

The Search for New Physics through precision measurements

COMETA Colloquium

S. Dawson, BNL, Sept. 16, 2024

No new particles discovered (yet?)

010	1103. 001y 2010								$\int \mathcal{L} dt = (3$	3.2 – 79.8) fb ⁻¹	$\sqrt{s} = 8, 13 \text{ Te}$
	Model	ί,γ	Jets†	ET	∫£ dt[fb	-']	Limit				Reference
ra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH high $\sum p_T$ ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Pult RS $c_{KK} \rightarrow \gamma\gamma$	$\begin{array}{c} 0 \ e, \mu \\ 2 \ \gamma \\ \geq 1 \ e, \mu \\ 2 \ \gamma \end{array}$	1-4j - 2j ≥2j ≥3j -	Yes - - -	36.1 36.7 37.0 3.2 3.6 36.7	M _D Ms M _{th} M _{th} M _{th} G _{KK} mass		41 TeV	7.7 TeV 8.6 TeV 8.9 TeV 8.2 TeV 9.55 TeV	a = 2 a = 3 HLZ NLO a = 6 $a = 6$, $M_D = 3$ TeV, rot BH $a = 6$, $M_D = 3$ TeV, rot BH $k/(\overline{M_P}) = 0.1$	1711.03301 1707.04147 1703.09217 1608.02265 1512.02586 1707.04147
Ext	Bulk RS $g_{KK} \rightarrow tr$ 2UED / RPP	1 e,μ 1 e,μ	≥ 1 b, ≥ 1J ≥ 2 b, ≥ 3	2j Yes j Yes	36.1 36.1	EKK MASS KK mass		3.8 TeV 1.8 TeV		$\Gamma/m_{\rm Pl} = 1.0$ $\Gamma/m = 15\%$ Tier (1,1), $S(A^{(1,1)} \rightarrow rr) = 1$	1804.10823 1803.09678
cauge posons	$\begin{array}{l} \mathrm{SSM} \ Z' \to \ell\ell \\ \mathrm{SSM} \ Z' \to \tau\tau \\ \mathrm{Leptophobic} \ Z' \to tr \\ \mathrm{SSM} \ W' \to \tau\tau \\ \mathrm{SSM} \ W' \to \ell v \\ \mathrm{SSM} \ W' \to \tau \nu \\ \mathrm{HVT} \ V' \to \ WV \to qqq \ \mathrm{model} \\ \mathrm{HVT} \ V' \to \ WV \to \psi \\ \mathrm{LRSM} \ W'_R \to tb \end{array}$	2 e, µ 2 τ – 1 e, μ 1 r, μ 1 τ B 0 e, μ multi-chann multi-chann	2b ≥1b,≥1J - 2J al	'2j Yes Yes Yes -	36.1 36.1 36.1 79.8 36.1 79.8 36.1 36.1 36.1	2' mass 2' mass 2' mass W' mass W' mass V' mass V' mass W' mass		4,5 TeV 2,42 TeV 2,1 TeV 3.0 TeV 5,6 3,7 TeV 4,15 TeV 2,93 TeV 3,25 TeV	ſeV	$\Gamma/m = 1\%$ $g_V = 3$ $g_V = 3$	1707.02424 1709.07242 1805.09299 1804.10823 ATLAS-CONF-2018- 1801.06992 ATLAS-CONF-2018- 1712.06518 CERN-EP-2018-1/
3	Cl qqqq Cl ččqq Cl tttt	2 e,µ ≥1 e,µ	2 j 	_ Yes	37.0 36.1 36.1	Λ Λ Λ		2,57 TeV		21.8 TeV η_{LL} 40.0 TeV η_{LL} $ C_{44} = 4\pi$	1703.09217 1707.02424 CERN-EP-2018-17
Ň	Axial-vector mediator (Dirac DM Colored scalar mediator (Dirac D VV_{XX} EFT (Dirac DM)) 0 e, μ DM) 0 e, μ 0 e, μ	1 - 4j 1 - 4j $1 J, \le 1j$	Yes Yes Yes	36.1 36.1 3.2	m _{reed} m _{read} M.	700 GeV	1.55 TeV 1.67 TeV		$\begin{split} g_0{=}0.25,g_z{=}1.0,m(\chi) &= 1\;{\rm GeV}\\ g{=}1.0,m(\chi) &= 1\;{\rm GeV}\\ m(\chi) < 150\;{\rm GeV} \end{split}$	1711.03301 1711.03301 1608.02372
