

Higgs boson combinations at CMS

UoB Particle Physics Seminar

Dr. Jonathon Langford 27th November 2024

Higgs & the standard model

 $SM = set of quantum field theories that describe fundamental particles and their interactions$

Explains how:

- *● W and Z bosons acquire mass*
- *● Quarks and charged leptons acquire mass*

Prediction of new scalar particle → **Higgs boson**

The Standard Model

Propagation of force carriers (spin-1 bosons) Interactions of matter particles (spin-½ fermions) Masses of matter particles (Yukawa) Higgs interactions & masses of force carriers

Higgs mechanism plays a major role in the SM

Higgs boson production & decay @ LHC

Jonathon Langford Particle Physics Seminar - UoB 27/11/24 **4**

Jonathon Langford Particle Physics Seminar - UoB 27/11/24 **5**

$H \rightarrow \gamma \gamma$ candidate

Jonathon Langford Particle Physics Seminar - UoB 27/11/24 **6**

CMS Experiment at the LHC, CERN Data recorded: 2018-May-10 13:41:39.516864 GMT Run / Event / LS: 316082 / 225538853 / 180

$H \rightarrow ZZ^* \rightarrow e e \mu \mu$ candidate

Jonathon Langford Particle Physics Seminar - UoB 27/11/24 **7**

CMS Experiment at the LHC, CERN Data recorded: 2017-Aug-20 18:16:45.926208 GMT Run / Event / LS: 301472 / 634226645 / 664

$Z(\rightarrow ee)H(\rightarrow bb)$ candidate

Twelve years since discovery

• Since discovery we have collected significantly more data

● Entered era of precision measurements in the Higgs sector

● Entered era of precision measurements in the Higgs sector

 \bullet Entered era of precision measurements in the Higgs sector \rightarrow Still much more to come!

 \bullet Entered era of precision measurements in the Higgs sector \rightarrow Still much more to come!

Higgs boson combination

- **● Ultimate precision comes from statistically combining Higgs boson analyses across different decay channels**
- Celebrated ten years since discovery with statistical combination paper in [\[Nature 607 \(2022\) 60-68\]](https://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-22-001/index.html)

Jonathon Langford Particle Physics Seminar - UoB 27/11/24

July 4th 2022

Papers from ATLAS and theory community in same journal edition

Nature input analyses

Jonathon Langford Particle Physics Seminar - UoB 27/11/24

[\[Nature 607 \(2022\) 60-68\]](https://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-22-001/index.html)

• Combination of Higgs boson analyses using the full Run 2 dataset (2016-2018) = 138 fb⁻¹

- Analysis region = selected set of p-p collision data events, $d_r \rightarrow (1)$ Signal region (SR) designed to be enriched in Higgs boson events (2) Control region (CR) designed to control background predictions in SR
- **Define likelihood for each analysis region:**

$$
x_{r,d}\in d_r
$$

$$
\mathcal{L}_r(d_r|\boldsymbol{\mu},\boldsymbol{\nu})=\prod_d\text{Prob}\Big(x_{r,d}\Big|\sum_{i,f}\mu^i,
$$

 $^{i,f}S^{i,f}_{r,d}(\nu)+\sum_{k}B_{k}(\nu)\Big),$

• Analysis region = selected set of p-p collision data events, $d_r \rightarrow (1)$ Signal region (SR) designed to be enriched in Higgs boson events (2) Control region (CR) designed to control background predictions in SR

- Analysis region = selected set of p-p collision data events, $d_r \rightarrow (1)$ Signal region (SR) designed to be enriched in Higgs boson events (2) Control region (CR) designed to control background predictions in SR
- **Define likelihood for each analysis region:**

$$
x_{r,d}\in d_r
$$

$$
\mathcal{L}_r(d_r|\boldsymbol{\mu},\boldsymbol{\nu}) = \prod_d \text{Prob}\left[x_{r,d}\right] \sum_{i,f} \mu^i
$$

• The **data** (d_r) in each analysis region can be...

Jonathon Langford Particle Physics Seminar - UoB 27/11/24

 $^{i,f}S^{i,f}_{r,d}(\boldsymbol{\nu})+\sum B_{k}(\boldsymbol{\nu})\Big)$

Unbinned observables: $L_r =$ (extended) product of Poisson terms over events

- Analysis region = selected set of p-p collision data events, $d_r \rightarrow (1)$ Signal region (SR) designed to be enriched in Higgs boson events (2) Control region (CR) designed to control background predictions in SR
- **Define likelihood for each analysis region:**

$$
x_{r,d}\in d_r
$$

$$
\mathcal{L}_r(d_r|\boldsymbol{\mu},\boldsymbol{\nu})=\prod_d\text{Prob}\Big(x_{r,d}\Big|\sum_{i,f}\mu^i\Big)
$$

● **Signal model** for Higgs boson production process **i**, in decay channel **f** (derived from Monte-Carlo simulation)

- Analysis region = selected set of p-p collision data events, $d_r \rightarrow (1)$ Signal region (SR) designed to be enriched in Higgs boson events (2) Control region (CR) designed to control background predictions in SR
- **Define likelihood for each analysis region:**

$$
x_{r,d}\in d_r
$$

$$
\mathcal{L}_r(d_r|\boldsymbol{\mu},\boldsymbol{\nu}) = \prod_d \text{Prob}\Big(x_{r,d} \Big| \sum_{i,f} \mu^{i,f} S_{r,d}^{i,f}(\boldsymbol{\nu}) + \sum_k B_k(\boldsymbol{\nu})\Big|
$$

Background model: majority are data-driven e.g. mass sidebands to estimate background under signal

- Analysis region = selected set of p-p collision data events, $d_r \rightarrow (1)$ Signal region (SR) designed to be enriched in Higgs boson events (2) Control region (CR) designed to control background predictions in SR
- **Define likelihood for each analysis region:**

$$
x_{r,d}\in d_r
$$

$$
\mathcal{L}_r(d_r|\boldsymbol{\mu},\boldsymbol{\nu})=\prod_d\text{Prob}\Big(x_{r,d}\Big|\sum_{i,f}\mu^i,
$$

Parameters of interest: "signal-strength" formalism measures rate relative to SM prediction

$$
\mu^{i,f} = \mu^i \cdot \mu^f = \frac{\sigma^i}{\sigma_{\rm SM}^i} \cdot \frac{\mathcal{B}(H \to f)}{\mathcal{B}(H \to f)_{\rm SM}}
$$

- Analysis region = selected set of p-p collision data events, $d_r \rightarrow (1)$ Signal region (SR) designed to be enriched in Higgs boson events (2) Control region (CR) designed to control background predictions in SR
- **Define likelihood for each analysis region:**

$$
x_{r,d}\in d_r
$$

$$
\mathcal{L}_r(d_r|\boldsymbol{\mu},\boldsymbol{\nu})=\prod_d\text{Prob}\Big(x_{r,d}\Big|\sum_{i,f}\mu^i\Big)
$$

Parameters of interest: "signal-strength" formalism measures rate relative to SM prediction

$$
\mu^{i,f} = \mu^i \cdot \mu^f = \frac{\sigma^i}{\sigma_{\rm SM}^i} \cdot \frac{\mathcal{B}(H \to f)}{\mathcal{B}(H \to f)_{\rm SM}}
$$

