2 dataset (2016-2018) = 138 fb^{-1}



Jonathon Langford

Particle Physics Seminar - UoB



Production tags

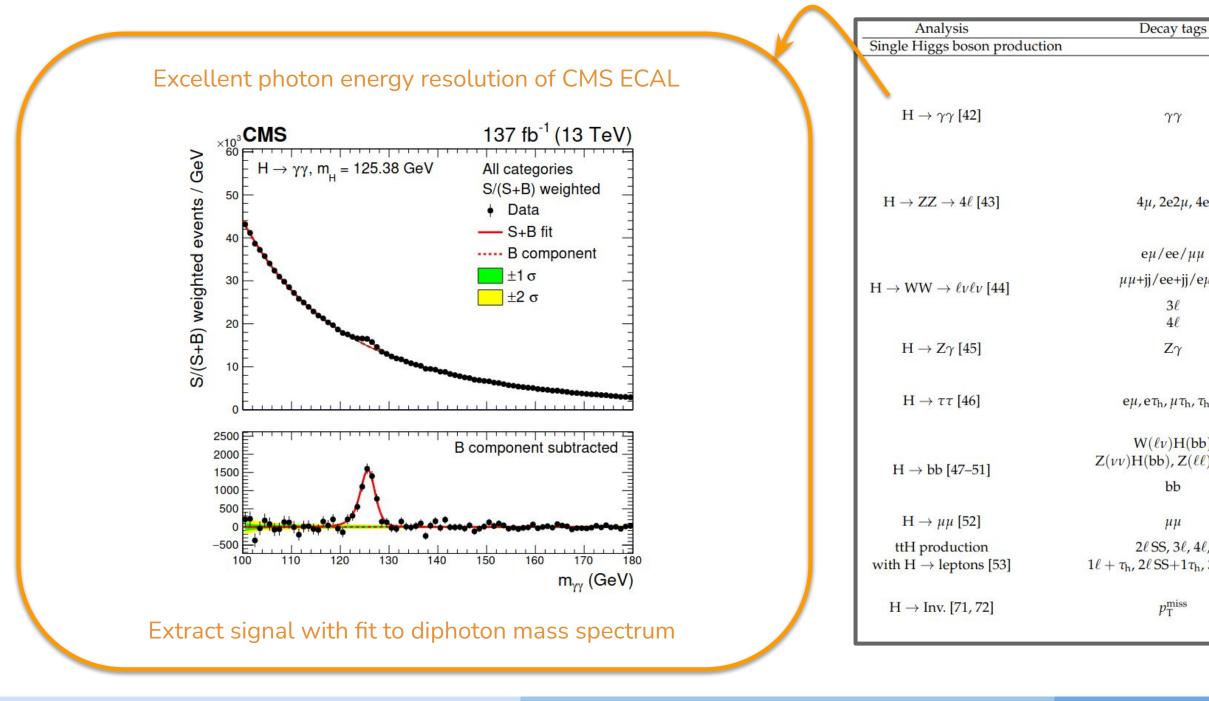
	rioudenon dago
	ggH, $p_{\rm T}({\rm H}) \times N_{\rm j}$ bins
	VBF/VH hadronic, $p_{\rm T}$ (Hjj) bins
	WH leptonic, $p_{\rm T}({\rm V})$ bins
	ZH leptonic
	ttH $p_{\rm T}({\rm H})$ bins, tH
	ggH, $p_{\rm T}({\rm H}) \times N_{\rm j}$ bins
	VBF, m _{jj} bins
ı, 4e	VH hadronic
	VH leptonic, $p_{\rm T}({\rm V})$ bins
	ttH
'μμ	$ggH \le 2$ -jets
j∕eµ+jj	VBF
j/ cµ+jj	VH hadronic
	WH leptonic
	ZH leptonic
	ggH
	VBF
	ggH, $p_{\mathrm{T}}(\mathrm{H}) imes N_{\mathrm{j}}$ bins
$h, \tau_h \tau_h$	VH hadronic
h, th th	VBF
	VH, high- $p_{\rm T}({\rm V})$
(bb)	WH leptonic
$L(\ell\ell)H(bb)$	ZH leptonic
	ttH, $\rightarrow 0, 1, 2\ell + \text{jets}$
	ggH, high- $p_{\rm T}({\rm H})$ bins
	ggH
	VBF
$\ell, 4\ell,$	ttH
$\tau_{\rm h}, 3\ell + 1\tau_{\rm h}$	
	ggH
3	VBF
	VH hadronic
	ZH leptonic

Nature input analyses

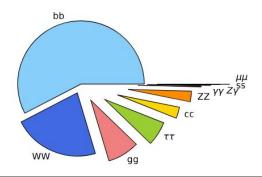
[Nature 607 (2022) 60-68]

Particle Physics Seminar - UoB

• Combination of Higgs boson analyses using the full Run 2 dataset (2016-2018) = 138 fb^{-1}



Jonathon Langford

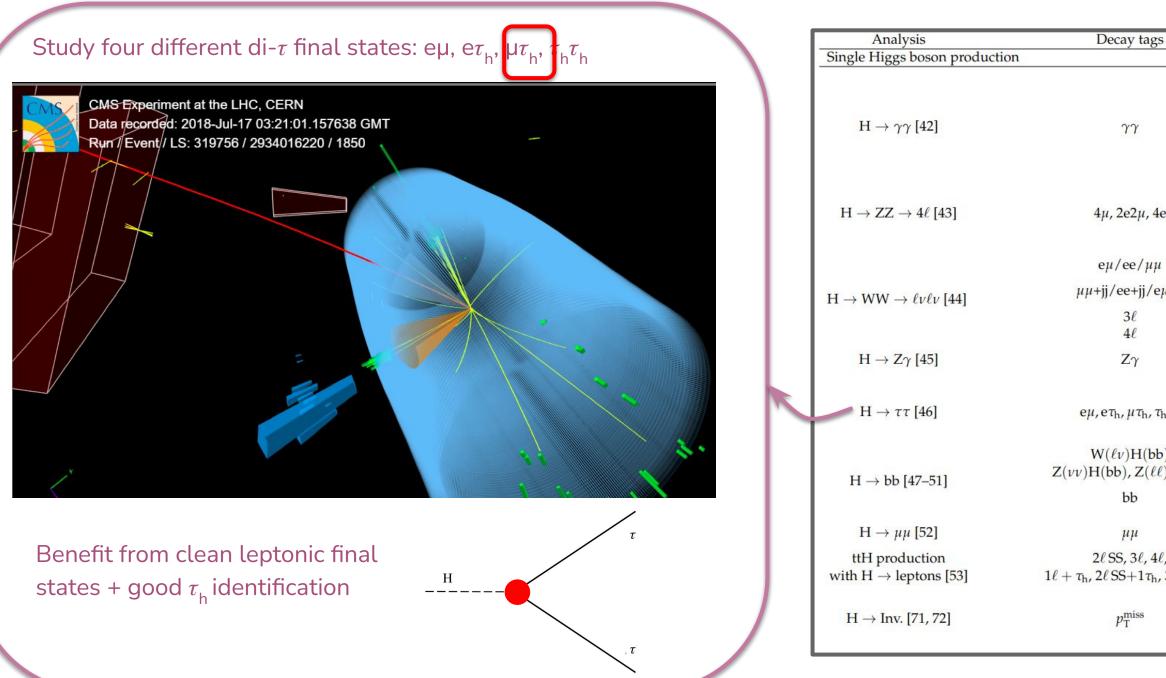


Production tags

	i rouuenon mgo
	ggH, $p_{\rm T}({\rm H}) \times N_{\rm j}$ bins
	VBF/VH hadronic, $p_{\rm T}$ (Hjj) bins
	WH leptonic, $p_{\rm T}({\rm V})$ bins
	ZH leptonic
	ttH $p_{\rm T}({\rm H})$ bins, tH
	ggH, $p_{\rm T}({\rm H}) \times N_{\rm j}$ bins
	VBF, m _{ij} bins
ı, 4e	VH hadronic
	VH leptonic, $p_{\rm T}({\rm V})$ bins
	ttH
μμ	$ggH \le 2$ -jets
j/eµ+jj	VBF
J/eµ+JJ	VH hadronic
	WH leptonic
	ZH leptonic
	ggH
	VBF
	ggH, $p_{\rm T}({\rm H}) \times N_{\rm j}$ bins
	VH hadronic
$h, \tau_h \tau_h$	VBF
	VH, high- $p_{\rm T}({\rm V})$
(bb)	WH leptonic
$L(\ell\ell)H(bb)$	ZH leptonic
	ttH, $\rightarrow 0, 1, 2\ell + jets$
	ggH, high- $p_{\rm T}({\rm H})$ bins
	ggH
	VBF
$2, 4\ell,$	ttH
$\tau_{\rm h}, 3\ell + 1\tau_{\rm h}$	
	ggH
	VBF
	VH hadronic
	ZH leptonic

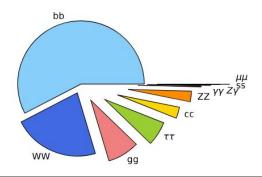
Nature input analyses [Nature 607 (2022) 60-68]

Combination of Higgs boson analyses using the full Run 2 dataset (2016-2018) = 138 fb^{-1}



Jonathon Langford

Particle Physics Seminar - UoB

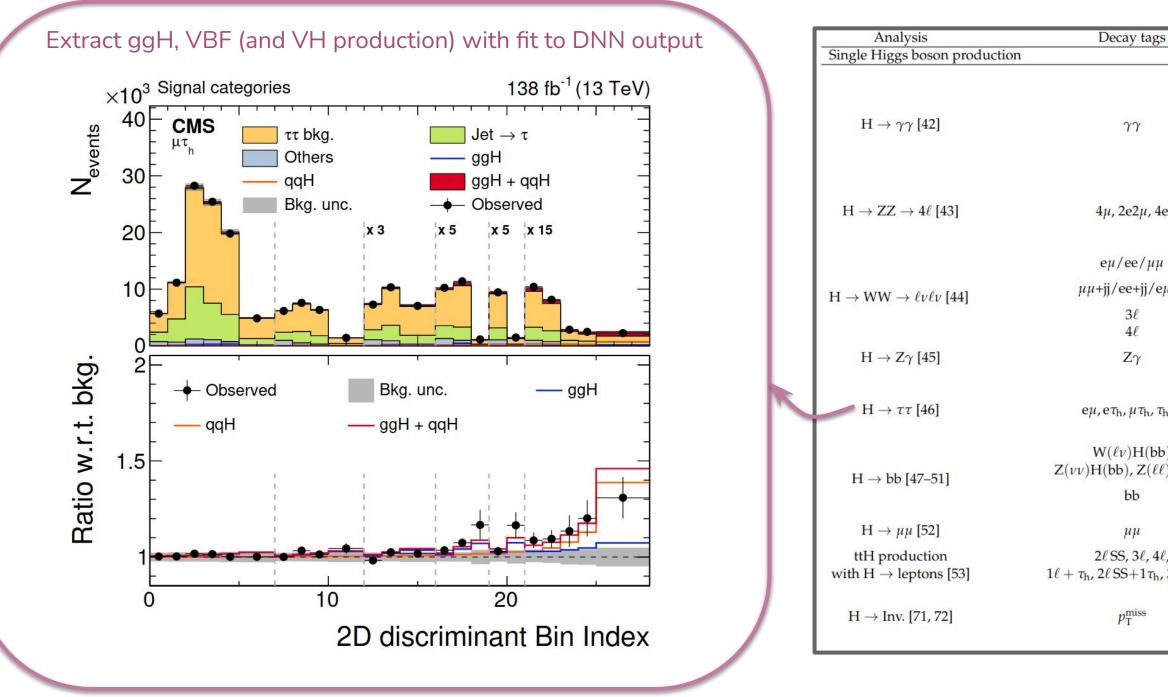


Production tags

	rioudenon dago
	ggH, $p_{\rm T}({\rm H}) \times N_{\rm j}$ bins
	VBF/VH hadronic, $p_{\rm T}$ (Hjj) bins
	WH leptonic, $p_{\rm T}({\rm V})$ bins
	ZH leptonic
	ttH $p_{\rm T}({\rm H})$ bins, tH
	ggH, $p_{\rm T}({\rm H}) \times N_{\rm j}$ bins
	VBF, m _{jj} bins
ı, 4e	VH hadronic
	VH leptonic, $p_{\rm T}({\rm V})$ bins
	ttH
'μμ	$ggH \le 2$ -jets
j∕eµ+jj	VBF
j/ cµ+jj	VH hadronic
	WH leptonic
	ZH leptonic
	ggH
	VBF
	ggH, $p_{\mathrm{T}}(\mathrm{H}) imes N_{\mathrm{j}}$ bins
$h, \tau_h \tau_h$	VH hadronic
n, in in	VBF
	VH, high- $p_{\rm T}({\rm V})$
(bb)	WH leptonic
$L(\ell\ell)H(bb)$	ZH leptonic
	ttH, $\rightarrow 0, 1, 2\ell + \text{jets}$
	ggH, high- $p_{\rm T}({\rm H})$ bins
	ggH
	VBF
$\ell, 4\ell,$	ttH
$\tau_{\rm h}, 3\ell + 1\tau_{\rm h}$	
	ggH
3	VBF
	VH hadronic
	ZH leptonic