3	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen	2 e 2 µ 1 e, µ	$\begin{array}{c} \geq 2 \ j \\ \geq 2 \ j \\ \geq 1 \ b, \geq 3 \end{array}$	- Yes	3.2 3.2 20.3	LQ mass LQ mass LQ mass	1.1 Te 1.05 Te 640 GeV	v v		$\beta = 1$ $\beta = 1$ $\beta = 0$	1605.06035 1605.06035 1508.04735
quarks	$ \begin{array}{l} VLQ \ TT \to Ht/Zt/Wb + X \\ VLQ \ BB \to Wt/Zb + X \\ VLQ \ BB \to Wt/Zb + X \\ VLQ \ T_{5/3} T_{5/3} T_{5/3} \to Wt + X \\ VLQ \ Y \to Wb + X \\ VLQ \ Q \to Hb + X \\ VLQ \ QQ \to WqWq \end{array} $	multi-chann multi-chann $2(SS)/\ge 3 e,$ $1 e, \mu$ $0 e, \mu, 2 \gamma$ $1 e, \mu$	N al $\omega \ge 1 \text{ b}, \ge 1$ $\ge 1 \text{ b}, \ge 1$ $\ge 1 \text{ b}, \ge 1$ $\ge 4 \text{ j}$	i Yes j Yes j Yes Yes	36.1 36.1 36.1 3.2 79.8 20.3	T mass B mass T _{6/3} mass Y mass B mass Q mass	1,3 1,3 1,3 1,2 1,21 690 GeV	7 TeV 4 TeV 1.64 TeV 44 TeV TeV		$\begin{array}{l} & \mathrm{SU}(2) \ \mathrm{doublet} \\ & \mathrm{SU}(2) \ \mathrm{doublet} \\ & \mathcal{B}(T_{3/3} \rightarrow Wt) = 1, \ c(T_{3/3}Wt) = 1 \\ & \mathcal{B}(Y \rightarrow Wb) = 1, \ c(YWb) = 1/\sqrt{2} \\ & \kappa_B = 0.5 \end{array}$	ATLAS-CONF-2018 ATLAS-CONF-2018 CERN-EP-2018-1 ATLAS-CONF-2018 ATLAS-CONF-2018 1508-04261
fermions	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow qg$ Excited quark $b^* \rightarrow bg$ Excited lepton ℓ^* Excited lepton ν^*	- 1 γ - 3 σ,μ 3 σ,μ,τ	2j 1j 1b,1j -		37.0 36.7 36.1 20.3 20.3	q' mass g' mass b' mass /' mass r' mass		6.0 5.3 Tr 2.6 TeV 3.0 TeV 1.6 TeV	TeV eV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $\Lambda = 3.0$ TeV $\Lambda = 1.6$ TeV	1703.09127 1709.10440 1805.09299 1411.2921 1411.2921
Other	Type III Seesaw LRSM Majorana v Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Monotop (non-res prod) Multi-charged particles Magnetic monopoles	1 e, μ 2 e, μ 2,3,4 e, μ (S 3 e, μ, τ 1 e, μ	≥ 2 j 2 j 6) - 1 b -	Yes - - Yes -	79.8 20.3 36.1 20.3 20.3 20.3 7.0	N ⁹ mass N ¹ mass H ⁴⁴ mass Spin-1 invisible particle mass multi-charged particle mass monopole mass	560 GeV 870 GeV 400 GeV 657 GeV 785 GeV 1.3	2.0 TeV		$\begin{split} m(W_{\rm R}) &= 2.4 \text{ TeV, no mixing} \\ {\rm DY \ production} \\ {\rm DY \ production} \\ {\rm S}(H_1^{\rm int} \to \ell \tau) = 1 \\ {\rm sce-ns} \\ {\rm org} \\ {\rm production} \\ {\rm sce} \\ {\rm DY \ production} \\ {\rm sce} \\ {\rm production} \\ {\rm sce} \\$	ATLAS-CONF-2018 1506-06020 1710.09748 1411-2921 1410.5404 1504.04188 1509.06059