Jonathon Langford Particle Physics Seminar - UoB 27/11/24

- **Extract different interpretations by parameterising signal strengths**
	- E.g. Coupling modifiers (kappa-framework):

$$
\mu \longrightarrow \mu(\vec{\kappa})
$$

$$
\mathcal{L}_r(d_r|\boldsymbol{\mu},\boldsymbol{\nu})=\prod_d\text{Prob}\Big(x_{r,d}\,\Big|\,\sum_{i,f}
$$

● Combination likelihood calculated as the product of likelihoods across analysis regions

$$
\mathcal{L}(\mathcal{D}|\boldsymbol{\mu},\boldsymbol{\nu})=\prod_{r}\mathcal{L}_{r}\times \text{Gauss}(\boldsymbol{\tilde{\nu}}|\boldsymbol{\nu})
$$

 $\sum_{k} \mu^{i,f} S^{i,f}_{r,d}(\nu) + \sum_{k} B_{k}(\nu)$

$$
\mathcal{L}_r(d_r|\boldsymbol{\mu},\boldsymbol{\nu})=\prod_d\text{Prob}\Big(x_{r,d}\,\Big|\,\sum_{i,f}
$$

● Combination likelihood calculated as the product of likelihoods across analysis regions

$$
\mathcal{L}(\mathcal{D}|\boldsymbol{\mu},\boldsymbol{\nu})=\prod_{r}\mathcal{L}_{r}\times\left[\overline{\text{Gauss}}(\boldsymbol{\tilde{\nu}}|\boldsymbol{\nu})\right]
$$

 B_k

● Crucial ingredient: **nuisance parameters** → Account for systematic uncertainty in signal/background normalisation and shape

$$
\mathcal{L}_r(d_r|\boldsymbol{\mu},\boldsymbol{\nu})=\prod_d\text{Prob}\Big(x_{r,d}\,\Big|\,\sum_{i,f}
$$

Combination likelihood calculated as the product of likelihoods across analysis regions

$$
\mathcal{L}(\mathcal{D}|\boldsymbol{\mu},\boldsymbol{\nu})=\prod_{r}\mathcal{L}_{r}\times\left[\overline{\text{Gauss}}(\boldsymbol{\tilde{\nu}}|\boldsymbol{\nu})\right]
$$

Jonathon Langford Particle Physics Seminar - UoB 27/11/24

- Crucial ingredient: **nuisance parameters** \rightarrow Account for systematic uncertainty in signal/background normalisation and shape
	- 1. **Experimental/detector systematics:** Object efficiencies, energy scales, luminosity, …
	- 2. **Signal theory uncertainties:** Inclusive x-section, QCD scale, PDF, UEPS, branching fraction, …
	- 3. **Background theory uncertainties:**

Cover extrapolation from CR to SR phase space for data-driven estimates

Combinations typically have $O(1000)$'s nuisance parameters \rightarrow Correlate effects across different input channels

A computational challenge

Jonathon Langford Particle Physics Seminar - UoB 27/11/24 **26**

 $\mathcal{L}(\mathcal{D}|\pmb{\mu},\pmb{\nu})$ –

Profiled likelihood ratio

- Nature combination has ~850 analysis regions and ~9500 parameters in the model (mostly constrained nuisance params)
- Fitting the likelihood is a computationally expensive task:
	- \circ ~30 Gb to build likelihood, (~10 Gb, ~10 hours) to fit per parameter point
	- Parallelisation is key!

A computational challenge

Jonathon Langford Particle Physics Seminar - UoB 27/11/24 **27**

Profiled likelihood ratio

- Nature combination has **~850 analysis regions** and **~9500 parameters** in the model (mostly constrained nuisance params)
- Fitting the likelihood is a computationally expensive task:
	- \circ ~30 Gb to build likelihood, (~10 Gb, ~10 hours) to fit per parameter point
	- Parallelisation is key!

[Combine:](http://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/latest/) statistical fitting tool developed in CMS

Now being used outside of the collaboration!

A combined fit

Jonathon Langford Particle Physics Seminar - UoB 27/11/24 **28**

[\[Nature 607 \(2022\) 60-68\]](https://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-22-001/index.html)

Higgs boson couplings

- In SM \rightarrow Higgs interactions strengths (couplings) to SM particles are proportional to mass of those particles
- Probe this relationship with the **kappa-framework**

Measurements are in good agreement with SM with good precision

[\[Nature 607 \(2022\) 60-68\]](https://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-22-001/index.html)

Higgs boson couplings

Jonathon Langford Particle Physics Seminar - UoB 27/11/24 **30**

[\[Nature 607 \(2022\) 60-68\]](https://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-22-001/index.html)

-
- **● Are we not done?**

Higgs boson couplings

Jonathon Langford Particle Physics Seminar - UoB 27/11/24 **31**

[\[Nature 607 \(2022\) 60-68\]](https://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-22-001/index.html)

● Are we not done?

The open questions

"Almost every problem of the Standard Model originates from Higgs boson interactions"

Jonathon Langford Particle Physics Seminar - UoB 27/11/24

Precision measurements of Higgs boson offer a *unique tool to search for new fundamental physics*

The open questions

Jonathon Langford Particle Physics Seminar - UoB 27/11/24 **33**

● Are the Higgs interactions SM-like?

Do all SM particles lie on that line?

Overview of analyses

Jonathon Langford Particle Physics Seminar - UoB 27/11/24 **34**

Combination and interpretation of fiducial differential Higgs boson production cross sections at √s = 13 TeV

2. [\[CMS-PAS-SMP-24-003\]:](https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/SMP-24-003/)

Combined effective field theory interpretation of Higgs boson, electroweak vector boson, top quark and multi-jet measurements

Higgs couplings to probe BSM physics

Precision measurements of Higgs boson interactions provide complimentary approach to direct searches

Jonathon Langford Particle Physics Seminar - UoB 27/11/24

Higgs couplings to probe BSM physics

Precision measurements of Higgs boson interactions provide complimentary approach to direct searches

Jonathon Langford Particle Physics Seminar - UoB 27/11/24

[arXiv:1310.8361](https://arxiv.org/abs/1310.8361)

Jonathon Langford Particle Physics Seminar - UoB 27/11/24 **37**

Jonathon Langford Particle Physics Seminar - UoB 27/11/24 **38**

SM

 $+\sum_{i}\frac{c_i^{(i)}}{\Lambda^3}\mathcal{O}_i^{(7)}+\sum_{i}\frac{c_i^{(8)}}{\Lambda^4}\mathcal{O}_i^{(8)}+...$

With no direct observation of new physics (NP) at the LHC we turn to: **Effective Field Theory**

$$
\mathcal{L}_{\text{EFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_i^{(5)}}{\Lambda} \mathcal{O}_i^{(5)} + \sum_{i} \frac{c_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)}
$$

- Assume NP exists at a **mass scale**, Λ, beyond energy-reach of collider
- **Coherent expansion in 1/Λ of SM Lagrangian** to include higher-dim operators
	- Integrate out short-distance new physics
	- Look for imprints in SM interactions
	- **○ Systematically probe space of BSM theories**
- Model-independent approach (*)