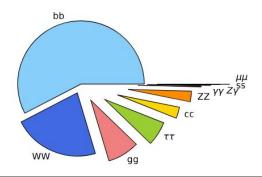
Nature input analyses [Nature 607 (2022) 60-68]

Combination of Higgs boson analyses using the full Run 2 dataset (2016-2018) = 138 fb^{-1}



Jonathon Langford

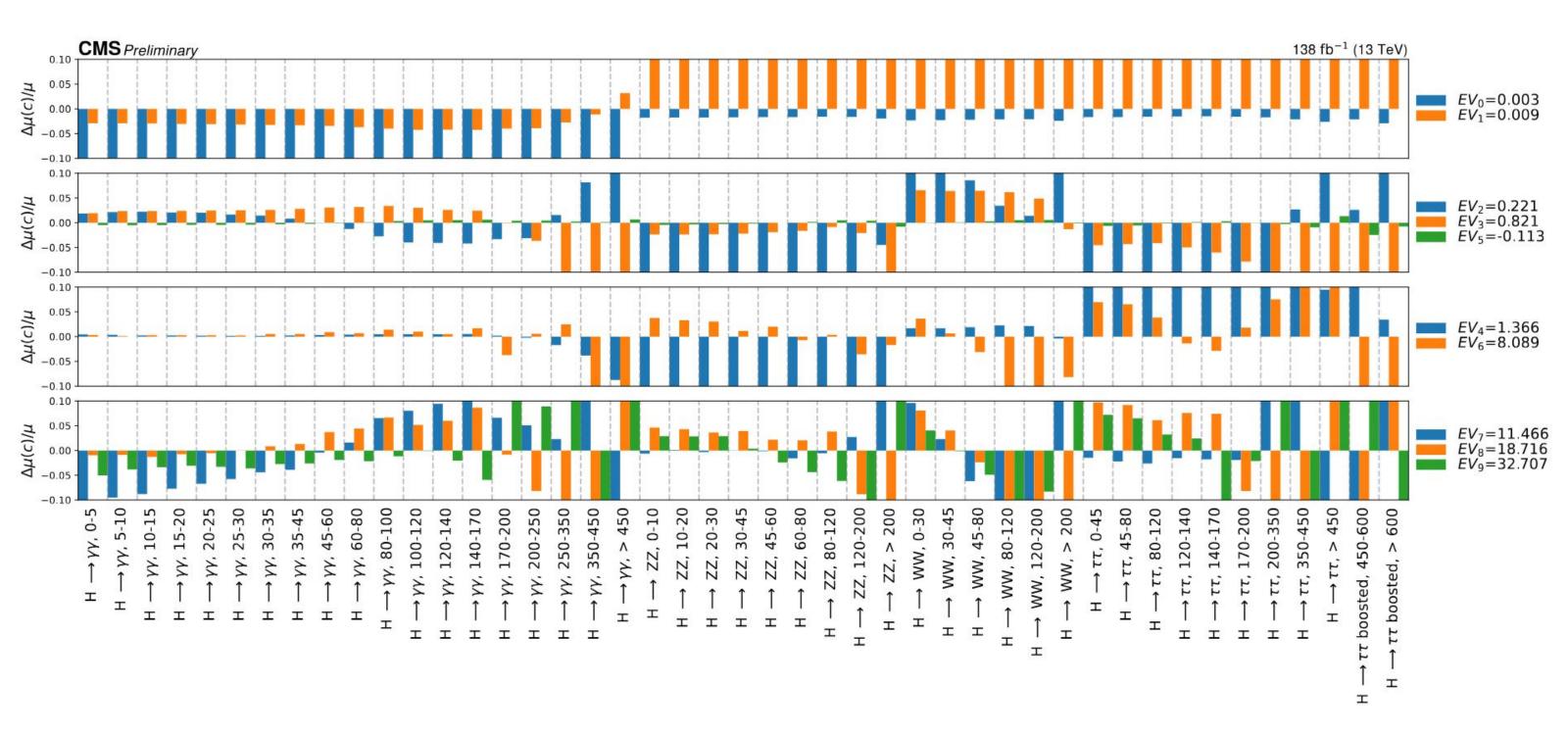
Particle Physics Seminar - UoB



Production tags

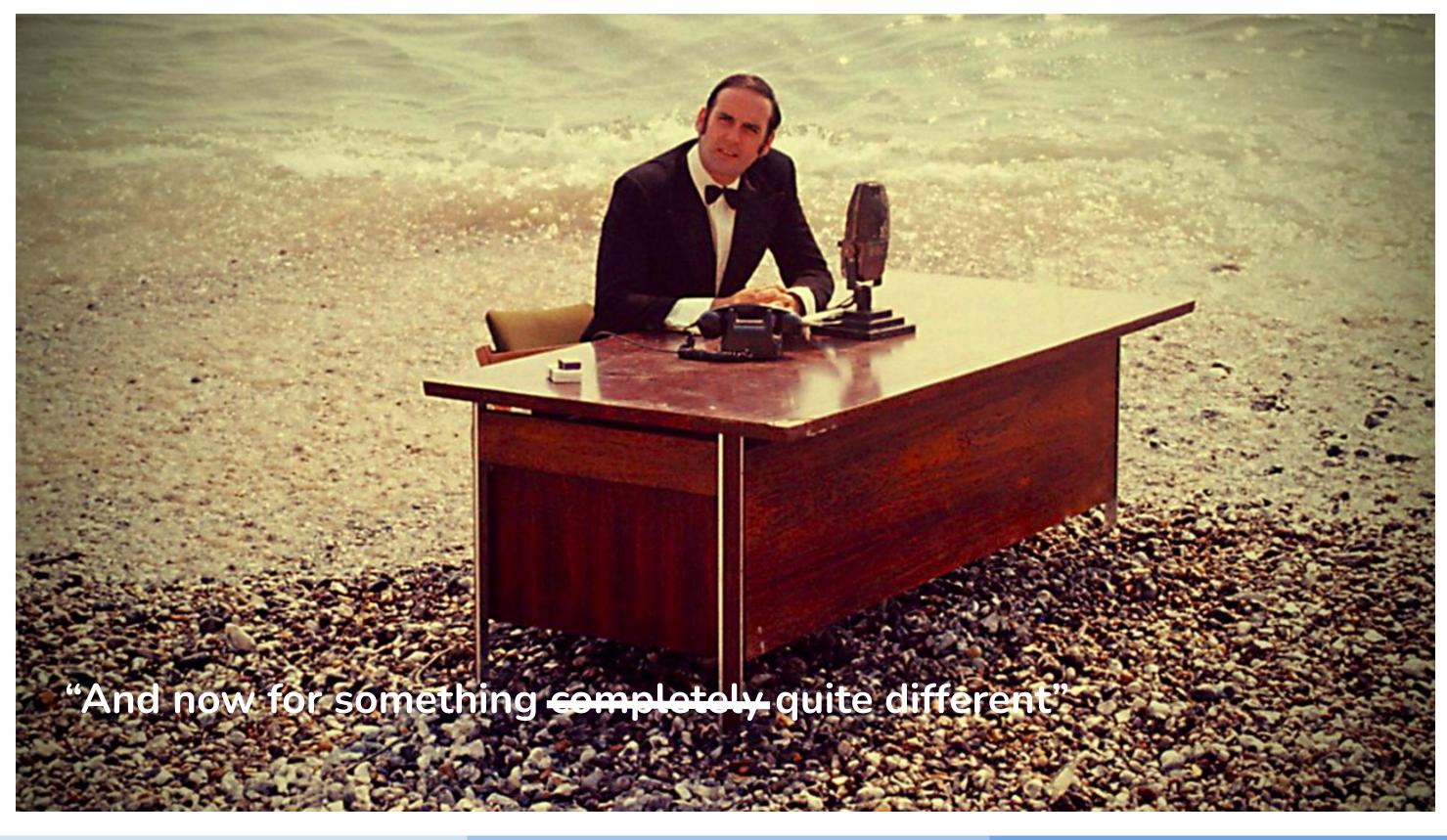
	i iouucuon ugo
	ggH, $p_{\rm T}({\rm H}) \times N_{\rm j}$ bins
	VBF/VH hadronic, $p_{\rm T}$ (Hjj) bins
	WH leptonic, $p_{\rm T}({\rm V})$ bins
	ZH leptonic
	ttH $p_{\rm T}({\rm H})$ bins, tH
	ggH, $p_{\rm T}({\rm H}) \times N_{\rm j}$ bins
	VBF, m _{jj} bins
ı, 4e	VH hadronic
	VH leptonic, $p_{\rm T}({\rm V})$ bins
	ttH
μμ	$ggH \le 2$ -jets
j∕eµ+jj	VBF
J/ eµ+JJ	VH hadronic
	WH leptonic
	ZH leptonic
	ggH
	VBF
	ggH, $p_{\rm T}({ m H}) imes N_{ m j}$ bins
	VH hadronic
$h, \tau_h \tau_h$	VBF
	VH, high- $p_{\rm T}({\rm V})$
(bb)	WH leptonic
$L(\ell\ell)H(bb)$	ZH leptonic
	ttH, $\rightarrow 0, 1, 2\ell + jets$
	ggH, high- $p_{\rm T}({\rm H})$ bins
	ggH
	VBF
$,4\ell,$	ttH
$\tau_{\rm h}, 3\ell + 1\tau_{\rm h}$	
	ggH
	VBF
	VH hadronic
	ZH leptonic

Rotated basis parametrisation



Particle Physics Seminar - UoB

Jonathon Langford



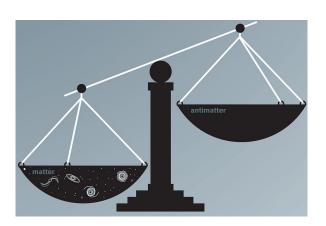
Particle Physics Seminar - UoB

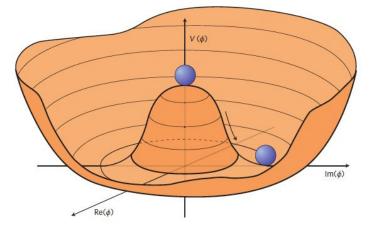
The open questions

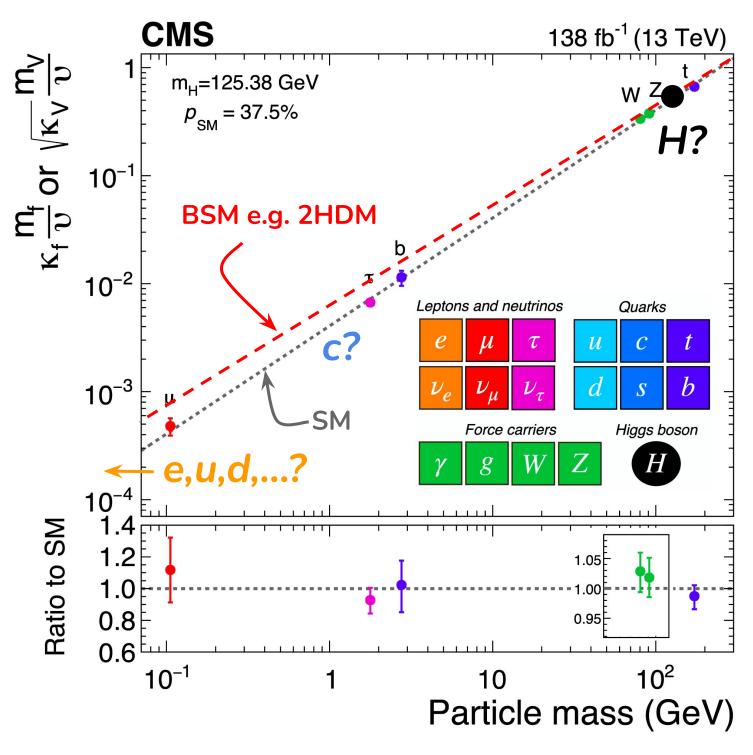
• Is the Higgs sector SM-like?

Do all SM particles lie on that line?

- Why is the universe matter dominated?
 - Can the Higgs boson self-coupling explain baryogenesis in the early universe?







Jonathon Langford

Particle Physics Seminar - UoB

Overview of analyses

Rest of talk: present recent Run 2 CMS Higgs boson combinations and explain how they address the open questions

[CMS-PAS-HIG-23-013]: 1.

Combination and interpretation of fiducial differential Higgs boson production cross sections at $\sqrt{s} = 13$ TeV

[CMS-PAS-SMP-24-003]: 2.