Many limits exceed 1 TeV

LHC measurements look "SM-like"

Impressive theory/experiment agreement over many orders of magnitude and in many varied processes

Higgs couplings look "SM-like"

No free parameters in plots

WHERE TO LOOK for new physics? Current data doesn't really give us any hints

I will focus on scenario where new physics is heavy (ie, much larger than weak scale

NO sign of more Higgs-like particles

- No shortage of models predicting more Higgs particles (or any other particle)
 - But no evidence yet....
- Look for new physics in tails of distributions
 - Requires precision calculations of SM predictions for comparison
 - This is much harder than looking for resonances

Hierarchy of scales

$-\Lambda >> M_W$ where complete theory exists

- Any new particles or symmetries are at this scale
- Expect effects of heavy particles at low scales to be suppressed

This is sad scenario where there is no intermediate scale physics

Only SM particles in theory at low scales

High scale decoupling

- Suppose there is a new particle X, with mass $M_X >> M_W$
- SM scattering: $A_{SM} \sim \frac{g^2}{M_Z^2}$
- Contribution from X: $X \xrightarrow{X} A_X \sim \frac{g_X^2}{M_X^2}$
- Scattering rate: $\sigma \sim \sigma_{SM} + \frac{g^2 g_X^2}{M_X^2} \rightarrow \sigma_{SM}$

Effects of X vanish as 1/M_X² for **weak coupling This is implicit assumption as we construct SMEFT**

Indirectly discover new physics

- Fermi theory (µ→vve) becomes non-perturbative at E ~ 600 GeV
- W boson saves the day

Indirectly discover new physics Goal is to apply this lesson to TeV scale physics

Constructing the EFT

• Full theory is SM: Renormalizable, consistent dimension-4 theory

Predict coefficients of low energy effective theory (G_F) in terms of UV physics (g, M_W)

$$A_{\text{low energy}} = -\frac{G_F}{\sqrt{2}} (\overline{\psi} \gamma^{\mu} (1 - \gamma_5) \psi) (\overline{\psi} \gamma_{\mu} (1 - \gamma_5) \psi)$$
$$A_{\text{high energy}} = \frac{g^2}{2} (\overline{\psi} \gamma^{\mu} P_L \psi) (\overline{\psi} \gamma_{\mu} P_L \psi) \left(\frac{1}{q^2 - M_W^2}\right)$$
$$q^2 << M_W^2 \to \frac{G_F}{\sqrt{2}} = \frac{g^2}{8M_W^2}$$

Effective field theory framework

- Assume SU(3) x SU(2) x U(1) gauge theory with no new light particles
- Assume Higgs particle is part of SU(2) doublet (defines SMEFT)
- SM is low energy limit of effective field theory with towers of higher dimension operators

$$L = L_{SM} + \sum \frac{C_i}{\Lambda^2} O_i^{d=6} + \sum \frac{C_i}{\Lambda^4} O_i^{d=8} + \dots$$

BSM Effects SM Particles

- Many possible operators, must choose relevant set (typically ~20-30 in current fits)
- Power of SMEFT is that it connects top, Higgs, EW physics processes

Warsaw basis

	X^3		φ^6 and $\varphi^4 D^2$	$\psi^2 \varphi^3$		
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{φ}	$(\varphi^{\dagger}\varphi)^{3}$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$	
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi \Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})$	
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger}D^{\mu}\varphi\right)^{*}\left(\varphi^{\dagger}D_{\mu}\varphi\right)$	$Q_{d\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)$	
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$					
	$X^2 \varphi^2$		$\psi^2 X \varphi$	$\psi^2 \varphi^2 D$		
$Q_{\varphi G}$	$\varphi^{\dagger}\varphi G^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\overline{l}_{p}\gamma^{\mu}l_{r})$	
$Q_{\varphi \widetilde{G}}$	$\varphi^{\dagger}\varphi \widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q_{\varphi l}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}\varphi)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$	
$Q_{\varphi W}$	$\varphi^{\dagger}\varphi W^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i \overleftrightarrow{D}_{\mu} \varphi)(\overline{e}_{p} \gamma^{\mu} e_{\tau})$	
$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger} \varphi \widetilde{W}^{I}_{\mu\nu} W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \tilde{\varphi} W^I_{\mu\nu}$	$Q_{\varphi q}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$	
$Q_{\varphi B}$	$\varphi^{\dagger}\varphi B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$	$Q_{\varphi q}^{(3)}$	$(\varphi^{\dagger}i \overleftrightarrow{D}^{I}_{\mu} \varphi)(\bar{q}_{p} \tau^{I} \gamma^{\mu} q_{r})$	
$Q_{\varphi \widetilde{B}}$	$\varphi^{\dagger}\varphi \widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu \nu} T^A d_r) \varphi G^A_{\mu \nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$	
$Q_{\varphi WB}$	$\varphi^\dagger \tau^I \varphi W^I_{\mu\nu} B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu \nu} d_r) \tau^I \varphi W^I_{\mu \nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$	
$Q_{\varphi \widehat{W}B}$	$\varphi^\dagger \tau^I \varphi \widetilde{W}^I_{\mu\nu} B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu u} d_r) \varphi B_{\mu u}$	$Q_{\varphi ud}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$	