(*) - Valid for E<Λ. Assumes some flavour scheme. Obeys SM symmetries

Jonathon Langford Particle Physics Seminar - UoB 27/11/24 **39**

SM

 $\frac{1}{3}$ O(7). $\sum \frac{C_i^{(0)}}{\Lambda^4} O_i^{(8)} + ...$

With no direct observation of new physics (NP) at the LHC we turn to:

Effective Field Theory

$$
\mathcal{L}_{\text{EFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_i^{(5)}}{\Lambda} \mathcal{O}_i^{(5)} + \sum_{i} \frac{c_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)}
$$

- Assume NP exists at a **mass scale**, Λ, beyond energy-reach of collider
- **Coherent expansion in 1/Λ of SM Lagrangian** to include higher-dim operators
	- Integrate out short-distance new physics
	- Look for imprints in SM interactions
	- **○ Systematically probe space of BSM theories**
- Model-independent approach (*)

(*) - Valid for E<Λ. Assumes some flavour scheme. Obeys SM symmetries

Odd terms violate B-L conservation

Jonathon Langford Particle Physics Seminar - UoB 27/11/24 **40**

SM

 $\frac{c_1^{(7)}}{c_3^{(7)}} + \sum \frac{c_i^{(8)}}{ \Lambda^4} \mathcal{O}_i^{(8)} + ...$

With no direct observation of new physics (NP) at the LHC we turn to:

Effective Field Theory

- Assume NP exists at a **mass scale**, Λ, beyond energy-reach of collider
- **Coherent expansion in 1/Λ of SM Lagrangian** to include higher-dim operators
	- Integrate out short-distance new physics
	- Look for imprints in SM interactions
	- **○ Systematically probe space of BSM theories**
- Model-independent approach (*)

(*) - Valid for E<Λ. Assumes some flavour scheme. Obeys SM symmetries

A hiker's guide to EFT

Jonathon Langford Particle Physics Seminar - UoB 27/11/24 **41**

Complete theory: map of mountain range down to details of cracks in rock

- A hiker does not need this level of detail
- Introduce 10m grid on terrain and use average values for each square

- Discard information with length scale below some cut-off
- But capture relevant physics!

Effective theory:

A hiker's guide to EFT

Jonathon Langford Particle Physics Seminar - UoB 27/11/24 **42**

Complete theory: map of mountain range down to details of cracks in rock

- A hiker does not need this level of detail
- Introduce 10m grid on terrain and use average values for each square

Contact interaction, lower-energy H $_{-} {\cal O}_G^{(6)} = |H|^2 G^a_{\mu\nu} G^{a,\mu\nu}$

Effective theory:

- Discard information with length scale below some cut-off
- But capture relevant physics!

Apply same principle to TeV+ scale physics

Wilson coefficients Higher-dim operator Mass-scale suppression

(*) Compare with Fermi-theory for muon decay. Fermi-theory is an EFT for the SM

Jonathon Langford Particle Physics Seminar - UoB 27/11/24 **43**

Contact interaction, lower-energy H $\mathcal{O}_G^{(6)} = |H|^2 G_{\mu\nu}^a G^{a,\mu\nu}$

Wilson coefficients Higher-dim operator Mass-scale suppression

Importance of going differential

Inclusive measurements (in bulk) High precision yields precision on new physics scale

 δ ~1% \rightarrow Λ ~ 2.5 TeV

Differential measurements (in tail) High momentum production is sensitive

 δ ~15% (q=1 TeV) $\rightarrow \Lambda \sim 2.5$ TeV

Importance of going differential

Jonathon Langford Particle Physics Seminar - UoB 27/11/24 **45**

 $\delta = \left(\frac{V}{\Lambda}\right)^2$

Inclusive measurements (in bulk) High precision yields precision on new physics scale

 δ ~1% \rightarrow Λ ~ 2.5 TeV

Differential measurements (in tail) High momentum production is sensitive

 δ ~15% (q=1 TeV) $\rightarrow \Lambda \sim 2.5$ TeV

Use differential Higgs boson measurements to exploit sensitivity to EFT

Differential Higgs boson measurements

Large Run 2 dataset has paved the way for precise differential Higgs boson measurements

46

Jonathon Langford Particle Physics Seminar - UoB 27/11/24

 $H \rightarrow \gamma \gamma$

Larger model-dependence Most model-independent

Differential Higgs boson measurements

● Large Run 2 dataset has paved the way for precise differential Higgs boson measurements

Jonathon Langford Particle Physics Seminar - UoB 27/11/24

 $H \rightarrow \gamma \gamma$

Larger model-dependence Most model-independent

Combination of fiducial differential cross sections

● *"*Fiducial*"* = measurements performed in specific fiducial phase space, designed to be close to experimental phase space

- $H \rightarrow \gamma \gamma$ *[JHEP 07 \(2023\) 091](http://dx.doi.org/10.1007/JHEP07(2023)091)*, $H \rightarrow ZZ^* \rightarrow 4$ l *[JHEP 08 \(2023\) 040](http://dx.doi.org/10.1007/JHEP08(2023)040)*, $H \rightarrow WW^* \rightarrow e$ μνν *[JHEP 03 \(2021\) 003](http://dx.doi.org/10.1007/JHEP03(2021)003)*, $H \rightarrow \tau \tau$ *[Phys. Rev. Lett. 128 \(2022\) 081805](http://dx.doi.org/10.1103/PhysRevLett.128.081805)* and $H \rightarrow \tau \tau$ (boosted) *[Phys. Lett. B 857 \(2024\) 138964](http://dx.doi.org/10.1016/j.physletb.2024.138964)*
	- \circ Analyses use full dataset collected 2016–2018 corresponding to 138 fb⁻¹
	- \circ Fiducial regions defined by loose selections \rightarrow measurements are mostly sensitive to ggH production
- Differential cross sections extracted through simultaneous maximum likelihood fit
	- \circ Common parameters of interest ($u = d\sigma/d\sigma_{SM}$) for all channels with correlated nuisance parameter scheme

Total Higgs-boson decay phase space

$$
\text{O}\quad\text{Measurements:}\quad p_{\mathcal{T}}^{\mathcal{H}},\,\mathcal{N}_{\text{jets}},\,|\mathcal{Y}_{\mathcal{H}}|,\,p_{\mathcal{T}}^{j1},\,m_{jj},|\Delta\eta_{jj}|,\,\tau_{\mathcal{C}}^{j}
$$

Combination of fiducial differential cross sections

Jonathon Langford Particle Physics Seminar - UoB 27/11/24 **49**

Additional systematic uncertainties from scale variations are included to cover this extrapolation

Combined spectra

Jonathon Langford Particle Physics Seminar - UoB 27/11/24 **50**

Combined spectra

Shape distortions in measured pTH spectra used to constrain EFT Wilson coefficients

Jonathon Langford Particle Physics Seminar - UoB 27/11/24 **51**

- Standard Model Effective Field Theory (SMEFT)
	- \circ Used to **parametrise distortions** in p_T^H spectrum
	- \circ Flavour symmetry: $\mathcal{U}(2)_{q,u,d}^3 \times \mathcal{U}(3)_{l,e}^2$
	- Consider all relevant CP-even operators for Higgs boson interactions

$$
\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{j=0} \frac{c_j^{(6)}}{\Lambda^2} O_j^{(6)}
$$