Combined effective field theory interpretation of Higgs boson, electroweak vector boson, top quark and multi-jet measurements

3. [CMS-PAS-HIG-20-011]:

Combination of searches for nonresonant Higgs boson pair production in p-p collisions at $\sqrt{s} = 13$ TeV

[CMS-HIG-23-006, submitted to Phys. Lett. B]:

Constraints on the Higgs boson self-coupling with combination of single and double Higgs boson production

Jonathon Langford

Particle Physics Seminar - UoB

27/11/24

Probing the Higgs potential

Dynamics of electroweak-symmetry breaking are defined by shape of Higgs potential

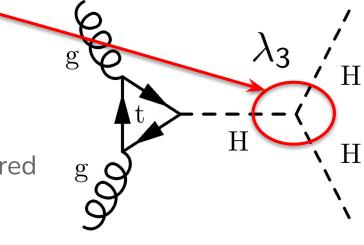
$$V(H) = \frac{1}{2}m_H^2 + \lambda_3 v H^3 + \lambda_4 H^4$$

 H^3 term generates Higgs-Higgs interactions \rightarrow Higgs boson self-coupling

• In the SM:
$$\lambda_3 = 4\lambda_4 = rac{m_H^2}{v^2}$$

- Only parameter regulating shape of potential + fully predicted when mH and v are measured Ο
- Measurements of the Higgs boson self coupling are of the highest priority in the field (see European strategy)
 - 1. λ_3 is not a free parameter \rightarrow closure test of the SM
 - λ_3 regulates shape of potential ightarrow test of EWSB and vacuum stability
 - λ_3 deviations from SM would enable first-order EWSB transition ightarrow Could provide mechanism for EW baryogenesis 3. Jonathon Langford Particle Physics Seminar - UoB

V (ø)



27/11/24

Probing the Higgs potential

Dynamics of electroweak-symmetry breaking are defined by shape of Higgs potential

$$V(H) = \frac{1}{2}m_H^2 + \lambda_3 v H^3 + \lambda_4 H^4$$

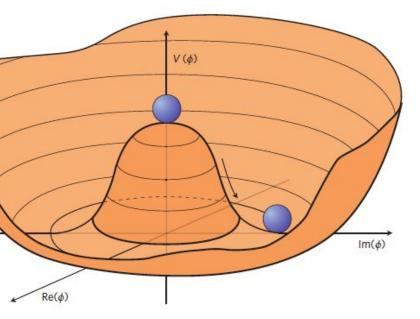
 H^3 term generates Higgs-Higgs interactions \rightarrow Higgs boson self-coupling

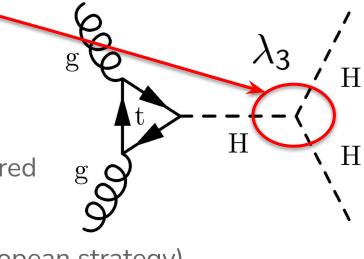
• In the SM:
$$\lambda_3 = 4\lambda_4 = rac{m_H^2}{v^2}$$

Jonathon Langford

- Only parameter regulating shape of potential + fully predicted when mH and v are measured Ο
- Measurements of the Higgs boson self coupling are of the highest priority in the field (see European strategy)
 - 1. λ_3 is not a free parameter \rightarrow closure test of the SM
 - λ_3 regulates shape of potential ightarrow test of EWSB and vacuum stability
 - λ_3 deviations from SM would enable first-order EWSB transition ightarrow Could provide mechanism for EW baryogenesis 3.

Particle Physics Seminar - UoB



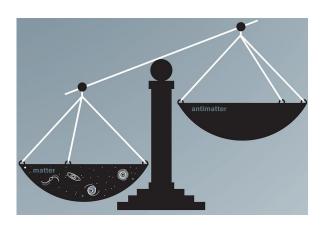


27/11/24

Baryogenesis

Universe is matter (baryon) dominated

 $n_B >> n_{\bar{B}}$

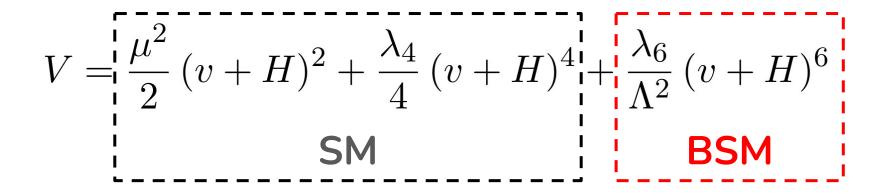


- First order phase transition: essential ingredient for production of B-asymmetry (Baryogenesis) [A. D. Sakharov, ETP Lett. 5 (1967) 24-27]
 - Sharp discontinuity in state of Universe \rightarrow nucleation of "bubbles" of the new phase within old phase (out-of-equilibrium) \bigcirc
- **<u>Electroweak Baryogenesis?</u>** Bubbles of Higgs field true vacuum in background of false vacuum
 - As bubbles expand \rightarrow create regions where CP-violating interactions occur at bubble walls \rightarrow B-asymmetry \bigcirc
 - A smooth second-order transition would not generate required asymmetry Ο

Jonathon Langford

Particle Physics Seminar - UoB

• To achieve first-order phase transition in EWSB we **need a modified Higgs potential**



27/11/24

• To achieve first-order phase transition in EWSB we **need a modified Higgs potential**

$$V = \begin{bmatrix} \frac{\mu^2}{2} (v+H)^2 + \frac{\lambda_4}{4} (v+H)^4 \\ \mathbf{SM} \end{bmatrix} + \begin{bmatrix} \frac{\lambda_6}{\Lambda^2} (v+H)^6 \\ \mathbf{BSM} \end{bmatrix}$$

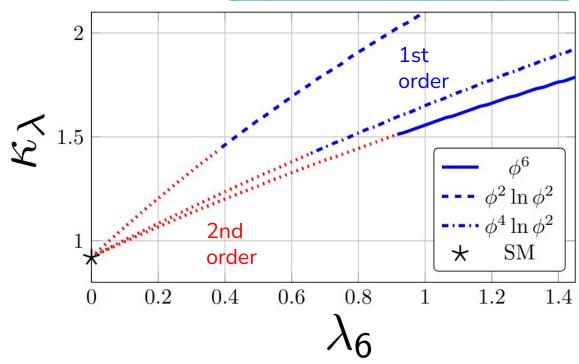
• Inclusion of dim-6 (BSM) term in potential changes relationship between fundamental Higgs parameters

$$\kappa_{\lambda} = \frac{\lambda_{3}}{\lambda_{3}^{SM}} = 1 + \frac{16\lambda_{6}v^{4}}{m_{H}^{2}\Lambda^{2}}$$

27/11/24

• To achieve first-order phase transition in EWSB we **need a modified Higgs potential**

$$V = \begin{bmatrix} \frac{\mu^2}{2} (v+H)^2 + \frac{\lambda_4}{4} (v+H)^4 \\ \mathbf{SM} \end{bmatrix} + \begin{bmatrix} \frac{\lambda_6}{\Lambda^2} (v+H)^6 \\ \mathbf{BSM} \end{bmatrix}$$



• Inclusion of dim-6 (BSM) term in potential changes relationship between fundamental Higgs parameters

$$\kappa_{\lambda} = rac{\lambda_3}{\lambda_3^{SM}} = 1 + rac{16\lambda_6 v^4}{m_H^2 \Lambda^2}$$

• 50% increase in self-coupling \rightarrow Provides mechanism for first-order EW phase transition

[Phys. Rev. D 97, 075008 (2018)]

27/11/24

To achieve first-order phase transition in EWSB we need a modified Higgs potential

$$V = \begin{bmatrix} \frac{\mu^2}{2} (v+H)^2 + \frac{\lambda_4}{4} (v+H)^4 \\ \mathbf{SM} \end{bmatrix} + \frac{\lambda_6}{\Lambda^2} (v+H)^6 \\ \mathbf{BSM} \end{bmatrix}$$

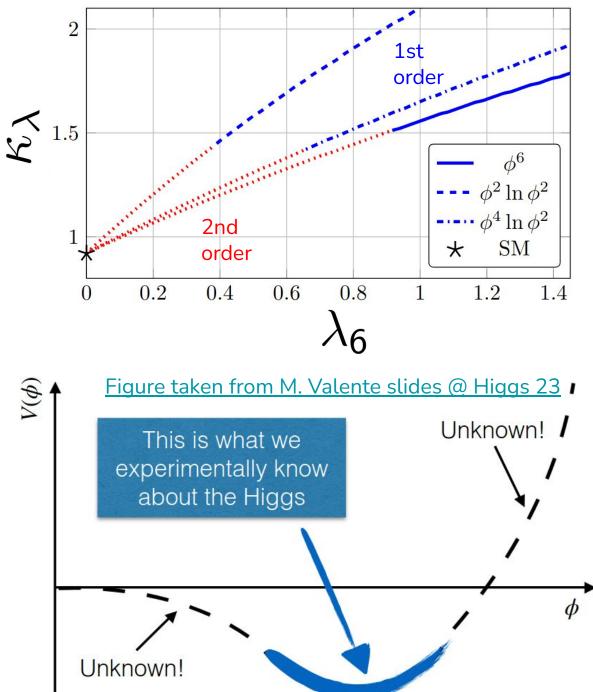
Inclusion of dim-6 (BSM) term in potential changes relationship between fundamental Higgs parameters

$$\boxed{\kappa_{\lambda} = \frac{\lambda_{3}}{\lambda_{3}^{SM}} = 1 + \frac{16\lambda_{6}v^{4}}{m_{H}^{2}\Lambda^{2}}}$$

- 50% increase in self-coupling \rightarrow **Provides mechanism for first-order EW** phase transition
 - Increasing our precision on $~\lambda_{3}$ is of paramount important to \bigcirc understanding evolution of the early Universe!

Jonathon Langford

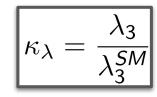
Particle Physics Seminar - UoB



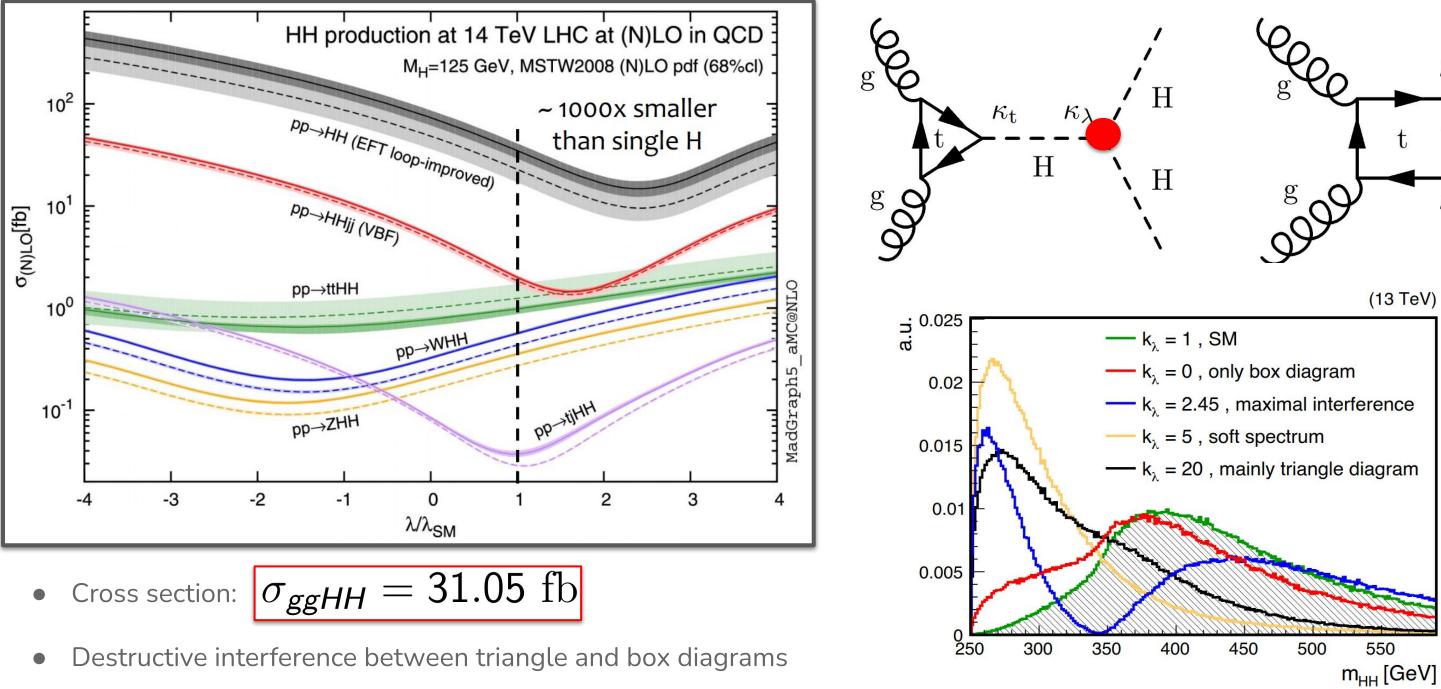
[Phys. Rev. D 97, 075008 (2018)]

27/11/24

Di-Higgs production

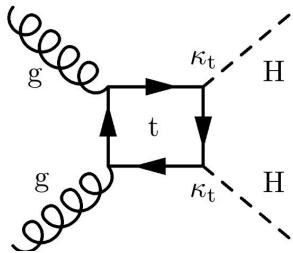


How to probe the Higgs self-coupling? \rightarrow Only direct method via search for <u>non-resonant Higgs boson pair production</u>



