

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.

Report on Task 5.1: MUST MUon collider STrategy network

Nadia Pastrone INFN-Torino

INFN - CERN (+BINP) – CEA – IJCLAB – KIT – PSI – UKRI (BNL-USA not beneficiary)

I.FAST Period 2 Review, 15.07.2024

Task structure and objectives

Task 5.1: MUon colliders STrategy network (MUST) M1 – M48

- Support the effort to design a muon collider and to project and plan the required R&D
- Consolidate the community devoted to develop an international future facility
- Prepare the platform to disseminate the information (website, meetings, tools)

[..] an **international design study** for a **muon collider unique opportunity** to achieve a multi-TeV energy domain

MUST plays a crucial role and is part of the international collaboration

- MS15: International workshop on muon source design M18 → Report
- MS16: International workshop to define R&D plans M36 Report delayed M40
- **D5.1:** International collaboration plans towards a multi-TeV muon collider **M46**

International Muon Collider Collaboration IMCC @ CERN Web page: http://muoncollider.web.cern.ch

Towards a Muon Collider Eur. Phys. J.C 83 (2023) 9, 864

Objective:

Project Leader: Daniel Schulte

March 31 2025

In time for the **next European Strategy for Particle Physics Update**,

the Design Study based at CERN since 2020 aims to

establish whether the investment into a full CDR and a demonstrator is scientifically justified. It will provide a baseline concept,

It will also identify an R&D path to demonstrate the feasibility of the collider.

Scope:

Focus on the high-energy frontier and two energy ranges:

- **3** TeV if possible with technology ready for construction in 10-20 years
- Input documents -10+ TeV with more advanced technology, the reason to choose muon colliders
- Explore synergies with other facilities' options (neutrino/higgs factory)
- Define **R&D path**

I.FAST Period 2 Review, 15 July 2024

Energy efficiency of present and future colliders

Thomas Roser et al., <u>Report of the Snowmass 2021 Collider Implementation Task Force</u>, Aug 2022

Recent progress

MuCol – EU INFRA-DEV project A Design Study for a Muon Collider complex at 10 TeV center of mass

Strong commitment of the International Community to:

- ✓ consolidate the baseline design of the facility at 10+ TeV
- ✓ design/optimize the facility and the experiment: **R&D plan**
- ✓ identify priorities and synergies

Accelerator R&D Roadmap implementation **Detector R&D Roadmap** implementation
 →DRD collaborations Interim Report ready to be submitted

Exploring

Quantum Universe

the

Tentative parameters available

This project has received funding from the European Union's

Research and Innovation programme under GA No 101094300

https://www.usparticlephysics.org/2023-p5-report/

Now preparing for formal U.S. Community engagement after P5 Report

I.FAST Period 2 Review, 15 July 2024

Key Challenges of the facility

Summary of activities towards R&D plans

Each WP is working to identify challenges and R&D plans towards a baseline design:

Ε

120

100

s [m]

140

- Physics and MDI
- Proton complex
- Target design
- Muon Cooling
- Accelerator Complex
- Collider Ring
- **RF** Technology
- Magnet Technology
- Cooling cell integration

ture at 5σ + 2[cm]

Demonstrator

FAST

nstrumentation

and Matching

phase rotation

z (m)

R&D plans – timelines – priorities

International Annual Meeting @ CERN March 12-15, 2024

Fully included in the agenda of the next

 Mercensistication
 Mercensistication

→ first lattice at the 10 TeV centre of mass energy → Machine Detector Interface (MDI)
 → RF and magnet technology (including HTS) test plans are on-going
 → Integration of a cooling cell → Planning for a demonstrator is mandatory
 → MuCol Cooling cell Workshop @ CERN January 18-19, 2024

→ MDI workshop @ CERN March 11-12, 2023

Interim Report @ Accelerator R&D Roadmap and MuCol

→ All progress on technology studies, design study of each component and first lattice @ 10 TeV

→ Machine Detector Interface (MDI) Design → Beam Induced Backgroud mitigation

→ Experiment Design @ 10 TeV → Detector Magnet choice and design under study

→ IMCC Detector and MDI workshop → Detector R&D and Full simulation studies

Cooling Channel towards a Demonstrator

TO DESIGN A HIGH-EFFICIENT IONIZATION COOLING CHANNEL:

- the performance of a normal conducting cavity may degrade when the cavity is operated in strong magnetic fields
- the magnetic fields cause RF cavity breakdown at high gradients

Targeted R&D is required - Dedicated Test stand (RFMF)