 ${\cal L}_6^{(6)} - {\psi}^2 X H$

 $\mathcal{L}_6^{(7)} - \psi^2 H^2 D$

$$
\mathcal{L}_6^{(8a)} - (\bar{L}L)(\bar{L}L
$$

Jonathon Langford Particle Physics Seminar - UoB 27/11/24

Class
\n
$$
\frac{\mathcal{L}_6^{(1)} - X^3}{\mathcal{L}_6^{(3)} - H^4 D^2}
$$

 ${\cal L}_6^{(4)} - X^2 H^2$

 $\mathcal{L}_6^{(5)} - \psi^2 H^3$

- Standard Model Effective Field Theory (SMEFT)
	- \circ Used to **parametrise distortions** in p_T^H spectrum
	- \circ Flavour symmetry: $\mathcal{U}(2)_{q,u,d}^3 \times \mathcal{U}(3)_{l,e}^2$
	- Consider all relevant CP-even operators for Higgs boson interactions

$$
\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{j=0} \frac{c_j^{(6)}}{\Lambda^2} O_j^{(6)}
$$

 $\mathcal{L}_6^{(5)} - \psi^2 H^3$

 $\mathcal{L}_6^{(7)} - \psi^2 H^2 D$

 $\mathcal{L}_6^{(8a)} - (\bar{L}L)(\bar{L}L)$

$$
\boxed{\text{max}^q \text{max} \text{max}^{\ell}
$$

Jonathon Langford Particle Physics Seminar - UoB 27/11/24

- Standard Model Effective Field Theory (SMEFT)
	- \circ Used to **parametrise distortions** in p_T^H spectrum
	- \circ Flavour symmetry: $\mathcal{U}(2)_{q,u,d}^3 \times \mathcal{U}(3)_{l,e}^2$
	- Consider all relevant CP-even operators for Higgs boson interactions

$$
\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{j=0} \frac{c_j^{(6)}}{\Lambda^2} O_j^{(6)}
$$

$$
\mathcal{M} = \mathcal{M}_{\text{SM}} + \mathcal{M}_{\text{EFT}} \qquad \mathcal{M}_{\text{EFT}} = \sum_{i} \alpha_i c_i
$$

 H

 $\mathcal{L}_6^{(8a)} - (\bar{L}L)(\bar{L}L)$

 $\mathcal{L}_6^{(7)} - \psi^2 H^2 D$

Class

 ${\cal L}_6^{(1)}-X^3$

 $\mathcal{L}_6^{(3)} - H^4 D^2$

 $\mathcal{L}_6^{(4)} - X^2 H^2$

 $\mathcal{L}_6^{(5)} - \psi^2 H^3$

Jonathon Langford Particle Physics Seminar - UoB 27/11/24

BOOK

95000

- Standard Model Effective Field Theory (SMEFT)
	- \circ Used to **parametrise distortions** in p_T^H spectrum
	- \circ Flavour symmetry: $\mathcal{U}(2)_{q,u,d}^3 \times \mathcal{U}(3)_{l,e}^2$
	- Consider all relevant CP-even operators for Higgs boson interactions

$$
\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{j=0} \frac{c_j^{(6)}}{\Lambda^2} O_j^{(6)}
$$

$$
\mathcal{M} = \mathcal{M}_{\text{SM}} + \mathcal{M}_{\text{EFT}} \qquad \mathcal{M}_{\text{EFT}} = \sum_{i} \alpha_i c_i
$$

$$
|\mathcal{M}|^2 = |\mathcal{M}_{SM}|^2 + (\mathcal{M}_{SM}^* \mathcal{M}_{EFT} + \mathcal{M}_{SM} \mathcal{M}_{EFT}^*) + |\mathcal{M}_{EFT}|^2
$$

= $|\mathcal{M}_{SM}|^2 + \sum_i (\mathcal{M}_{SM}^* \alpha_i + \mathcal{M}_{SM} \alpha_i^*) c_i$
+ $\sum_i |\alpha_i|^2 c_i^2 + \sum_{i \neq j} (\alpha_i^* \alpha_j + \alpha_i \alpha_j^*) c_i c_j$

Jonathon Langford Particle Physics Seminar - UoB 27/11/24

$$
\mathcal{L}_6^{(7)} - \psi^2 H^2 D
$$

 $\mathcal{L}_6^{(8a)} - (\bar{L}L)(\bar{L}L)$

- Standard Model Effective Field Theory (SMEFT)
	- \circ Used to **parametrise distortions** in $\boldsymbol{p}_{\boldsymbol{\mathcal{T}}}^H$ spectrum
	- \circ Flavour symmetry: $\mathcal{U}(2)^3_{q,u,d}\times \mathcal{U}(3)^2_{l,e}$
	- Consider all relevant CP-even operators for Higgs boson interactions

$$
\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{j=0} \frac{c_j^{(6)}}{\Lambda^2} O_j^{(6)}
$$

 $\mathcal{M} = \mathcal{M}_{\rm SM} + \mathcal{M}_{\rm EFT}$ ${\cal M}_{\rm EFT}=\sum_i \alpha_i c_i$

$$
|\mathcal{M}|^2 = |\mathcal{M}_{\text{SM}}|^2 + (\mathcal{M}_{\text{SM}}^* \mathcal{M}_{\text{EFT}} + \mathcal{M}_{\text{SM}} \mathcal{M}_{\text{EFT}}^*) + |\mathcal{M}_{\text{EFT}}|^2
$$

\n
$$
= |\mathcal{M}_{\text{SM}}|^2 + \sum_i (\mathcal{M}_{\text{SM}}^* \alpha_i + \mathcal{M}_{\text{SM}} \alpha_i^*) c_i
$$

\n
$$
+ \sum_i |\alpha_i|^2 c_i^2 + \sum_{i \neq j} (\alpha_i^* \alpha_j + \alpha_i \alpha_j^*) c_i c_j
$$

\n
$$
\mu = 1 + \sum_i A_i c_i + \sum_{ij} B_{ij} c_i c_j
$$

$$
\begin{bmatrix} q & q & q \\ q & \gamma & q \\ \hline & \gamma & q \\ \hline & \gamma & q \end{bmatrix} \begin{bmatrix} q & q \\ q & \gamma & q \\ \hline & \gamma & q \end{bmatrix}
$$

 ${\cal L}_6^{(5)} - \psi^2 H^3$

Jonathon Langford Particle Physics Seminar - UoB 27/11/24

- Higgs boson production (differential) cross sections and decay rates are quadratic functions of Wilson coefficients
	- \circ Parameterised by A_{_i} (linear interference term) and B_{ij} (quadratic BSM term) factors
	- Derived numerically with Monte Carlo tools using SMEFTsim and SMEFT@NLO models [\[EFT2Obs\]](https://github.com/ajgilbert/EFT2Obs)
	- Decay scaling calculated within fiducial phase space of each channel
- Narrow-width approximation:

$$
\mu_i^X(c_j) = \frac{(\sigma \times \mathcal{B})^{i, H \to X}}{(\sigma \times \mathcal{B})_{\text{SM}}^{i, H \to X}} \qquad \mu_i^X(c_j) = (1 + \sum_j A_j^{pp \to H} c_j + \sum_{jk} B_{jk}^{pp \to H} c_j c_k) \cdot \frac{(1 + \mu_i^Y c_j^T)^{i, H \to X}}{(1 + \mu_i^Y c_j^T)^{i, H \to X}}
$$