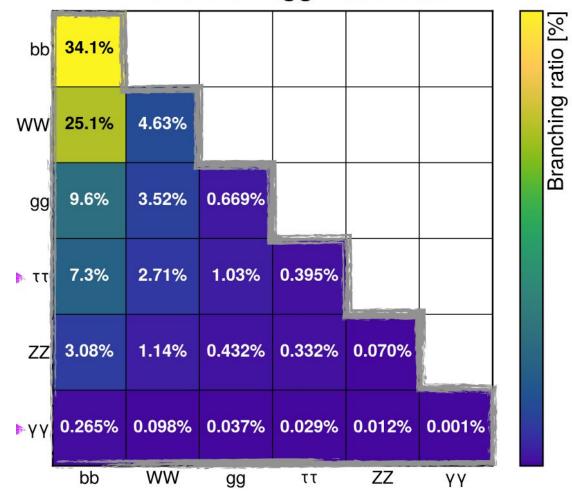
Jonathon Langford

Particle Physics Seminar - UoB



A big step in Run 2

- Large statistics of Run 2 dataset has enabled CMS to gain significant ground in measuring this rare process
- Plethora of HH final states offers a fun experimental challenge



Direct Di-Higgs searches

Taken from Jona Motta slides @ Higgs 24

Jonathon Langford

Particle Physics Seminar - UoB

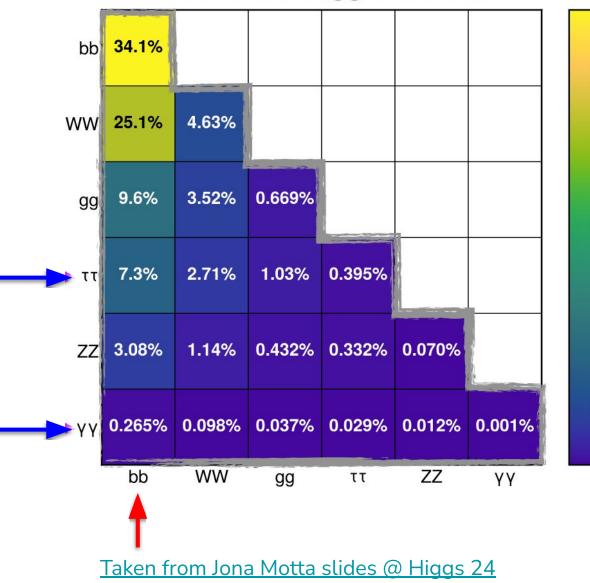
27/11/24

A big step in Run 2

Large statistics of Run 2 dataset has enabled CMS to gain significant ground in measuring this rare process

Branching ratio [%]

Plethora of HH final states offers a fun experimental challenge



Direct Di-Higgs searches

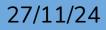
Given current luminosity and large backgrounds we typically leverage:

- **1.** Large branching fraction
- Good selection purity 2.
- Combination of (1) and (2) 3.

Three "main" channels: $HH \rightarrow 4b$, $HH \rightarrow bb\tau\tau$, $HH \rightarrow bb\gamma\gamma$

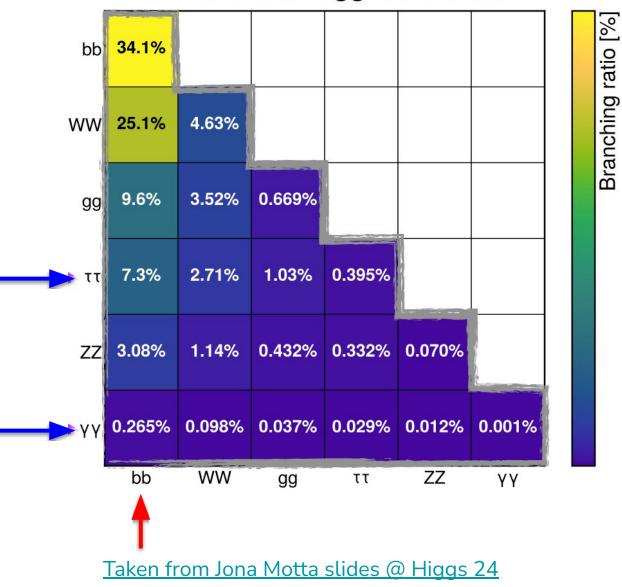
Jonathon Langford

Particle Physics Seminar - UoB



A big step in Run 2

- Large statistics of Run 2 dataset has enabled CMS to gain significant ground in measuring this rare process
- Plethora of HH final states offers a fun experimental challenge



Direct Di-Higgs searches

Given current luminosity and large backgrounds we typically leverage:

- **1.** Large branching fraction
- Good selection purity 2.
- Combination of (1) and (2) 3.

Three "main" channels: $HH \rightarrow 4b$, $HH \rightarrow bb\tau\tau$, $HH \rightarrow bb\gamma\gamma$

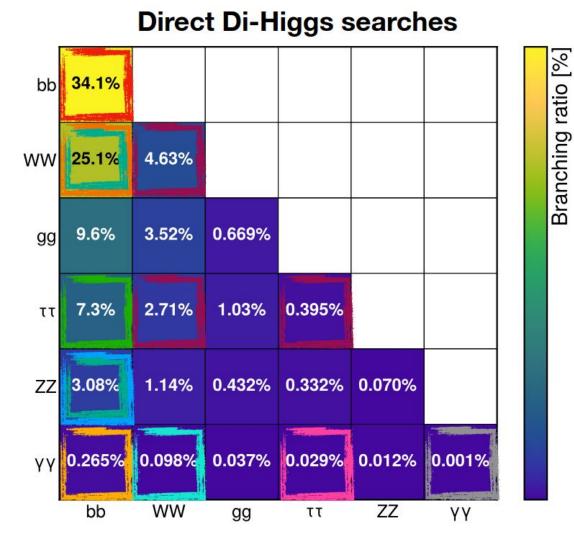
Significant advancements in reconstruction and identification techniques (e.g. Machine Learning) has allowed us to move away from these constraints...

Jonathon Langford

Particle Physics Seminar - UoB

A big step in Run 2

- Large statistics of Run 2 dataset has enabled CMS to gain significant ground in measuring this rare process
- Plethora of HH final states offers a fun experimental challenge



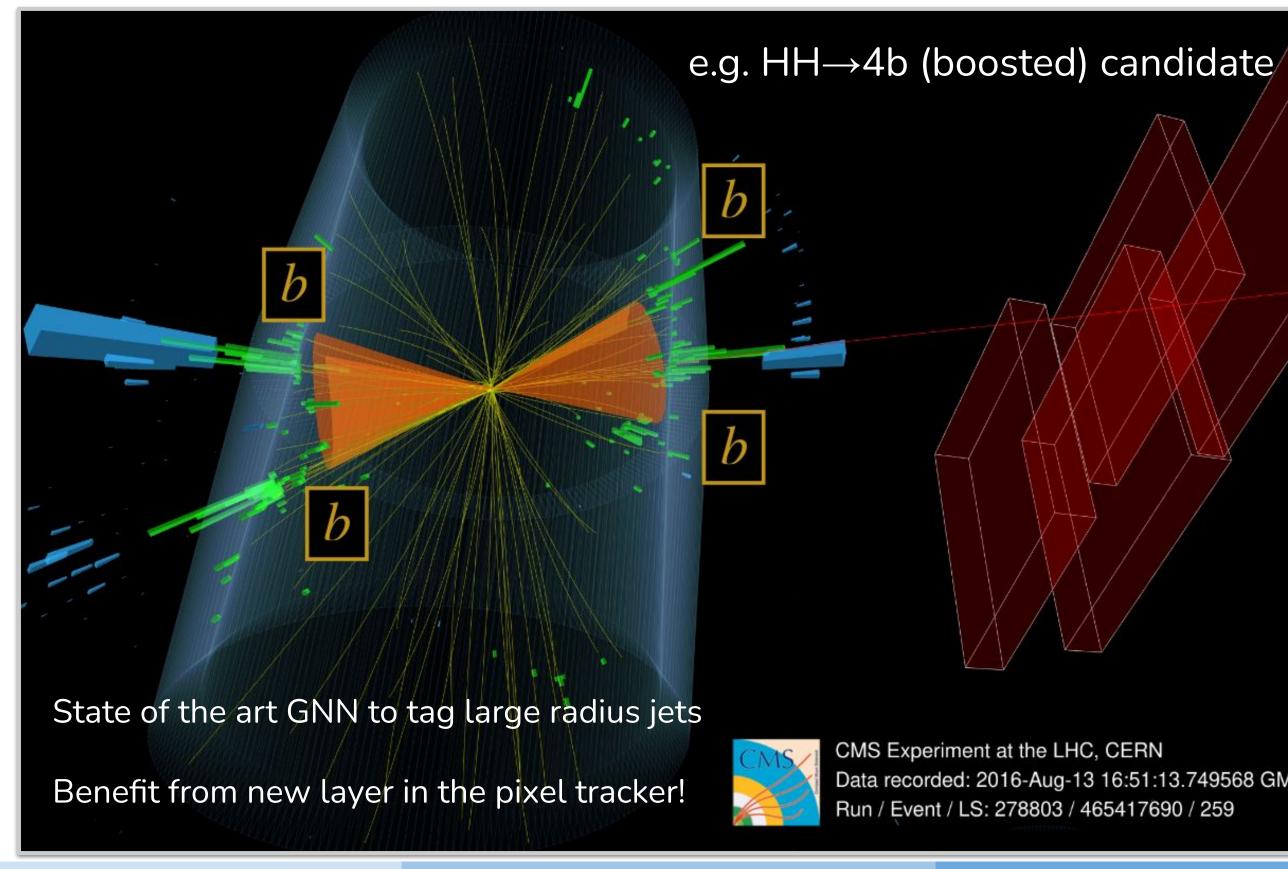
Taken from Jona Motta slides @ Higgs 24

Jonathon Langford

·	
$HH \rightarrow bbbb$	Non-resonant, resolved topology Phys.
	Non-resonant, boosted topology Phys.
	Non-resonant, VHH production CMS-P
	Resonant X→YH Phys. Lett. B 842.137
m HH ightarrow m bb au au	Non-resonant Phys. Lett. B 842.137531
	Resonant X \rightarrow YH JHEP 11 (2021) 057
$\rm HH \rightarrow bb\gamma\gamma$	Non-resonant JHEP 03 (2021) 257
	Resonant X \rightarrow YH <u>CMS-PAS-HIG-21-01</u>
$HH \rightarrow bbZZ$	Non-resonant JHEP 06 (2023) 130
	Resonant Phys. Rev. D. 102.032003
$\rm HH \rightarrow bbWW$	Non-resonant + Resonant JHEP 07 (202
	Resonant JHEP 05 (2022) 005
$\mathrm{HH} ightarrow \mathrm{bbVV}$	Non-resonant, fully hadronic boosted to
$\rm HH \rightarrow WW\gamma\gamma$	Non-resonant CMS-PAS-HIG-21-014
$HH ightarrow \gamma \gamma au au$	Non-resonant + Resonant CMS-PAS-HI
$HH \rightarrow WWWW$	I + WW $\tau\tau$ + $\tau\tau\tau\tau$ Non-resonant + Reso

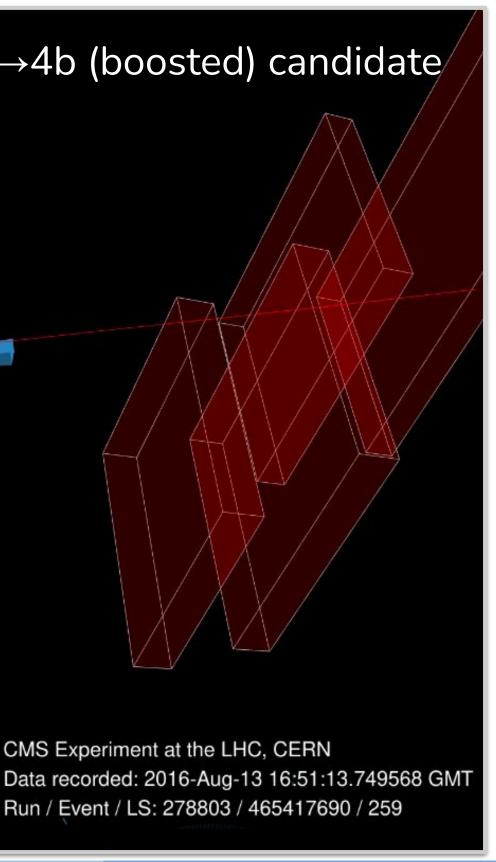
Particle Physics Seminar - UoB

Rev. Lett. 129.081802 Rev. Lett. 131.041803 PAS-HIG-22-006 7392 11)24) 293 opology CMS-PAS-HIG-23-012 IIG-22-012 onant JHEP 07 (2023) 095



