

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.

Task 7.3: VAriable Dipole for the Elettra Ring (VADER)

I.FAST Period 2 review-15/07/2024

Y. Papaphilippou for the Task 7.3 collaborators

VAriable Dipole for the Elettra Ring - VADER

- Task 7.3 within I.FAST WP7: High Brightness Accelerators for Light Sources
- Partners and collaborators:

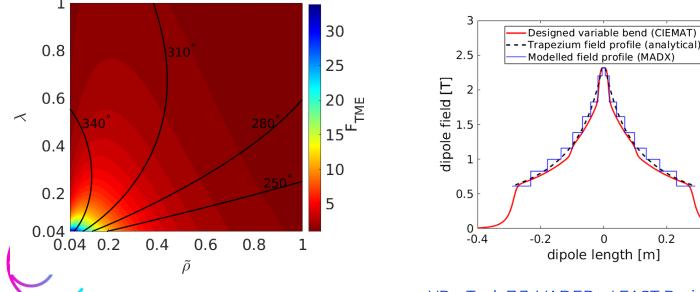
Y. Papaphilippou (A. Poyet)

Energéticas, Medioambientales y Tecnológicas

> M. Dominguez F. Toral

E. Karantzoulis

D. Castronovo

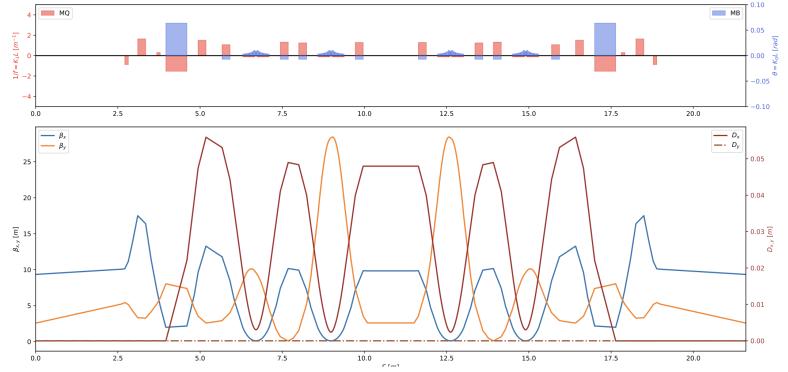


R. Geometrante

VADER objectives

- **Fabricate** an innovative dipole magnet prototype with longitudinal varying dipole field, including a transverse gradient for the ELETTRA upgrade
- Permanent magnet concept with trapezoidal bending radius, 2.3 T peak field and ~10 T/m gradient, already established (CERN/CIEMAT)
- Proved the horizontal emittance reduction to ultra-low levels of i.e. ~60 pm @ 2.86 GeV, for the CLIC DR (M. A. Domínguez Martinez et al., IEEE Trans. Appl. Supercond. 28, 1, 2018; S. Papadopoulou et al, PRAB 22, 091601, 2019)
- First demonstrator constructed/qualified by CIEMAT

YP – Task 7.3: VADER – LEAST Period 2 Review


0

dipole length [m]