 $\mu = 1 + \sum A_i c_i + \sum B_{ij} c_i c_j$

 $\frac{(1+\sum_j A_j^{H\to X}c_j + \sum_{jk} B_{jk}^{H\to X}c_jc_k)}{(1+\sum_j A_j^{tot}c_j + \sum_{ik} B_{jk}^{tot}c_jc_k)}$

- Higgs boson production (differential) cross sections and decay rates are quadratic functions of Wilson coefficients
	- \circ Parameterised by A_{_i} (linear interference term) and B_{ij} (quadratic BSM term) factors
	- Derived numerically with Monte Carlo tools using SMEFTsim and SMEFT@NLO models [\[EFT2Obs\]](https://github.com/ajgilbert/EFT2Obs)
	- Decay scaling calculated within fiducial phase space of each channel
- Narrow-width approximation:

$$
\mu_i^X(c_j) = \frac{(\sigma \times \mathcal{B})^{i, H \to X}}{(\sigma \times \mathcal{B})_{\text{SM}}^{i, H \to X}}
$$

 $\mu = 1 + \sum A_i c_i + \sum$

$$
\mu_i^X(c_j) = \left[(1 + \sum_j A_j^{pp \to H} c_j + \sum_{jk} B_{jk}^{pp \to H} c_j c_k) \right]_1^1 (1 + \sum_j A_j^{pp \to H} c_j c_k) \left[(1 + \sum_j B_{jk}^{pp \to H} c_j c_k) \right]_1^1 (1 + \sum_j B_{jk}^{pp \to H} c_j c_k)
$$

SMEFT constraints

- Combined fit to all channels (within fiducial phase space)
	- Consider new physics in one operator at a time i.e. set all other WCs to SM (zero)

● Express likelihood as function of Wilson coefficients:

 $\mathcal{L}(\mathcal{D}|\mu_i^X,\nu) \longrightarrow \mathcal{L}(\mathcal{D}|\mu_i^X(c_i),\nu)$

SMEFT constraints

- Combined fit to all channels (within fiducial phase space)
	- Consider new physics in one operator at a time i.e. set all other WCs to SM (zero)

● Express likelihood as function of Wilson coefficients:

$$
\mathcal{L}(\mathcal{D}|\mu_i^X,\nu)\longrightarrow\mathcal{L}(\mathcal{D}|\mu_i^X(c_j),\nu)
$$

SMEFT constraints

Express likelihood as function of Wilson coefficients:

$$
\mathcal{L}(\mathcal{D}|\mu_i^X,\nu)\longrightarrow\mathcal{L}(\mathcal{D}|\mu_i^X(c_j),\nu)
$$

- Combined fit to all channels (within fiducial phase space)
	- Consider new physics in one operator at a time i.e. set all other WCs to SM (zero)

 c_{HG} $\times 10^{-}$ c_{HB} × 10⁻³ c_{HWB} × 10⁻³ $Re(c_{bH}) \times 10^{-3}$

 c_{HW} × 10⁻² $Re(c_{tB}) \times 10^{-2}$ $Im(c_{bH}) \times 10^{-7}$

> $c_{\text{Hbox}} \times 10^{-7}$ c_{Hd} × 10⁻ $c_{Hg}^{(1)}$ × 10⁻¹ $c_{Hq}^{(3)}$ × 10⁻¹ $c_{HI}^{(3)} \times 10^{-7}$ c_{Hu} × 10⁻¹

> > C_H CHD C_{He}

 $c_{\rm HI}^{(1)}$ $c_{HO}^{(1)}$

 $c_{HO}^{(3)}$

Jonathon Langford Particle Physics Seminar - UoB 27/11/24 **63**

CMS Preliminary

Jonathon Langford Particle Physics Seminar - UoB 27/11/24 **64**

- Available data do not contain enough information to constrain all coefficients simultaneously \rightarrow flat directions in likelihood
- **PCA:** eigenvector decomposition of Fisher information matrix to find constrained (and unconstrained) direction in WC space
	- Obtain **linear combinations of SMEFT WCs**
	- Fit constrained directions and fix unconstrained directions to zero(*)

Jonathon Langford Particle Physics Seminar - UoB 27/11/24

(*) Minimal loss of generality in fit by fixing flat directions in likelihood

- Available data do not contain enough information to constrain all coefficients simultaneously \rightarrow flat directions in likelihood
- **PCA:** eigenvector decomposition of Fisher information matrix to find constrained (and unconstrained) direction in WC space
	- Obtain **linear combinations of SMEFT WCs**
	- Fit constrained directions and fix unconstrained directions to zero(*)

Jonathon Langford Particle Physics Seminar - UoB 27/11/24

• For example:
$$
H \rightarrow \gamma \gamma
$$

\n
$$
\mathcal{L}(\mathcal{D}|\mu_i^{\gamma\gamma}, \nu) \longrightarrow \mathcal{I}_{\text{diff}}^{\gamma\gamma} = \left[-\frac{\partial^2 \ln \mathcal{L}(\mathcal{D}|\mu_i^{\gamma\gamma}, \nu)}{\partial \theta_k \partial \theta_l} \right]
$$
\nUnder Gaussian Approximation: $\mathcal{I}_{\gamma\gamma, \text{diff}} = \mathcal{H}_{\gamma\gamma, \text{diff}} = C_{\gamma\gamma, \text{diff}}^{-1}$

(*) Minimal loss of generality in fit by fixing flat directions in likelihood

- Available data do not contain enough information to constrain all coefficients simultaneously \rightarrow flat directions in likelihood
- **PCA:** eigenvector decomposition of Fisher information matrix to find constrained (and unconstrained) direction in WC space
	- Obtain **linear combinations of SMEFT WCs**
	- Fit constrained directions and fix unconstrained directions to zero(*)

Jonathon Langford Particle Physics Seminar - UoB 27/11/24

• For example:
$$
H \rightarrow \gamma \gamma
$$

\n
$$
\mathcal{L}(\mathcal{D}|\mu_i^{\gamma\gamma}, \nu) \longrightarrow \mathcal{I}_{\text{diff}}^{\gamma\gamma} = \left[-\frac{\partial^2 \ln \mathcal{L}(\mathcal{D}|\mu_i^{\gamma\gamma}, \nu)}{\partial \theta_k \partial \theta_l} \right]
$$
\nUnder Gaussian Approximation: $\mathcal{I}_{\gamma\gamma, \text{diff}} = \mathcal{H}_{\gamma\gamma, \text{diff}} = C_{\gamma\gamma, \text{diff}}^{-1}$
\nRotation to SMEFT basis: $P_{ij}^{\gamma\gamma} = A_{ij}^{gg \to H} + A_j^{H \to \gamma\gamma} - A_j^{\text{tot}}$
\n
$$
C_{\gamma\gamma, \text{SMEFT}}^{-1} = P^{\gamma\gamma T} C_{\gamma\gamma, \text{diff}}^{-1} P^{\gamma\gamma}
$$

