

I.FAST Period 2 Review – Task 11.3 Permanent Magnet Quadrupoles & Combined Function Magnets for Ultra Low-Emittance Rings

Ben Shepherd, Alex Hinton *ASTeC*, *STFC Daresbury Laboratory* Dušan Topalović, Jure Počkar, Tadej Milharcic and Mirko Kokole *Kyma* Alfie Shahveh *Diamond Light Source*

I.FAST Period 2 Review 15 July 2024

WP11.3: Permanent Magnet Quadrupoles & Combined Function Magnets for Ultra Low-Emittance Rings

Deliverables

 D11.3 Prototype adjustable PM quadrupole and combined function magnets: due M28 M44 (Nov 2024)

Milestones

- MS31 Magnets constructed and tested: due M25 M44 (Nov 2024)
- Late delivery owing to
 - increased cost of blocks \rightarrow redesign of magnet
 - lack of available resources at Kyma for mechanical design

Introduction

- Fourth generation synchrotron light sources make use of multi-bend achromat lattices to reduce beam emittance and increase radiation brightness
- Lattices require combined function dipole-quadrupole (DQ) magnets
- Diamond-II upgrade will require 48 DQ magnets drawing 2.3 kW each
- Goal of WP11.3 test if equivalent field requirements can be met by a permanent magnet based solution

HEPTO Magnet Prototype

- Hybrid Electromagnet-Permanent Magnet Tuneable
 Optics (HEPTO) to meet same field requirements as
 DQ electromagnets for Diamond-II.
- Dipole **0.7 T**, Gradient **33 T/m**.
- Effective length 0.870 m.
- Main source of field: **NdFeB** permanent magnet blocks (originally purchased for an undulator).
- Dipole and gradient fields require independent tuning of **±2.5%** for commissioning purposes.
- Field tuning achieved by air-cooled trim coils.
- Yoke and poles made from XC06 low-carbon steel.

Thermal Shunts

- Thermal shunt material can only be purchased from suppliers in large batches.
- Spare FeNi thermal shunt material purchased from Soleil (42 sheets for €1600).
- Material cut and glued to type A and F magnet blocks.
- Enough material to produce 26 layers of 0.5 mm thick sheets.
- Predicted thermal stability -0.05%/°C.
 0.01% variation typical due to power supply fluctuation in electromagnets.

Field Tuning

Change in $\int b_1$.ds / %	Change in $\int b_2 ds / \%$	Main coil current / A	Auxiliary coil current / A
0	0	-0.05	-0.01
-2.5	0	-4.93	-1.32
+2.5	0	4.82	1.32
0	-2.5	-1.65	-0.42
0	+2.5	1.54	-0.42

Main coil turns	64
Main coil pair maximum power / W	30.6
Auxiliary coil turns	36
Auxiliary coil pair maximum power / W	16.4
Electromagnet DQ power dissipation / W	2300

Full Mechanical Design

- Mechanical design of the prototype magnet has been completed.
- Design allows mechanical shimming of built prototype to shim field strength and quality.
- Engineering drawings have been completed.
- Procurement of mechanical components is ongoing.

Conclusions and Future Planning

- Magnetic design of HEPTO prototype magnet using spare undulator magnet blocks is complete.
- Maximum power requirement per magnet (5 A per coil) = 50 W.
- Equivalent electromagnet requires 2.3 kW + water cooling.
- Mechanical design and drawings are complete.
- Procurement of prototype components is ongoing.
- On track to construct the prototype at Kyma by end of October 2024.
- Afterwards, magnetic measurements will be used to verify the performance of the prototype with respect to magnetic modelling at Daresbury Laboratory.

Thank you

Acknowledgements:

- Dušan Topalović, Jure Počkar, Tadej Milharcic and Mirko Kokole (Kyma)
- Alfie Shahveh (Diamond Light Source)

Facebook: Science and Technology Facilities Council Twitter:@STFC_matters

YouTube: Science and Technology Facilities Council