0.2

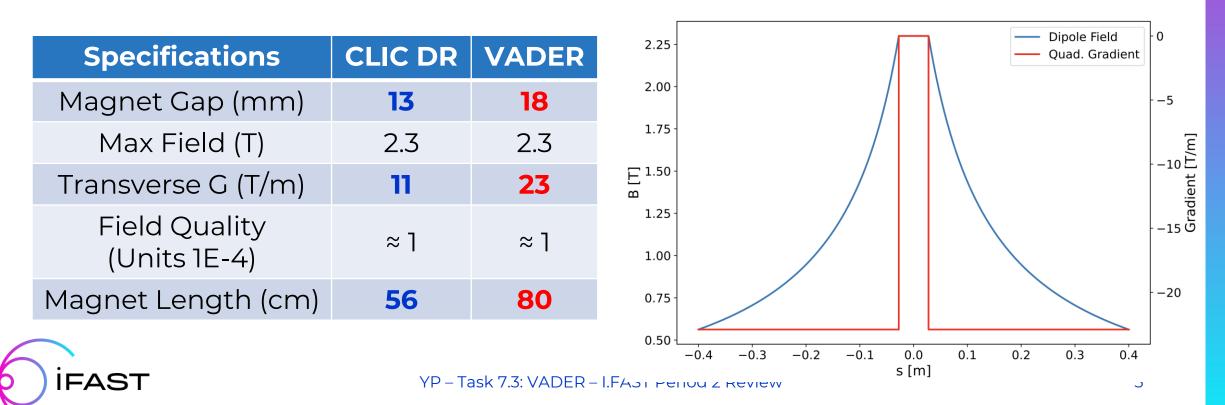
0.4

Lattice and optics design

• Optics constraints at the ID are **matched**

• Tunes: 34.706 / 22.852

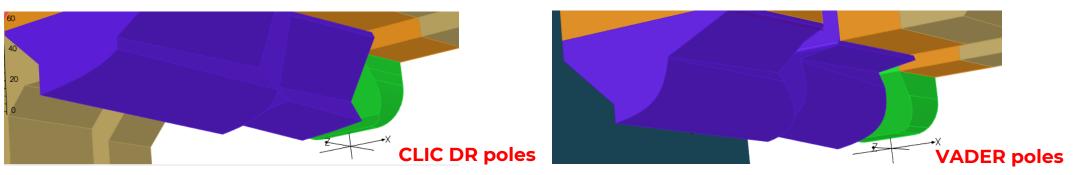
 Horizontal emittance reduction from 212 to 100 pm (more than factor of 2!)


FAST

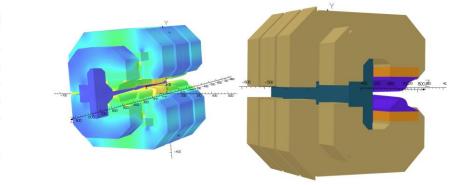
- Chromaticities: -157/-125
- ✓ Non-linear optimization: already good on-momentum DA

A. Poyet

Profile Design and Magnet Specifications


- Similar parameters as CLIC DR but...
 - Higher transverse gradient (> factor of 2)
 - Higher magnetic gap (~40%)
 - Longer magnet (~40%)

Magnetic Design @ CIEMAT


M. Dominguez, F. Toral

No changes in philosophy, major changes in poles (90% of the design time)

- All NdFeB permanent magnet blocks, including low-field modules
- Permanent magnet volume increased around 40% reaching demanded field peak of 2.3 T with magnet gap of 18mm (17+1mm)
- New field trimming design implemented
 - Yoke completely split in two parts supported by aluminium block
 - Sliding parts achieve higher/better regulation than CLIC DR prototype

FAST

M. Dominguez, Magnetic Design @ CIEMAT F. Toral **Combined Function** Longitudinal gradient with trapezoidal shape (2.3 T Peak) Transverse gradient 23 T/m Dimensions: 0.65 x 0.68 x 0.80 m Weight: 1.5 T Steel 1010 Armco B2 (T/m) -400 lyperbolic pole tips Field rofile trimming Fe-Co (Vacoflux) 0 05 Flat pole tip 300 400 500 200 profile Longitudinal gradient profile achieved • Flux Integrated transverse gradient exceeds specs concentration NdFeB in LF, MF and HF Field quality looks reasonable • Fabrication drawings FAST

VADER timeline

	Deliverable description	Month	
1	Magnet Specifications based on optics calculations for ELETTRA	12	1 м
2	Magnetic and mechanical design (including fabrication drawings)	24	5
3	Fabrication of the prototype	42	
4	Acceptance tests	48	