(*) Minimal loss of generality in fit by fixing flat directions in likelihood

- Available data do not contain enough information to constrain all coefficients simultaneously \rightarrow flat directions in likelihood
- **PCA:** eigenvector decomposition of Fisher information matrix to find constrained (and unconstrained) direction in WC space
	- Obtain **linear combinations of SMEFT WCs**
	- Fit constrained directions and fix unconstrained directions to zero(*)

Jonathon Langford Particle Physics Seminar - UoB 27/11/24

Form Eigenvector decomposition:

 $\mathcal{L}_\Gamma = (EV_{\gamma\gamma})\Lambda_{\gamma\gamma}(EV_{\gamma\gamma})^{-1} \Big|_{\gamma\gamma}$

erality in fit by fixing flat directions in likelihood

• For example: H
$$
\rightarrow \gamma\gamma
$$

\n
$$
\mathcal{L}(\mathcal{D}|\mu_i^{\gamma\gamma}, \nu) \longrightarrow \mathcal{I}_{\text{diff}}^{\gamma\gamma} = \left[-\frac{\partial^2 \ln \mathcal{L}(\mathcal{D}|\mu_i^{\gamma\gamma}, \nu)}{\partial \theta_k \partial \theta_l} \right]
$$
\nUnder Gaussian Approximation:
$$
\boxed{\mathcal{I}_{\gamma\gamma,\text{diff}} = \mathcal{H}_{\gamma\gamma,\text{diff}} = C_{\gamma\gamma,\text{diff}}^{-1}}
$$
\n\nRotation to SMEFT basis:
$$
\boxed{P_{ij}^{\gamma\gamma} = A_{ij}^{gg \to H} + A_{j}^{H \to \gamma\gamma} - A_{j}^{\text{tot}}}
$$
\n
$$
\boxed{C_{\gamma\gamma,\text{SMEFT}}^{-1} = P^{\gamma\gamma T} C_{\gamma\gamma,\text{diff}}^{-1} P^{\gamma\gamma}}
$$
\n
$$
(*) \text{ Minimal loss of gen}
$$

● Two-dimension example:

$$
C_{\gamma\gamma,\text{SMEFT}}^{-1} = (EV_{\gamma\gamma})\Lambda_{\gamma\gamma}(EV_{\gamma\gamma})^{-1}
$$

Jonathon Langford Particle Physics Seminar - UoB 27/11/24

Extend basis rotation to full combination: build block-diagonal information matrix

Jonathon Langford Particle Physics Seminar - UoB 27/11/24

● **Consider only 10 eigenvectors with highest eigenvalues** (most sensitive directions) → Others fixed to zero

Simultaneous SMEFT constraints

Simultaneous fit to ten linear combinations of Wilson coefficients:

71

Jonathon Langford Particle Physics Seminar - UoB 27/11/24

 $EV_0 \times 10^{-7}$

 -10

 -15

Generally obtain small correlations between eigenvectors with this approach

How to interpret these results?

• Observe ~ 2σ deviation from SM in EV₅

-
-

-
-
-

-
- We can check impact on measured spectra and compare to data
-

● EFT is a model-agnostic(*) approach to search for new physics → **UV-complete matching**

● EFT is a model-agnostic(*) approach to search for new physics → **UV-complete matching**

EFT is a model-agnostic(*) approach to search for new physics \rightarrow **UV-complete matching**

Jonathon Langford Particle Physics Seminar - UoB 27/11/24

EFT is a model-agnostic(*) approach to search for new physics \rightarrow **UV-complete matching**

EFT is a model-agnostic(*) approach to search for new physics \rightarrow **UV-complete matching**

Jonathon Langford Particle Physics Seminar - UoB 27/11/24

EFT is a model-agnostic(*) approach to search for new physics \rightarrow **UV-complete matching**

Jonathon Langford Particle Physics Seminar - UoB 27/11/24

EFT is a model-agnostic(*) approach to search for new physics \rightarrow **UV-complete matching**

84

Jonathon Langford Particle Physics Seminar - UoB 27/11/24

Towards a global SMEFT fit

Beauty of EFT is it's a fully consistent expansion of the SM → **coherently correlate BSM effects across different processes**

Jonathon Langford Particle Physics Seminar - UoB 27/11/24

Global EFT fit by combining measurements of many different processes

Combined EFT interpretation of CMS data

- [\[CMS-PAS-SMP-24-003\]:](https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/SMP-24-003/) Higgs boson, electroweak vector boson, top quark and multi-jet measurements
	- First attempt at a global EFT fit from CMS:

****NEW SEPT 24****

Combined EFT interpretation of CMS data

[\[CMS-PAS-SMP-24-003\]:](https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/SMP-24-003/) Higgs boson, electroweak vector boson, top quark and multi-jet measurements

****NEW SEPT 24****

Combined EFT interpretation of CMS data

Again use PCA to find constrained directions \rightarrow Many more compared to using only Higgs differential measurements

Flavour of what is to come in Run $3 \rightarrow$ *Ultimate consistency test of the SM @ LHC using global EFT fits*

Jonathon Langford Particle Physics Seminar - UoB 27/11/24

****NEW SEPT 24****

Breakdown of sensitivity from different channels

Summary

- "Almost every problem of the SM originates from Higgs boson interactions"
	- Probe answers with **precision Higgs boson measurements**
- Large Run 2 dataset has opened the door to more sophisticated analyses
	- Going differential!
- Ultimate precision via **Higgs boson statistical combinations**
	- \circ Differential combination \rightarrow SMEFT interpretation
- Global EFT fits for ultimate SM consistency tests

 $E < E$ _{LHC}

Jonathon Langford Particle Physics Seminar - UoB 27/11/24 **89**

Origin of EWSB? Higgs Portal to Hidden Sectors? **Stability of Universe Higgs Physics CPV** and **Baryogenesis** Origin of masses? **Origin of Flavor?**

Back-Up

Discovery

Jonathon Langford Particle Physics Seminar - UoB 27/11/24 **91**

July 4th 2012

Nature input analyses **Mature 607 (2022) 60-68]**

Combination of Higgs boson analyses using the full Run 2 dataset (2016-2018) = 138 fb⁻¹

Jonathon Langford Particle Physics Seminar - UoB 27/11/24

Production tags

Nature input analyses

Jonathon Langford Particle Physics Seminar - UoB 27/11/24

Production tags

[\[Nature 607 \(2022\) 60-68\]](https://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-22-001/index.html)

Combination of Higgs boson analyses using the full Run 2 dataset (2016-2018) = 138 fb⁻¹

Nature input analyses **Mature 607 (2022) 60-68]**

Combination of Higgs boson analyses using the full Run 2 dataset (2016-2018) = 138 fb⁻¹

Jonathon Langford Particle Physics Seminar - UoB 27/11/24

Production tags

Nature input analyses **Mature 607 (2022) 60-68]**

Combination of Higgs boson analyses using the full Run 2 dataset (2016-2018) = 138 fb⁻¹

Jonathon Langford Particle Physics Seminar - UoB 27/11/24

Production tags

Rotated basis parametrisation

The open questions

Jonathon Langford Particle Physics Seminar - UoB 27/11/24 **98**

Do all SM particles lie on that line?