Jonathon Langford

Particle Physics Seminar - UoB

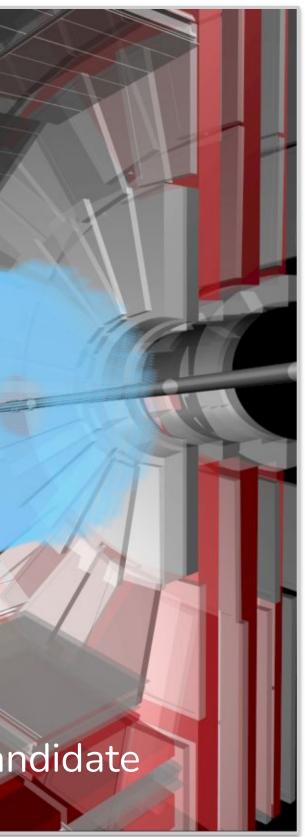


CMS Experiment at the LHC, CERN Data recorded: 2018-Oct-21 11:22:36.732928 GMT Run / Event / LS: 325001 / 246775231 / 137

e.g. HH \rightarrow bb $\gamma\gamma$ candidate

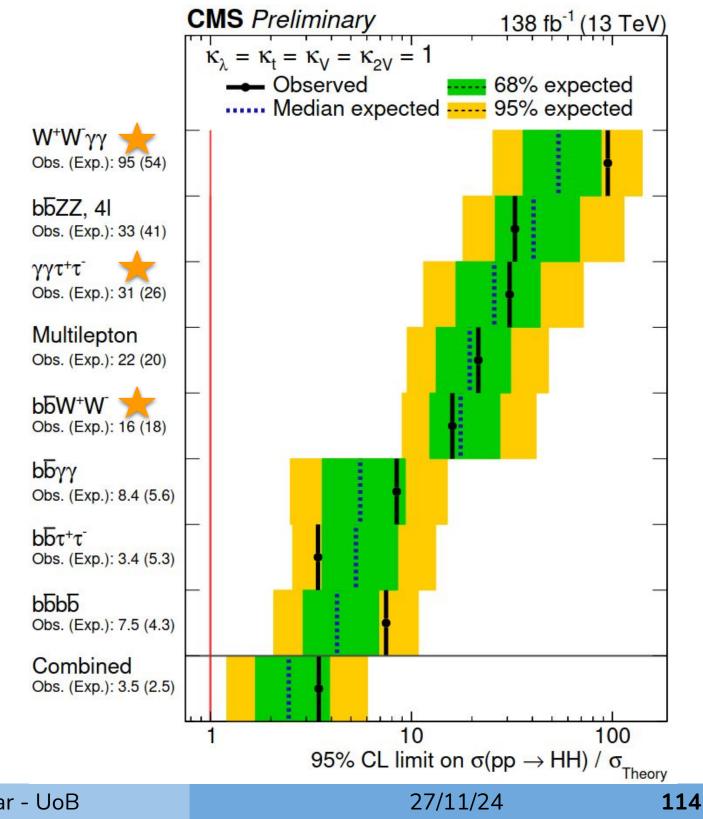
Jonathon Langford

Particle Physics Seminar - UoB



Combination of non-resonant HH production

- Brand new result from ~two weeks ago [HIG-20-011]
- Updated HH combination from <u>Nature 607 (2022) 60-68</u>
 - Additional channels, more interpretations, expanded projections



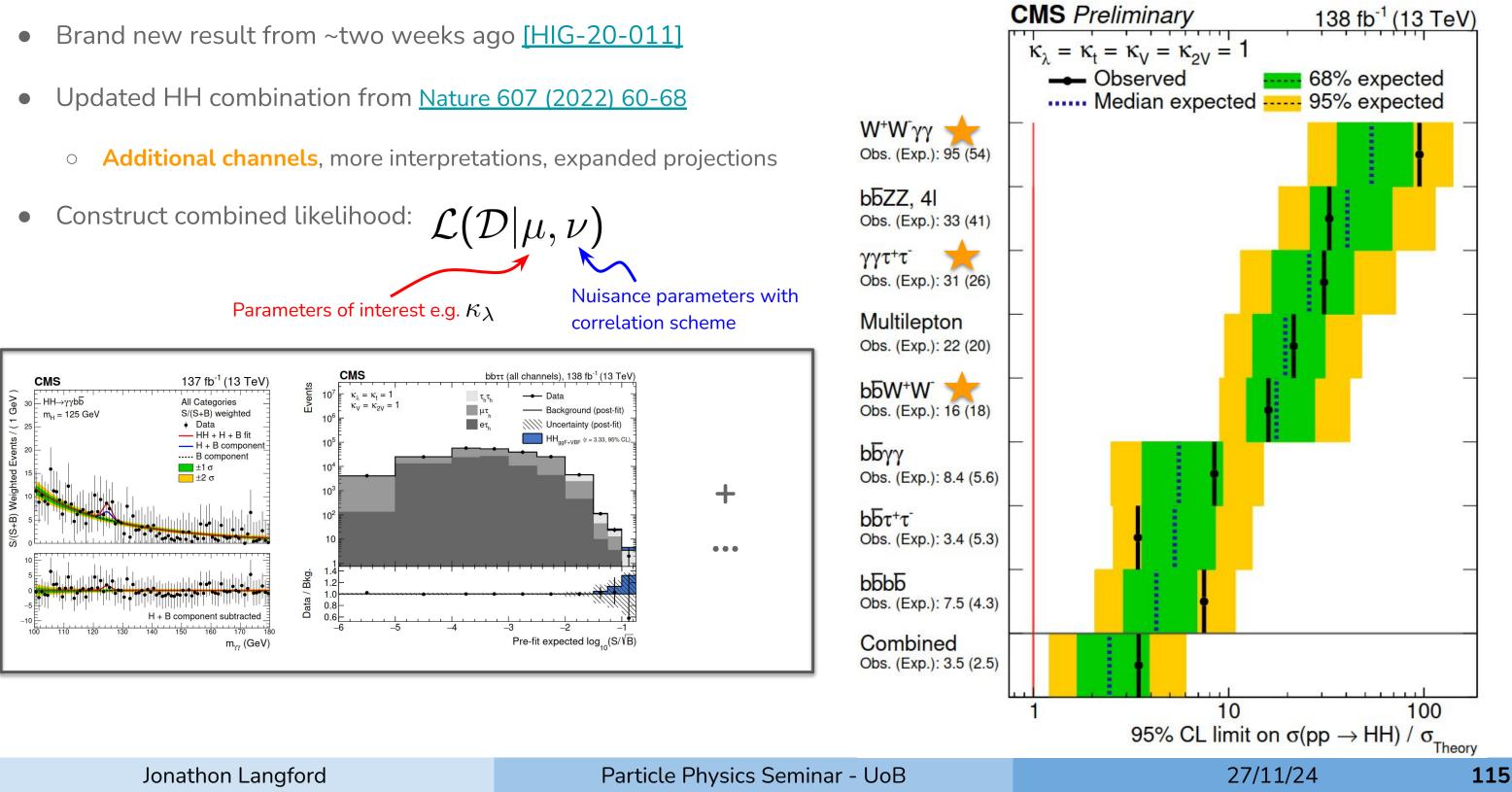
Jonathon Langford

Particle Physics Seminar - UoB

NEW NOV 24

Combination of non-resonant HH production

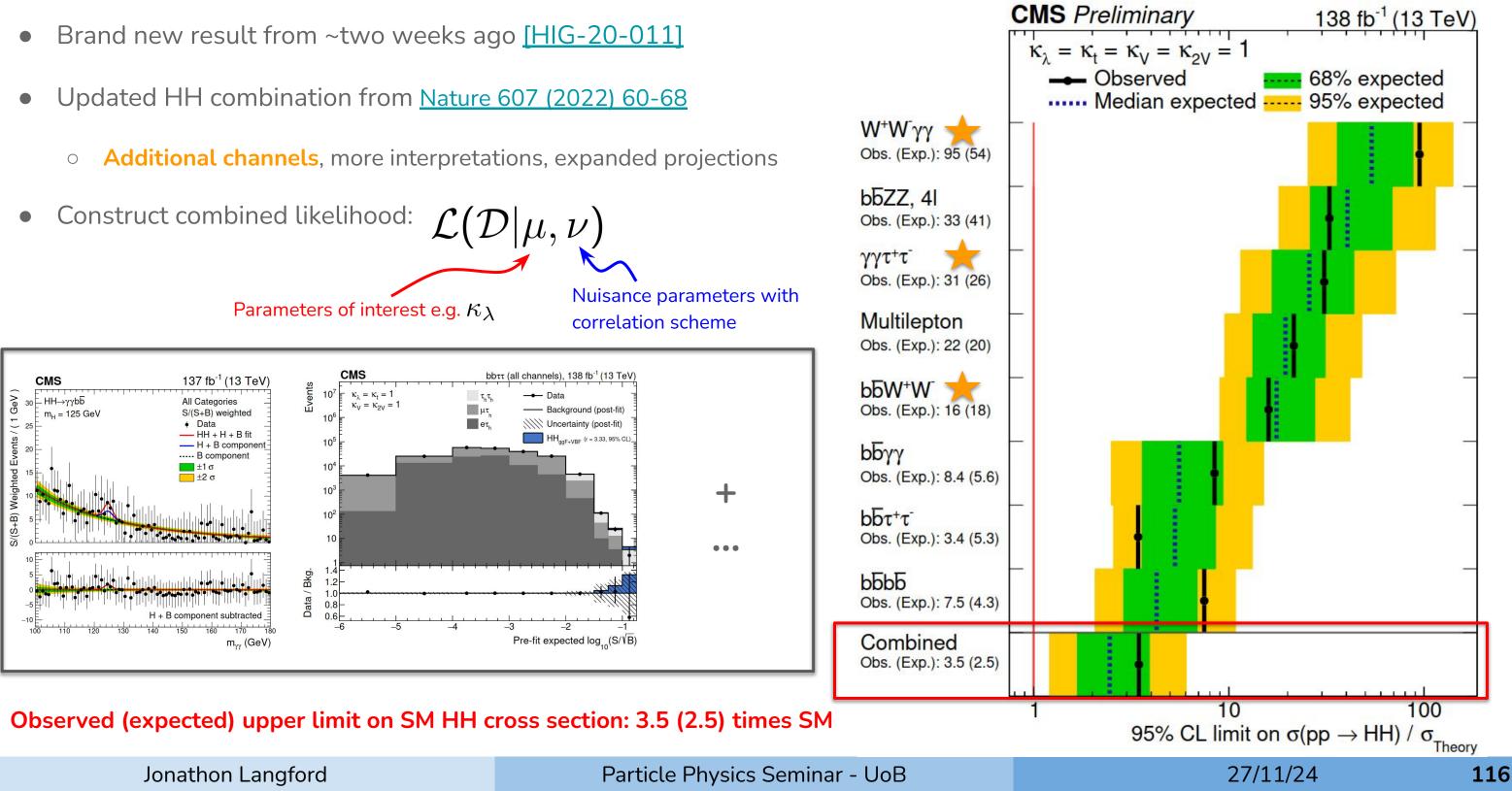
- - Additional channels, more interpretations, expanded projections



NEW NOV 24

Combination of non-resonant HH production

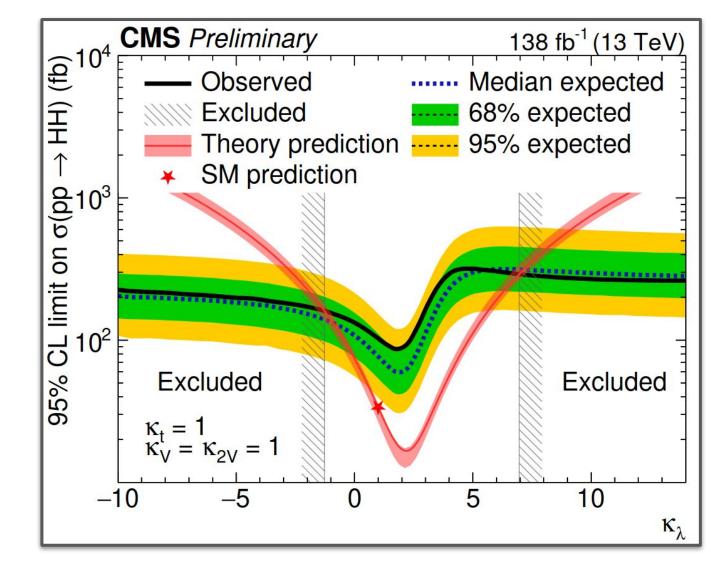
- Updated HH combination from Nature 607 (2022) 60-68
 - Additional channels, more interpretations, expanded projections



NEW NOV 24

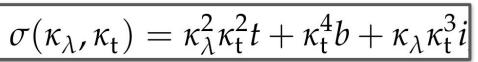
Self-coupling sensitivity

ggHH signal dependence on $(\kappa_{\lambda}, \kappa_t)$ modelled using linear combination of three simulated data samples