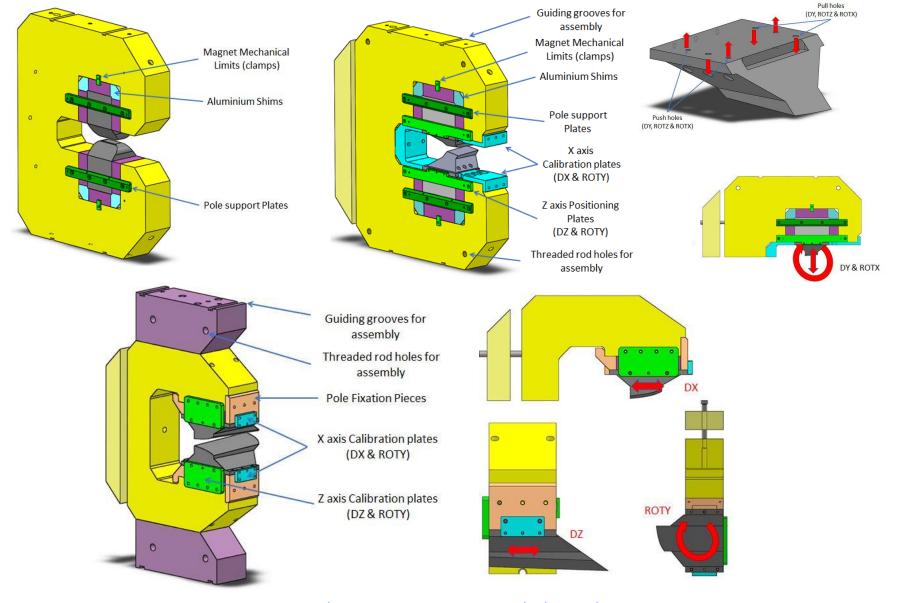
Milestone **MS 26** Deliverable **D7.3** Milestone **MS 27**

- Optics work including magnet specifications completed (CERN/Elettra) since end of 2022
 - 8 months delay in hiring fellow
- Magnetic and mechanical design from CIEMAT completed with input from KYMA for fabrication, to be ready by May 2024
 - 12 month delay due to early departure of fellow and challenges with magnetic design
- Fabrication of the prototype by KYMA started on June 2024 (drawings transmitted)
- Prototype ready for acceptance tests by March of 2025 (5-6 months delay in deliverable 7.3)
- Acceptance tests may be finalised beyond M48
- Remaining potential risks:

FAST

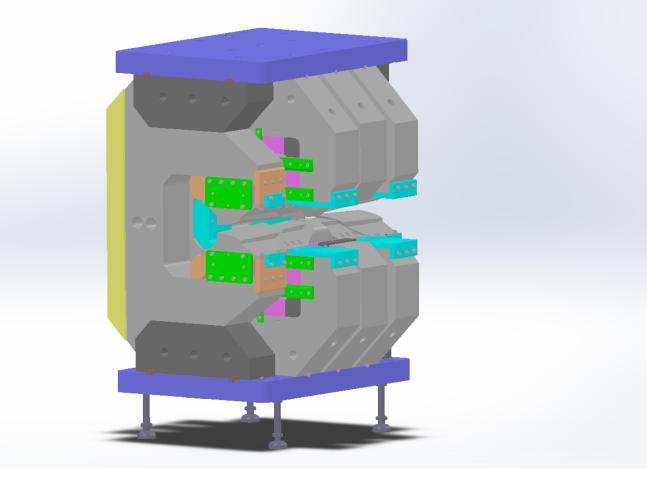
delays in delivery of **raw material** (waiting for company answer)

iFAST Thank you for your attention!


This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.

VADER objectives

- Keep the same S6BA-E lattice for Elettra and replace the LG dipoles by VADER ones.
 - Implement a trapezoidal profile in bending radius
 - Observe a clear emittance reduction
- Some constraints:
 - Same geometrical layout
 - Same total bending angle for each dipole
 - Same dipole length
- But also some freedoms:
 - We set the dipole peak field at 2.3 T (as for the CLIC magnet) instead of the current 1.8 T


Mechanical Design @ CIEMAT

YP - Task 7.3: VADER - I.FAST Period 2 Review

Mechanical Design @ CIEMAT

Magnet progressing towards its fabrication