- design and machine prototypes for a compact full scale cavity (power coupler and full set of diagnostics) able to fit within a solenoid with a useful bore of maximum 450-500 mm
- design of the split coil for the RF cavities test and test of
- new technology for HTS coils, based on NI (non-insulated) winding

Planning demonstrator facility @ CERN and @ FNAL

with muon production target and cooling stations

Suitable site exists on CERN land and can use PS proton beam

• could combine with **NuStorm** or other option

Step forward

MUST will support to establish an **international collaboration** and develop an **optimized R&D roadmap** towards a future muon collider, including the definition of **optimum test facilities and possible intermediate steps**

MS15: International workshop on muon source design M18 → Report
 MS16: International workshop to define R&D plans M36 → Report M40
 D5.1: International collaboration plans towards a multi-TeV muon collider M46

Evaluation report

Including cost and power consumption scale estimate

- **R&D plan:** magnets, RF test-end, cooling This requires some scenarios and timeline *Investigating synergies on physics and technologies*
- Initial study for the demonstrator

Thank you for your attention!

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.

Accelerator R&D Roadmap

Bright Muon Beams and Muon Colliders

Panel members: **D. Schulte**,(Chair), M. Palmer (Co-Chair), T. Arndt, A. Chancé, J. P. Delahaye, A.Faus-Golfe, S.Gilardoni, P.Lebrun, K.Long, E.Métral, N.Pastrone, L.Quettier, T.Raubenheimer, C.Rogers, M.Seidel, D.Stratakis, A.Yamamoto *Associated members:* A. Grudiev, R. Losito, D. Lucchesi

Technically limited timeline

presented to CERN Council in December 2021 published <u>https://arxiv.org/abs/2201.07895</u> now under implementation by LDG + Council...

Roadmap Plan

Label	Begin	End	Description	Aspirational		Minimal	
				[FTEy]	[kCHF]	[FTEy]	[kCHF]
MC.SITE	2021	2025	Site and layout	15.5	300	13.5	300
MC.NF	2022	2026	Neutrino flux miti-	22.5	250	0	0
			gation system				
MC.MDI	2021	2025	Machine-detector interface	15	0	15	0
MC.ACC.CR	2022	2025	Collider ring	10	0	10	0
MC.ACC.HE	2022	2025	High-energy com- plex	11	0	7.5	0
MC.ACC.MC	2021	2025	Muon cooling sys- tems	47	0	22	0
MC.ACC.P	2022	2026	Proton complex	26	0	3.5	0
MC.ACC.COLL	2022	2025	Collective effects across complex	18.2	0	18.2	0
MC.ACC.ALT	2022	2025	High-energy alter- natives	11.7	0	0	0
MC.HFM.HE	2022	2025	High-field magnets	6.5	0	6.5	0
MC.HFM.SOL	2022	2026	High-field solenoids	76	2700	29	0
MC.FR	2021	2026	Fast-ramping mag- net system	27.5	1020	22.5	520
MC.RF.HE	2021	2026	High Energy com- plex RF	10.6	0	7.6	0
MC.RF.MC	2022	2026	Muon cooling RF	13.6	0	7	0
MC.RF.TS	2024	2026	RF test stand + test cavities	10	3300	0	0
MC.MOD	2022	2026	Muon cooling test module	17.7	400	4.9	100
MC.DEM	2022	2026	Cooling demon- strator design	34.1	1250	3.8	250
MC.TAR	2022	2026	Target system	60	1405	9	25
MC.INT	2022	2026	Coordination and integration	13	1250	13	1250
			Sum	445.9	11875	193	2445

Project organization

International Muon Collider Collaboration

Accelerator Key Challenge Areas

- Impact on the environment
 - The neutrino flux mitigation and its impact on the site (first concept exists)
 - The machine induced background impact the detector, and might limit the physics
- High-energy systems after the cooling (acceleration, collision, ...)
 - Fast-ramping magnet systems
 - High-field magnets (in particular for 10+
- High-quality muon beam production
 - Special RF and high peak power
 - Superconducting solenoids

- Some technology challenges more important at 10 than at 3 TeV
 - higher dipoles fields in collider (O(15 T))
 - stronger final focus quadrupoles (O(18-20 T))
 - shorter bunches in cavities of last accelerator ring
 - more performant accelerator ring systems to cut length and cost

Physics potential evaluation, including

detector concept and technologies

- Cooling string demonstration (cooling cell engineering design, demonstrator design)
- Full accelerator chain
 - e.g. proton complex with H- source, compressor ring \rightarrow test of target material