Jonathon Langford

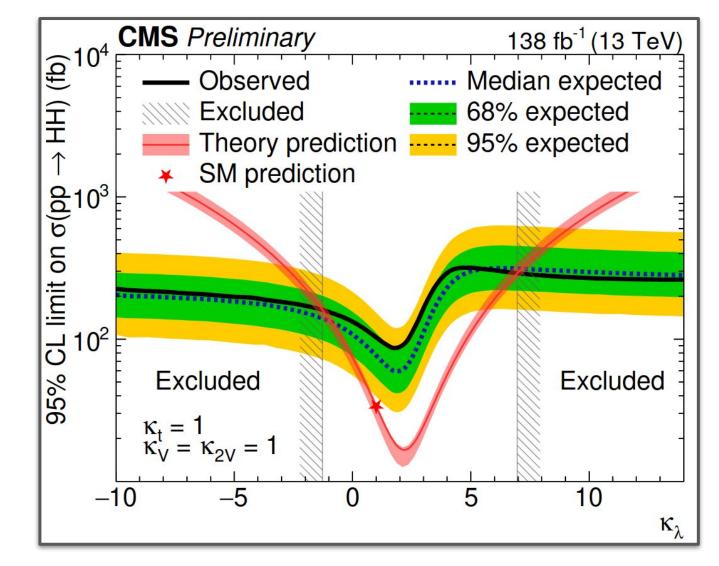
Particle Physics Seminar - UoB

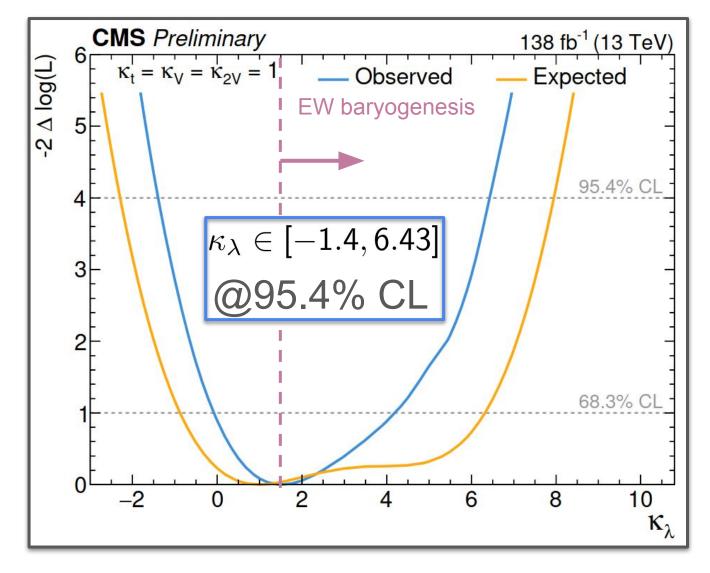


27/11/24

Self-coupling sensitivity

ggHH signal dependence on $(\kappa_{\lambda}, \kappa_t)$ modelled using linear combination of three simulated data samples [See Back-Up]





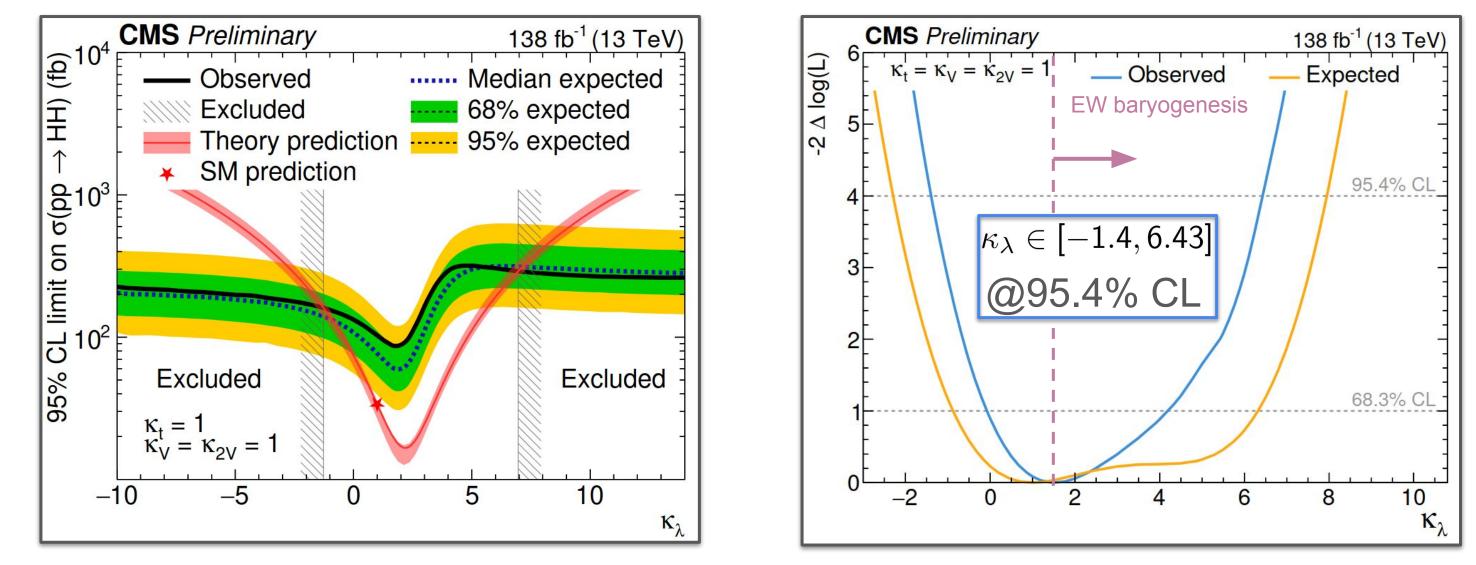
Jonathon Langford

 $\sigma(\kappa_{\lambda},\kappa_{t}) = \kappa_{\lambda}^{2}\kappa_{t}^{2}t + \kappa_{t}^{4}b + \kappa_{\lambda}\kappa_{t}^{3}i$

27/11/24

Self-coupling sensitivity

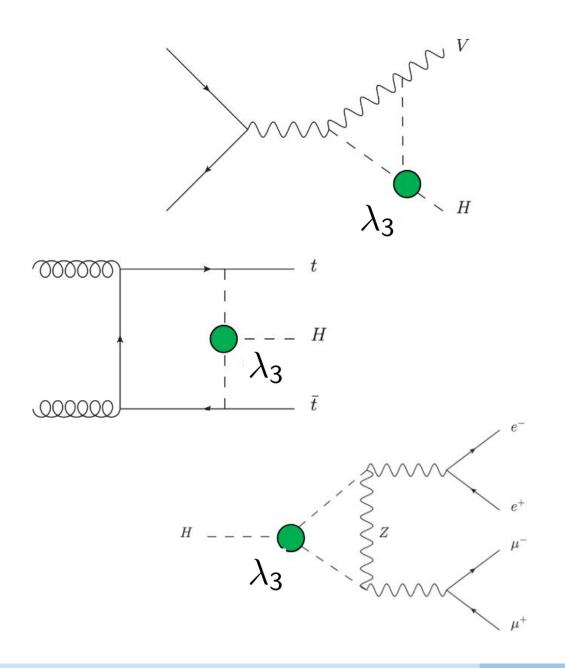
- ggHH signal dependence on $(\kappa_{\lambda}, \kappa_t)$ modelled using linear combination of three simulated data samples [See Back-Up]



- Vast improvements to 2016-only results: ~5x stronger constraints (expect to be ~2x from increase in statistics alone)
 - Driven by advancements in analysis techniques e.g. GNN for b-jet tagging Ο
- Many more interpretations in note: VBFHH production and κ_{2V} constraints, HEFT benchmarks, Jonathon Langford Particle Physics Seminar - UoB

 $\sigma(\kappa_{\lambda},\kappa_{t}) = \kappa_{\lambda}^{2}\kappa_{t}^{2}t + \kappa_{t}^{4}b + \kappa_{\lambda}\kappa_{t}^{3}i$

- Ultimate κ_{λ} sensitivity comes by combining with indirect constraint from single-Higgs production
- NLO EW corrections to single Higgs boson production and decay involve Higgs self-coupling

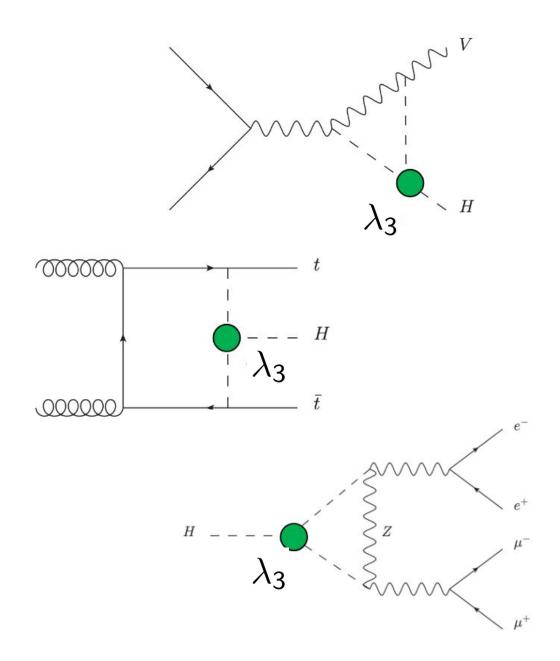


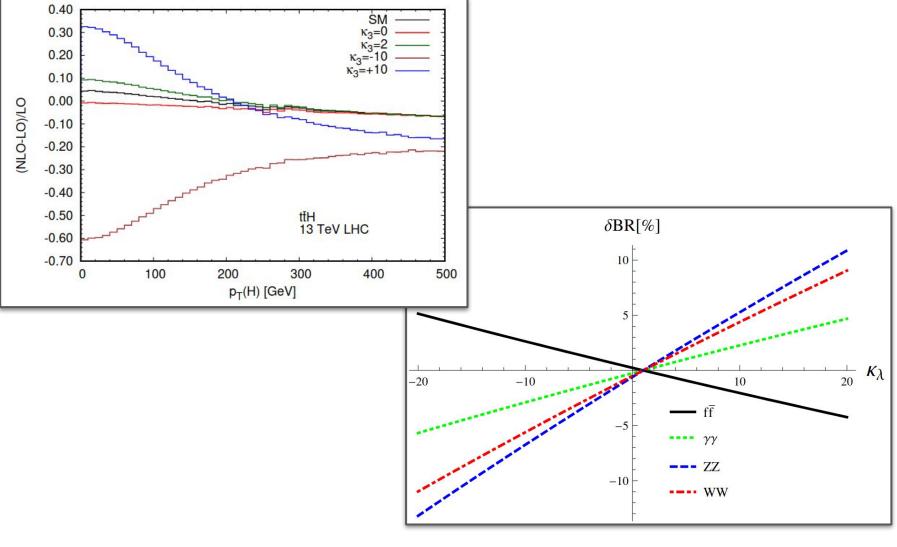
Jonathon Langford

Particle Physics Seminar - UoB

****PAPER SUBMITTED JULY 24****

- Ultimate κ_{λ} sensitivity comes by combining with indirect constraint from single-Higgs production
- NLO EW corrections to single Higgs boson production and decay involve Higgs self-coupling





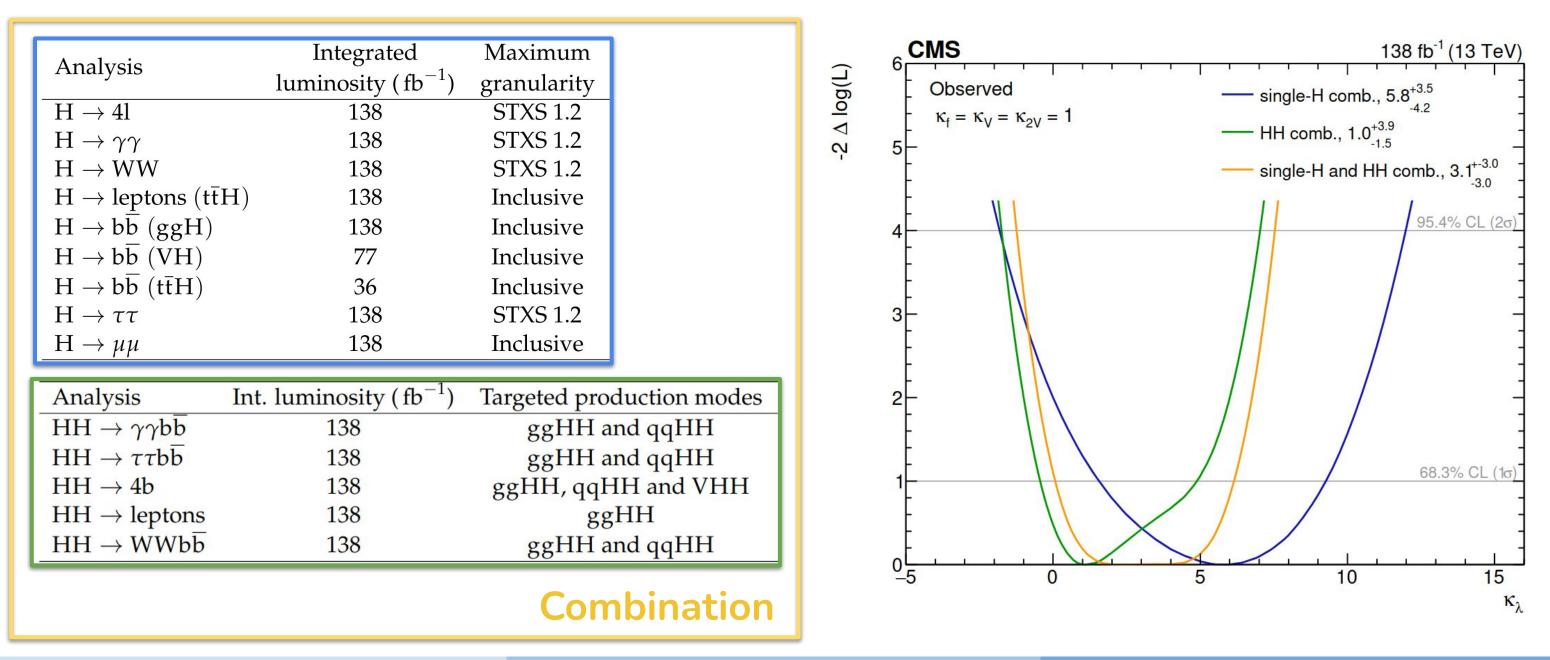
Precision measurements of (differential) Higgs boson production and decay rates are also sensitive to λ_3