	$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$	$(\bar{L}L)(\bar{R}R)$		
Q_{ll}	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r) (\bar{e}_s \gamma^\mu e_t)$	Q_{le}	$(\bar{l}_p \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_t)$	
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(\bar{l}_p \gamma_\mu l_r) (\bar{u}_s \gamma^\mu u_t)$	
$Q_{qq}^{(3)}$	$(\bar{q}_p\gamma_\mu\tau^I q_r)(\bar{q}_s\gamma^\mu\tau^I q_t)$	Q_{dd}	$(d_p\gamma_\mu d_r)(d_s\gamma^\mu d_t)$	Q_{ld}	$(l_p\gamma_\mu l_r)(d_s\gamma^\mu d_t)$	
$Q_{lq}^{(1)}$	$(l_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$	
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{u}_s \gamma^\mu u_t)$	
		$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p\gamma_\mu T^A q_r)(\bar{u}_s\gamma^\mu T^A u_t)$	
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{d}_s \gamma^\mu d_t)$	
				$Q_{qd}^{(8)}$	$(\bar{q}_p\gamma_\mu T^A q_r)(\bar{d}_s\gamma^\mu T^A d_t)$	
$(\bar{L}R)$	$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$	B-violating				
Q_{ledq}	$(l_p^j e_r)(d_s q_t^j)$	Q_{duq}	$_{uq} \qquad \qquad$			
$Q_{quqd}^{(1)}$	$Q_{quqd}^{(1)} = (\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$		$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(u_s^\gamma)^T C e_t\right]$			
$Q_{quqd}^{(8)}$	$Q_{quqd}^{(8)} = (\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$		$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(q_s^{\gamma m})^T C l_t^n\right]$			
$Q_{lequ}^{(1)}$	$Q_{lequ}^{(1)} = (\bar{l}_p^j e_\tau) \varepsilon_{jk} (\bar{q}_s^k u_t)$		$\varepsilon^{lphaeta\gamma}\left[(d_p^{lpha})^TCu_r^{eta} ight]\left[(u_s^{\gamma})^TCe_t ight]$			
$Q_{lequ}^{(3)}$	$(l_p^j \sigma_{\mu\nu} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$					

- Start from SM Lagrangian and add ($\Phi^+\Phi$) to all terms
- The interesting operators are those with derivatives (effects not in the κ formalism)
- Derivative operators introduce new structures into kinematic distributions
- Most of 2499 operators come from flavor permutations

Complicated

Power of SMEFT is connection of data from different processes
 Higgs Di-boson WW
 Top EWPO ttZ

Advantages of Smeft approach

- Quantum field theory where calculations done order by order in $1/\Lambda$
 - Compute cross sections without knowing high scale (UV) physics
- Systematically improvable
- At this level, SMEFT calculations are model independent
- Measurements interpreted in terms of SMEFT coefficients
- Can compare very different classes of measurements

Sounds good, but how does this work in practice?

And even more important, how model independent is this?

Learning from SMEFT

• Experiment = Theory_{SM} +

$$\Sigma \frac{x_i C_i^6}{\Lambda^2} + \dots$$

Precise

Precise SM experimental measurements

calculations

- Precise SMEFT calculations
- Understanding uncertainties in SMEFT • interpretations of data is a work in progress.... No theoretical consensus
- Interpreting a pattern of non-zero SMEFT ۲ coefficients gives information about UV models

Testing Higgs Couplings: K

Assume no new resonances/zero width approx/no new tensor structures

$$\sigma \cdot BR(ii \to H \to jj) = \frac{\sigma_{ii}\Gamma_{jj}}{\Gamma_H}$$

Define scaling factors κ

- In SM, gauge invariance requires κ=1 κ framework isn't consistent in QFT

Higgs decays

- Example: H→bb $\frac{\Gamma(H \to b\overline{b})}{\Gamma(H \to b\overline{b})\mid_{SM}} = (1 + \Delta\kappa_b)^2$ $\Delta \kappa_b = \frac{1}{\sqrt{2}G_F \Lambda^2} \left(C_{H\Box} - \frac{C_{HD}}{4} - C_{Hl}^{(3)} + \frac{C_{ll}^4}{2} - \frac{C_{dH}}{2^{3/4} m_b \sqrt{G_F}} \right)$ From From change in New dimension-6 normalizing H relation operator affecting kinetic energy between G_F Yukawa and v
 - Is this just a fancy way of writing the k's?