- **● Why is the universe matter dominated?**
	- Can the Higgs boson self-coupling explain baryogenesis in the early universe?

Overview of analyses

Rest of talk: present **recent Run 2 CMS Higgs boson combinations** and explain how they address the open questions

99

Jonathon Langford Particle Physics Seminar - UoB 27/11/24

1. [\[CMS-PAS-HIG-23-013\]:](https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/HIG-23-013/)

Combination and interpretation of fiducial differential Higgs boson production cross sections at √s = 13 TeV

2. [\[CMS-PAS-SMP-24-003\]:](https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/SMP-24-003/)

Combined effective field theory interpretation of Higgs boson, electroweak vector boson, top quark and multi-jet measurements

3. [\[CMS-PAS-HIG-20-011\]:](https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/HIG-20-011/)

Combination of searches for nonresonant Higgs boson pair production in p-p collisions at √s = 13 TeV

[\[CMS-HIG-23-006, submitted to Phys. Lett. B\]](https://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-23-006/index.html):

Constraints on the Higgs boson self-coupling with combination of single and double Higgs boson production

Probing the Higgs potential

Dynamics of electroweak-symmetry breaking are defined by shape of Higgs potential

$$
V(H) = \frac{1}{2}m_H^2 + \lambda_3 vH^3 + \lambda_4 H^4
$$

 $\bullet\quad$ H³ term generates Higgs-Higgs interactions \rightarrow Higgs boson self-coupling

100

• In the SM:
$$
\lambda_3 = 4\lambda_4 = \frac{m_H^2}{v^2}
$$

- Only parameter regulating shape of potential + fully predicted when mH and v are measured
- Measurements of the Higgs boson self coupling are of the highest priority in the field (see European strategy)
	- 1. λ_3 is not a free parameter \rightarrow closure test of the SM
	- λ_3 regulates shape of potential \rightarrow test of EWSB and vacuum stability
	- 3. λ_3 deviations from SM would enable first-order EWSB transition \to Could provide mechanism for EW baryogenesis

Probing the Higgs potential

Dynamics of electroweak-symmetry breaking are defined by shape of Higgs potential

$$
V(H) = \frac{1}{2}m_H^2 + \lambda_3 vH^3 + \lambda_4 H^4
$$

 $\bullet\quad$ H³ term generates Higgs-Higgs interactions \rightarrow Higgs boson self-coupling

101

• In the SM:
$$
\lambda_3 = 4\lambda_4 = \frac{m_H^2}{v^2}
$$

- Only parameter regulating shape of potential + fully predicted when mH and v are measured
- Measurements of the Higgs boson self coupling are of the highest priority in the field (see European strategy)
	- 1. λ_3 is not a free parameter \rightarrow closure test of the SM
	- λ_3 regulates shape of potential \rightarrow test of EWSB and vacuum stability
	- 3. λ 3 deviations from SM would enable first-order EWSB transition \to Could provide mechanism for EW baryogenesis

Baryogenesis

● Universe is **matter (baryon) dominated**

 $n_B >> n_{\bar{B}}$

- **First order phase transition:** essential ingredient for production of B-asymmetry (Baryogenesis) *[A. D. Sakharov, ETP Lett. [5 \(1967\) 24-27\]](https://inspirehep.net/literature/51345)*
	- \circ Sharp discontinuity in state of Universe \rightarrow nucleation of "bubbles" of the new phase within old phase (out-of-equilibrium)
- **Electroweak Baryogenesis?** Bubbles of Higgs field true vacuum in background of false vacuum
	- \circ As bubbles expand \rightarrow create regions where CP-violating interactions occur at bubble walls \rightarrow B-asymmetry
	- A smooth second-order transition would not generate required asymmetry

103

● To achieve first-order phase transition in EWSB we **need a modified Higgs potential**

104

● To achieve first-order phase transition in EWSB we **need a modified Higgs potential**

$$
V = \frac{1}{2} \frac{\mu^2}{2} (v + H)^2 + \frac{\lambda_4}{4} (v + H)^4 + \frac{\lambda_6}{4} (v + H)^6 + \frac{\lambda_7}{4} (v + H)^7
$$

● Inclusion of dim-6 (BSM) term in potential changes relationship between fundamental Higgs parameters

$$
\kappa_{\lambda} = \frac{\lambda_3}{\lambda_3^{SM}} = 1 + \frac{16\lambda_6 v^4}{m_H^2 \Lambda^2}
$$

105

● To achieve first-order phase transition in EWSB we **need a modified Higgs potential**

• Inclusion of dim-6 (BSM) term in potential changes relationship between fundamental Higgs parameters

$$
\boxed{\kappa_{\lambda} = \frac{\lambda_3}{\lambda_3^{SM}} = 1 + \frac{16\lambda_6 v^4}{m_H^2 \Lambda^2}}
$$

$$
V = \frac{1}{2}\frac{\mu^2}{2}(v+H)^2 + \frac{\lambda_4}{4}(v+H)^4 + \frac{1}{2}\frac{\lambda_6}{2}(v+H)^6 + \frac{1}{2}\frac{\lambda_7}{2}(v+H)^2
$$

● **50% increase in self-coupling** → **Provides mechanism for first-order EW phase transition**

To achieve first-order phase transition in EWSB we **need a modified Higgs potential**

106

Jonathon Langford Particle Physics Seminar - UoB 27/11/24

$$
V = \frac{\left[\mu^2}{2}(v+H)^2 + \frac{\lambda_4}{4}(v+H)^4\right]_1^1 + \left[\frac{\lambda_6}{\Lambda^2}(v+H)^6\right]_1^1}{\left[\frac{1}{2}\right]}
$$

SM

- **50% increase in self-coupling → Provides mechanism for first-order EW phase transition**
	- \circ Increasing our precision on λ_3 is of paramount important to understanding evolution of the early Universe!

● Inclusion of dim-6 (BSM) term in potential changes relationship between fundamental Higgs parameters

$$
\kappa_{\lambda} = \frac{\lambda_3}{\lambda_3^{SM}} = 1 + \frac{16\lambda_6 v^4}{m_H^2 \Lambda^2}
$$

Di-Higgs production

● How to probe the Higgs self-coupling? → Only direct method via search for **non-resonant Higgs boson pair production**

A big step in Run 2

108

- Large statistics of Run 2 dataset has enabled CMS to gain significant ground in measuring this rare process
- Plethora of HH final states offers a fun experimental challenge

Direct Di-Higgs searches

[Taken from Jona Motta slides @ Higgs 24](https://indico.cern.ch/event/1391236/contributions/6095878/attachments/2960567/5207749/DiHiggsSearches@CMS_Higgs2024_JMotta.pdf)
A big step in Run 2

Large statistics of Run 2 dataset has enabled CMS to gain significant ground in measuring this rare process

Branching ratio [%]