Jonathon Langford

Particle Physics Seminar - UoB

****PAPER SUBMITTED JULY 24****

- Ultimate κ_{λ} sensitivity comes by combining with indirect constraint from single-Higgs production
- NLO EW corrections to single Higgs boson production and decay involve **Higgs self-coupling**

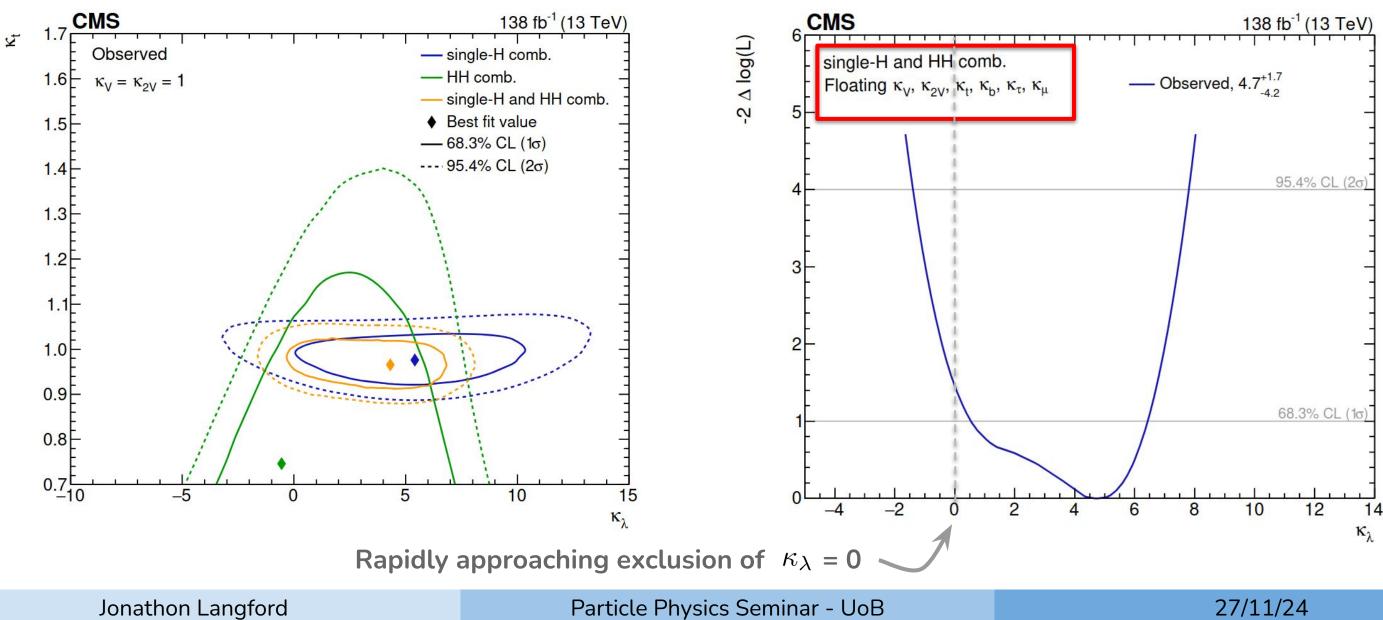


Jonathon Langford

Particle Physics Seminar - UoB

****PAPER SUBMITTED JULY 24****

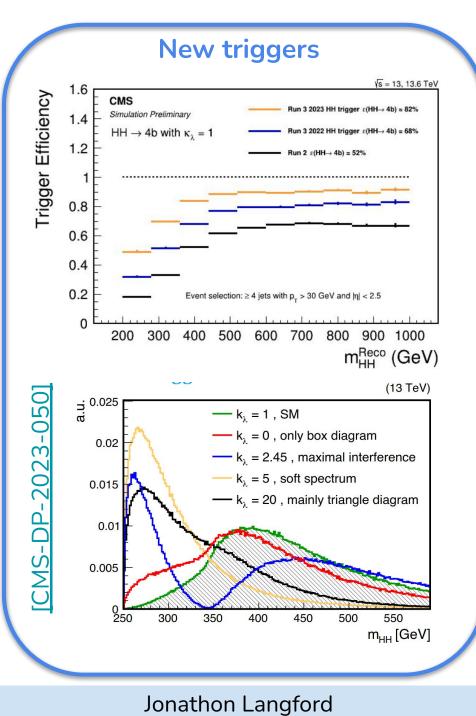
- Ultimate κ_{λ} sensitivity comes by combining with indirect constraint from single-Higgs production
- NLO EW corrections to single Higgs boson production and decay involve Higgs self-coupling
- Key benefit: relax SM assumptions on other couplings without large degradation in sensitivity



PAPER SUBMITTED JULY 24

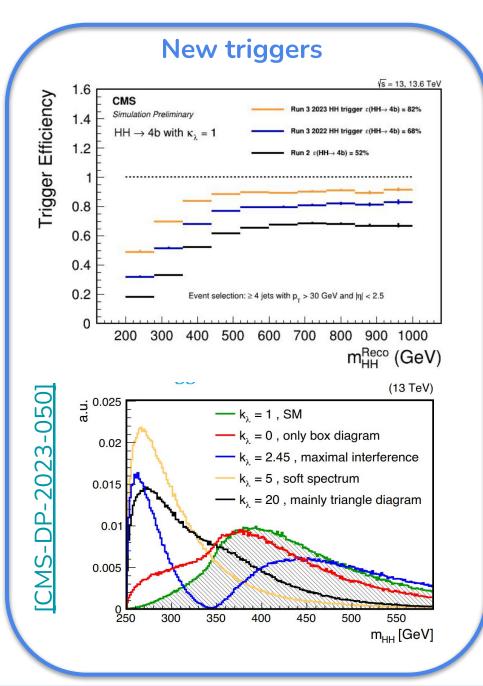
- More luminosity (~300 fb⁻¹), more energy (+10% HH cross sections at 13.6 TeV)
- HH is within touching distance \rightarrow We are not taking our foot off the gas...

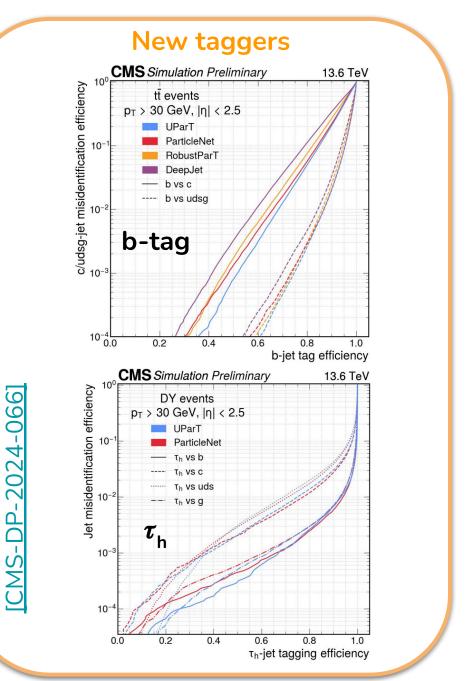
- More luminosity (~300 fb⁻¹), more energy (+10% HH cross sections at 13.6 TeV)
- HH is within touching distance \rightarrow We are not taking our foot off the gas...



Particle Physics Seminar - UoB

- More luminosity (~300 fb⁻¹), more energy (+10% HH cross sections at 13.6 TeV)
- HH is within touching distance \rightarrow We are not taking our foot off the gas...





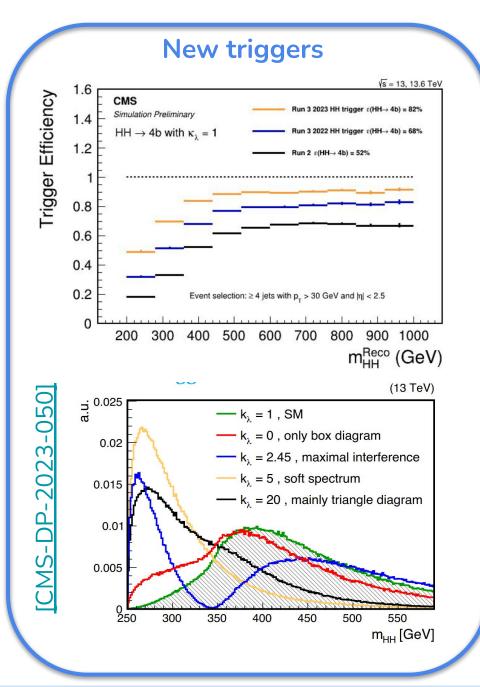
Particle Physics Seminar - UoB

Jonathon Langford

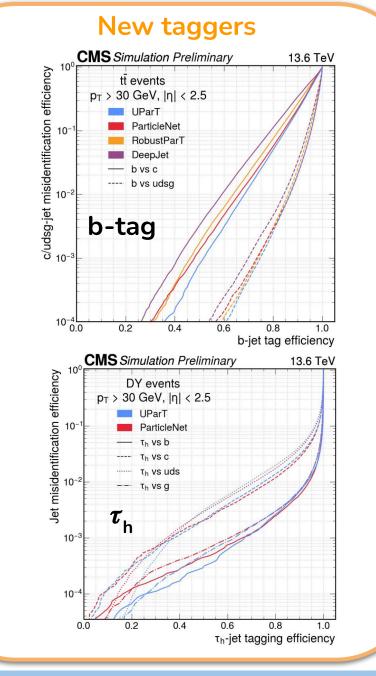
More luminosity (~300 fb⁻¹), more energy (+10% HH cross sections at 13.6 TeV)

[CMS-DP-2024-066]

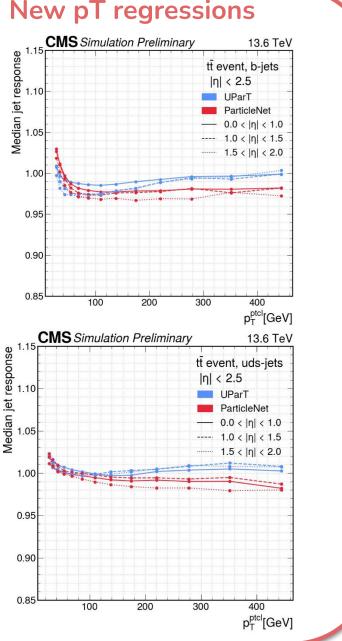
HH is within touching distance \rightarrow We are not taking our foot off the gas...



Jonathon Langford



Particle Physics Seminar - UoB

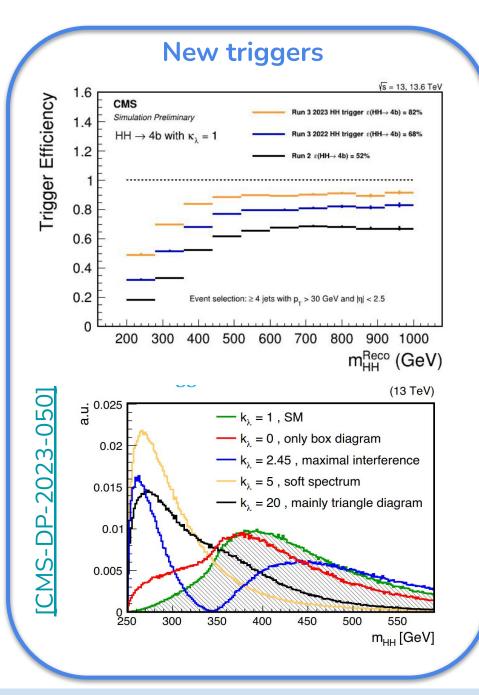


New pT regressions

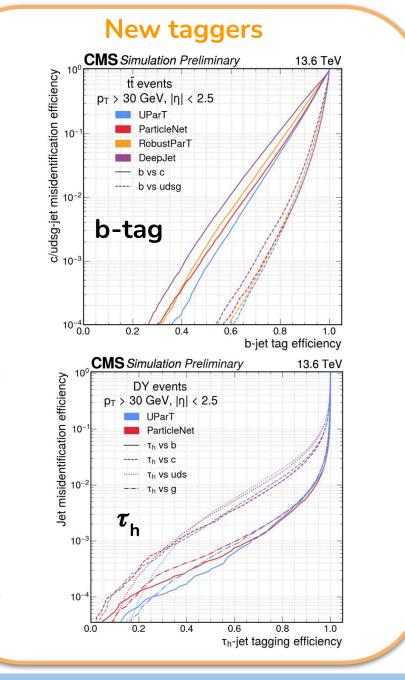
27/11/24

- HH is within touching distance: $\,\mu_{
 m SM}^{95\%
 m CL}\sim 1$
 - New innovative ideas could bring it closer \rightarrow If something is very BSM-like in Higgs potential, we might see it in Run 3! Ο

[CMS-DP-2024-066]



Jonathon Langford

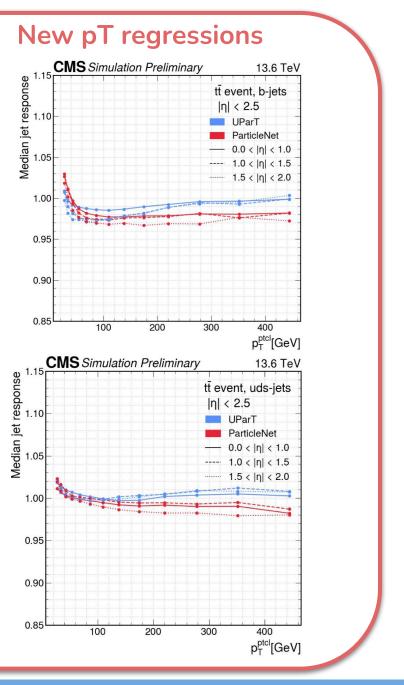


Particle Physics Seminar - UoB

-066] 4 202 Ч П П CMS

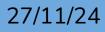
Landau-Ginzburg Higg

Tadpole-Induced Higg

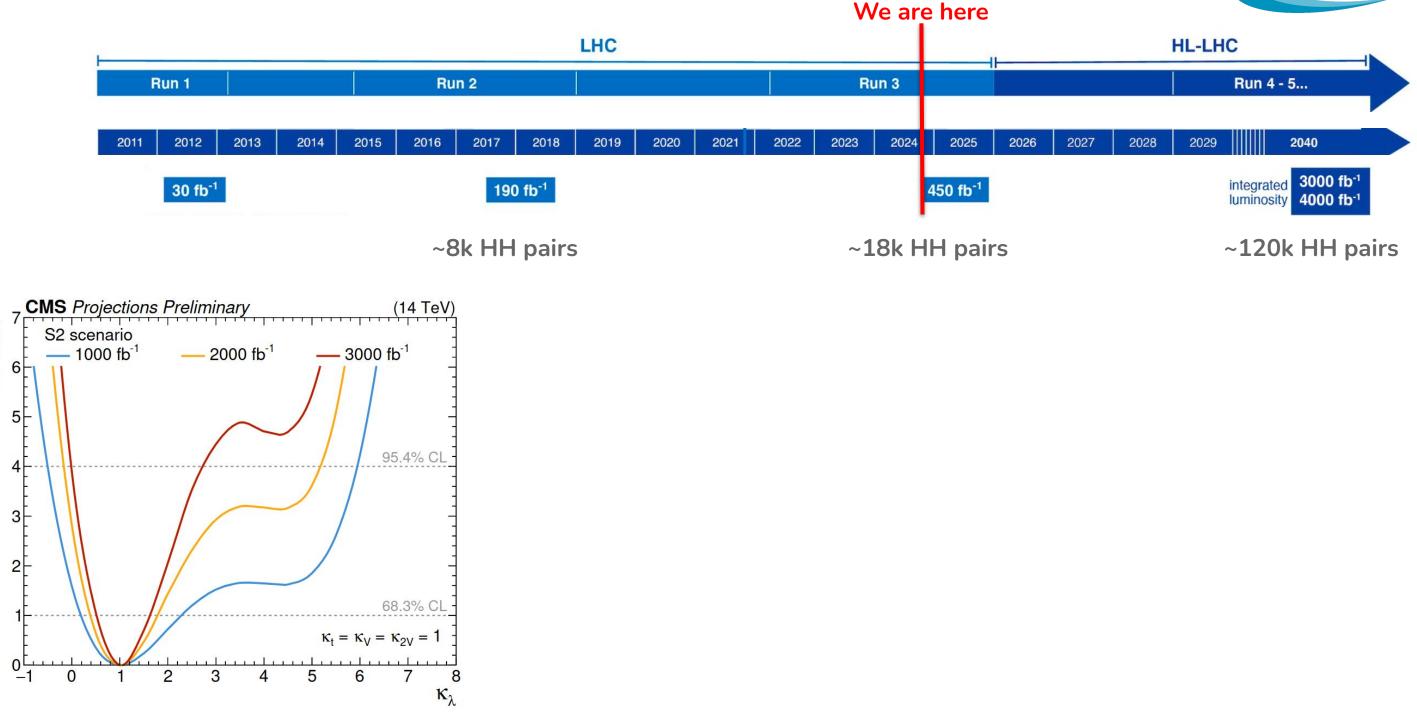


• [HIG-20-011]: included detailed projection study for HL-LHC sensitivity(*)

[HIG-20-011]: included detailed projection study for HL-LHC sensitivity(*)



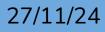
[HIG-20-011]: included detailed projection study for HL-LHC sensitivity(*)

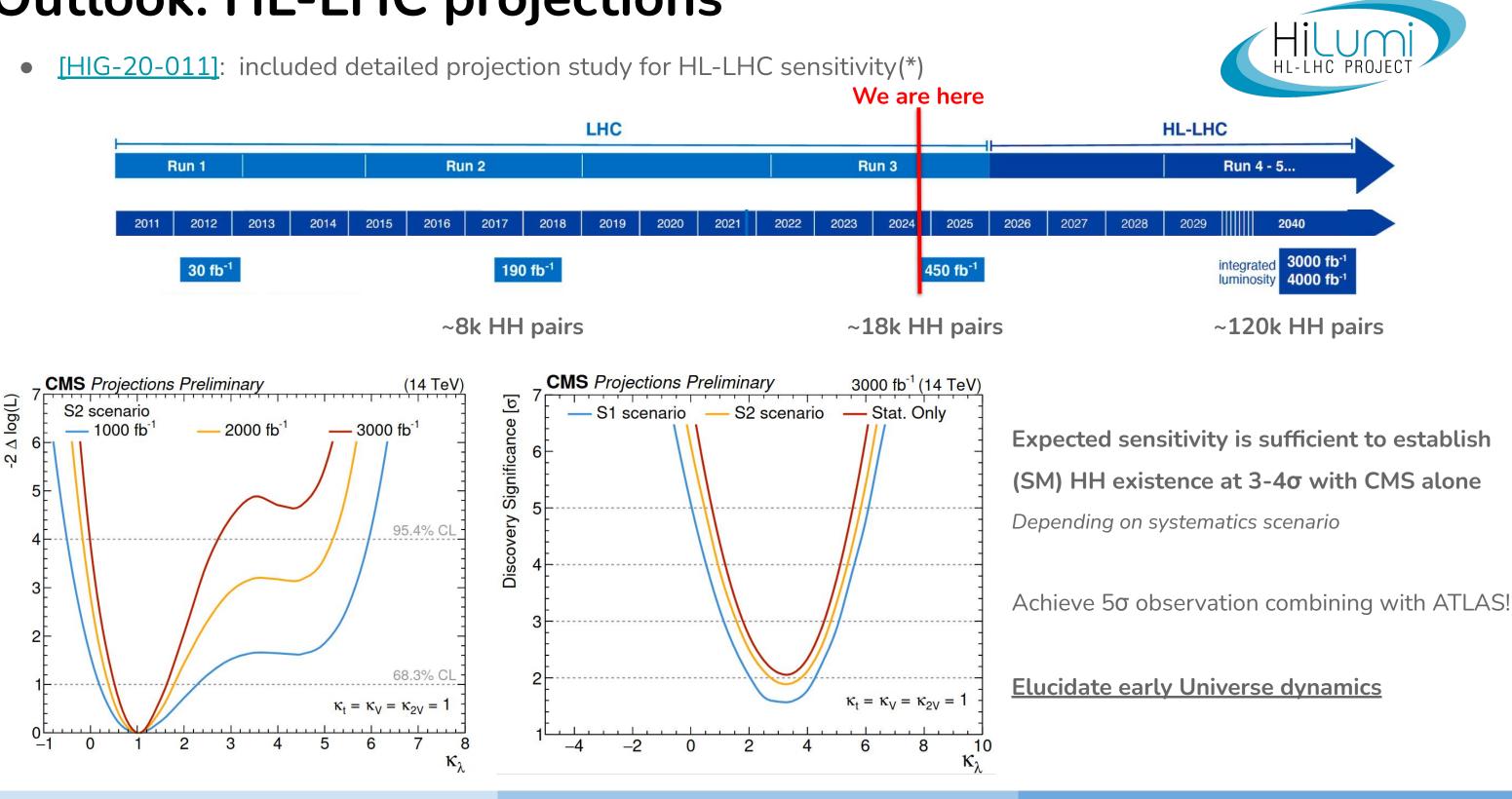


Jonathon Langford

-2 \[log(L)

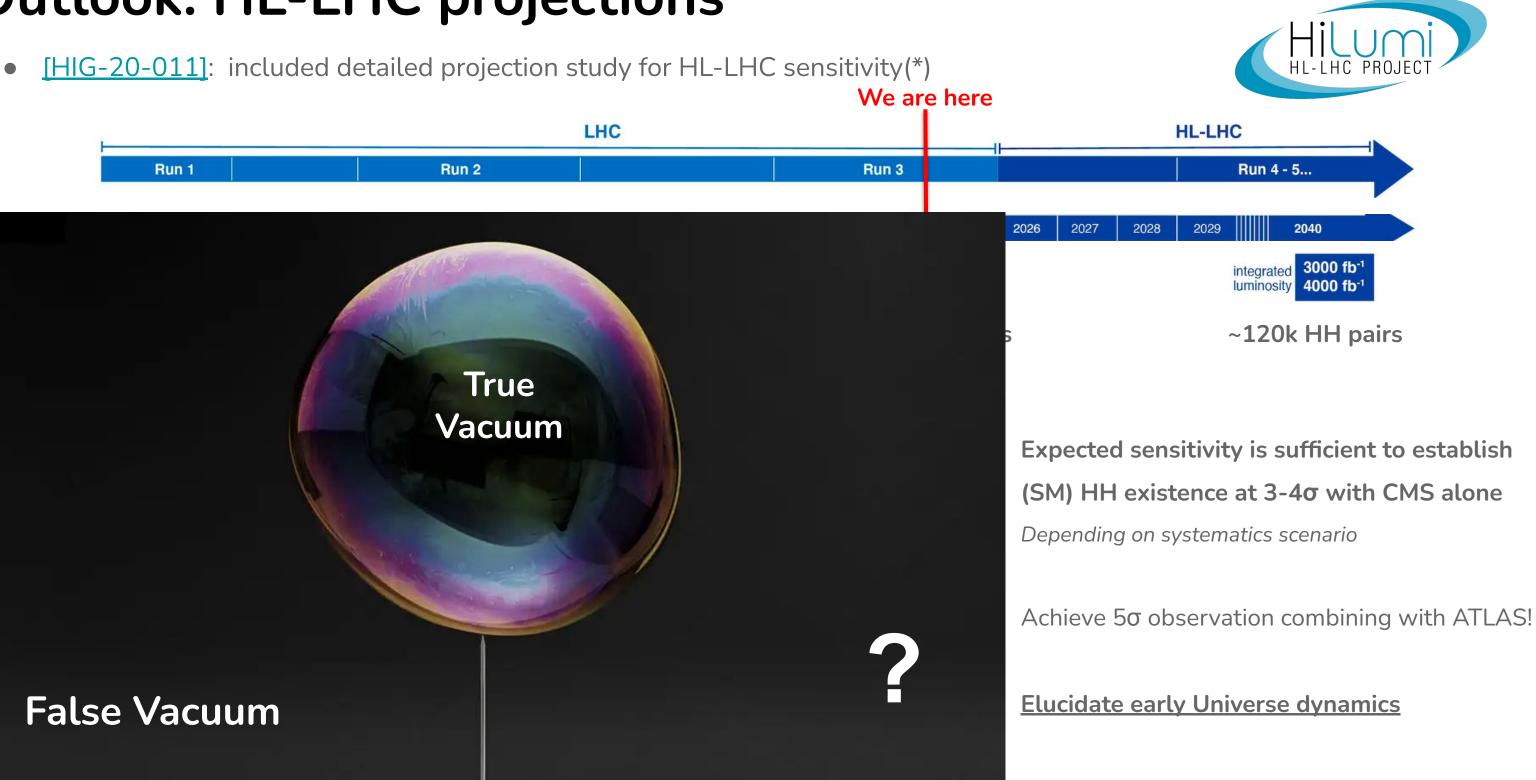
Particle Physics Seminar - UoB





Jonathon Langford

Particle Physics Seminar - UoB



Jonathon Langford

Particle Physics Seminar - UoB