Plethora of HH final states offers a fun experimental challenge

109

Jonathon Langford Particle Physics Seminar - UoB 27/11/24

Direct Di-Higgs searches

Given current luminosity and large backgrounds we typically leverage:

- **1. Large branching fraction**
- **2. Good selection purity**
- **3. Combination of (1) and (2)**

Three "main" channels: HH→4b, HH→bb $\tau\tau$, HH→bb $\gamma\gamma$

A big step in Run 2

- Large statistics of Run 2 dataset has enabled CMS to gain significant ground in measuring this rare process
- Plethora of HH final states offers a fun experimental challenge

Jonathon Langford Particle Physics Seminar - UoB 27/11/24

Direct Di-Higgs searches

Given current luminosity and large backgrounds we typically leverage:

- **1. Large branching fraction**
- **2. Good selection purity**
- **3. Combination of (1) and (2)**

Three "main" channels: HH→4b, HH→bb $\tau\tau$, HH→bb $\gamma\gamma$

Significant advancements in reconstruction and identification techniques (e.g. Machine Learning) has allowed us to move away from these constraints…

A big step in Run 2

Large statistics of Run 2 dataset has enabled CMS to gain significant ground in measuring this rare process

 $[%]$

Branching ratio

Plethora of HH final states offers a fun experimental challenge

Direct Di-Higgs searches

Jonathon Langford Particle Physics Seminar - UoB 27/11/24

Rev. Lett. 129.081802 Rev. Lett. 131.041803 **PAS-HIG-22-006** 7392 11 024) 293 opology CMS-PAS-HIG-23-012 **HIG-22-012** onant JHEP 07 (2023) 095

[Taken from Jona Motta slides @ Higgs 24](https://indico.cern.ch/event/1391236/contributions/6095878/attachments/2960567/5207749/DiHiggsSearches@CMS_Higgs2024_JMotta.pdf)

CMS Experiment at the LHC, CERN Data recorded: 2018-Oct-21 11:22:36.732928 GMT Run / Event / LS: 325001 / 246775231 / 137

 $\overline{}$ and the art GNN to tag large radius $\overline{}$

e.g. HH→bbyy candidate

Combination of non-resonant HH production

- Brand new result from ~two weeks ago [\[HIG-20-011\]](https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/HIG-20-011/)
- Updated HH combination from [Nature 607 \(2022\) 60-68](http://dx.doi.org/10.1038/s41586-022-04892-x)
	- **Additional channels**, more interpretations, expanded projections

****NEW NOV 24****

Combination of non-resonant HH production

- -

****NEW NOV 24****

Combination of non-resonant HH production

- -

****NEW NOV 24****

Self-coupling sensitivity

ggHH signal dependence on $(\kappa_{\lambda}, \kappa_t)$ modelled using linear combination of three simulated data samples

Self-coupling sensitivity

ggHH signal dependence on $(\kappa_{\lambda}, \kappa_t)$ modelled using linear combination of three simulated data samples **[See Back-Up]**

 $\sigma(\kappa_{\lambda}, \kappa_{\rm t}) = \kappa_{\lambda}^2 \kappa_{\rm t}^2 t + \kappa_{\rm t}^4 b + \kappa_{\lambda} \kappa_{\rm t}^3 i$

Self-coupling sensitivity

-
- ggHH signal dependence on $(\kappa_{\lambda}, \kappa_t)$ modelled using linear combination of three simulated data samples **[See Back-Up]**

- **Vast improvements to 2016-only results**: ~5x stronger constraints (expect to be ~2x from increase in statistics alone)
	- Driven by advancements in analysis techniques e.g. GNN for b-jet tagging
- Jonathon Langford Particle Physics Seminar UoB 27/11/24 **119** Many more interpretations in note: VBFHH production and κ_{2V} constraints, HEFT benchmarks, c2, UV-complete, ...

 $\sigma(\kappa_{\lambda}, \kappa_{\rm t}) = \kappa_{\lambda}^2 \kappa_{\rm t}^2 t + \kappa_{\rm t}^4 b + \kappa_{\lambda} \kappa_{\rm t}^3 i$

- Ultimate κ_{λ} sensitivity comes by combining with indirect constraint from single-Higgs production
- NLO EW corrections to single Higgs boson production and decay involve **Higgs self-coupling**

Jonathon Langford Particle Physics Seminar - UoB 27/11/24

- Ultimate κ_{λ} sensitivity comes by combining with indirect constraint from single-Higgs production
- NLO EW corrections to single Higgs boson production and decay involve Higgs self-coupling

Precision measurements of (differential) Higgs boson production and decay rates are also sensitive to λ_3

Jonathon Langford Particle Physics Seminar - UoB 27/11/24

- Ultimate κ_{λ} sensitivity comes by combining with indirect constraint from single-Higgs production
- NLO EW corrections to single Higgs boson production and decay involve **Higgs self-coupling**

Jonathon Langford Particle Physics Seminar - UoB 27/11/24

- Ultimate κ_{λ} sensitivity comes by combining with indirect constraint from single-Higgs production
- NLO EW corrections to single Higgs boson production and decay involve Higgs self-coupling
- **Key benefit:** relax SM assumptions on other couplings without large degradation in sensitivity

- More luminosity (~300 fb⁻¹), more energy (+10% HH cross sections at 13.6 TeV)
- \bullet HH is within touching distance \rightarrow We are not taking our foot off the gas...

- More luminosity (~300 fb⁻¹), more energy (+10% HH cross sections at 13.6 TeV)
- \bullet HH is within touching distance \rightarrow We are not taking our foot off the gas...

- **More luminosity** (~300 fb⁻¹), **more energy** (+10% HH cross sections at 13.6 TeV)
- \bullet HH is within touching distance \rightarrow We are not taking our foot off the gas...

More luminosity (~300 fb⁻¹), **more energy** (+10% HH cross sections at 13.6 TeV)

ICMS-DP-2024-066

 \bullet HH is within touching distance \rightarrow We are not taking our foot off the gas...

127

- HH is within touching distance: $\rm \mu_{SM}^{95\%CL} \sim 1$
	- New innovative ideas could bring it closer → **If something is very BSM-like in Higgs potential, we might see it in Run 3!**

ICMS-DP-2024-066

Jonathon Langford Particle Physics Seminar - UoB 27/11/24

-066 [\[CMS-DP-2024-066\]](https://cds.cern.ch/record/2904702/files/DP2024_066.pdf) $\overline{\mathcal{A}}$ 202 CMS-DP-

Nambu-Goldstone Higgs

Landau-Ginzburg Higgs

Coleman-Weinberg Higgs

Tadpole-Induced Higgs

● [\[HIG-20-011\]](https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/HIG-20-011/): included detailed projection study for HL-LHC sensitivity(*)

Jonathon Langford Particle Physics Seminar - UoB 27/11/24

● [\[HIG-20-011\]](https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/HIG-20-011/): included detailed projection study for HL-LHC sensitivity(*)

Jonathon Langford Particle Physics Seminar - UoB 27/11/24

● [\[HIG-20-011\]](https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/HIG-20-011/): included detailed projection study for HL-LHC sensitivity(*)

Jonathon Langford Particle Physics Seminar - UoB 27/11/24

Jonathon Langford Particle Physics Seminar - UoB 27/11/24