 $O_{dH} = Y_d (\Phi^{\dagger} \Phi) \overline{q}_L \Phi d_R$

Consider $H \rightarrow Z^*Z \rightarrow Z f f$

• Consider $H \rightarrow Zff$

$$\frac{\Gamma(H \to Z f \overline{f})}{\Gamma(H \to Z f \overline{f}) \mid_{SM}} = 1 + \frac{1}{\sqrt{2}G_F \Lambda^2} \left[c_k - 97c_Z \right]$$

c_{ZZ} are momentum dependent operators

• EFT can capture off-shell effects (not just a κ)

$$c_{k} = \frac{C_{HD}}{2} + 2C_{H\Box} + C_{ll} - 2C_{Hl}^{(3)}$$

$$c_{ZZ} = \frac{M_{W}^{2}}{M_{Z}^{2}}C_{HW} + (1 - \frac{M_{W}^{2}}{M_{Z}^{2}})C_{HB} + \frac{M_{W}}{M_{Z}}\sqrt{1 - \frac{M_{W}^{2}}{M_{Z}^{2}}}C_{HWB}$$

These operators have derivatives

Recap

p_T

- Momentum dependent operators change shapes of distributions
- Effects largest at high

Higgs + jet production at NLO

When is eft valid?

$$L \to L_{SM} + \Sigma_i \frac{C_{6i}}{\Lambda^2} O_{6i} + \Sigma_i \frac{C_{8i}}{\Lambda^4} O_{8i} + \dots$$

- SMEFT $A^2 \sim |A_{SM} + \frac{A_6}{\Lambda^2} + \dots |^2 \sim A_{SM}^2 + \frac{A_{SM}A_6}{\Lambda^2} + \frac{A_6^2}{\Lambda^4} + \dots$
- Problem is that $(A_6)^2$ terms are the same order as A_8 terms that we have dropped
- If I only keep A_6/Λ^2 terms and drop $(A_6/\Lambda^2)^2$, the cross section is **not guaranteed to be finite**
- Corrections are O(s/ $\Lambda^2)$ or O(v²/ $\Lambda^2)$

Counting lore

Assumptions are creeping in

(Dim-6)² could dominate if $g_{BSM} >> g_{SM}$

State of the art fits typically use dimension-6 operators and compare linear and quadratic fits

Where do limits come from?

• Electroweak precision observables:

 $M_W, \Gamma_W, \Gamma_Z, \sigma_h, A_{l,FB}, A_{b,FB}$ $A_{c,FB}, A_b, A_c, A_l, R_l, R_b, R_c$

- LHC Higgs data
- LHC and LEPII W⁺W⁻ data
- (Top data)

Often, multiple measurements contribute to limits

Global fit to Higgs

- ATLAS fit to Higgs data
- Comparison of linear and quadratic fits
- Not huge difference between them (the better the limit is, the closer they are)
- Typically probe 1-10 TeV scale
 (with C=1)

ATLAS, <u>2402.05742</u>

23

Many global fits

Include top, Higgs, VV

$$A \sim A_{SM} + a_i \frac{C_{6i}}{\Lambda^2} + a_{ij} \frac{C_{6i}C_{6j}}{\Lambda^4}$$

- Blue: Higgs only observables calculated to $1/\Lambda^4$ at dimension-6
- Red: Higgs + top+VV observables calculated to $1/\Lambda^4$ at dimension-6

Including top can make a big difference

2105.00006

The power of loops

- SMEFT is consistent field theory
- Can calculate to NLO (one loop) using standard techniques to improve predictions
- Many interesting effects: typically gain sensitivity to new interactions at loop level

eett vertex poorly constrained Drell Yan sensitive to ZWW vertex

$e^+e^- \rightarrow ZH is window to many new$ interactions $EP Global Fits \qquad 240 \text{ GeV}, 0.5\% \qquad 365 \text{ GeV}, 1\%$ $WFV \qquad EP Global Fits \qquad 240 \text{ GeV}, 0.5\% \qquad 365 \text{ GeV}, 1\%$ $WFV \qquad WFV \qquad W$

- Effects of different operators is correlated
- Power of measurement at 2 different energies

2406.03557

CP violation at future e⁺e⁻ colliders

• Define CP violating asymmetry

 $A_{CP} = \frac{\sigma(\cos\theta > 0) - \sigma(\cos\theta < 0)}{\sigma(\cos\theta > 0) + \sigma(\cos\theta < 0)}$

- CP violation in the gauge sector is strongly limited by eEDMs
 - eEDM depends on SMEFT coefficients

$$d_e = \sqrt{2}vIm\left\{\sin\theta_W \frac{C_{eW}}{\Lambda^2} - \cos\theta_W \frac{C_{eB}}{\Lambda^2}\right\}$$

- RGE evolution generates $C_{\phi \tilde{W}B}, C_{\phi \tilde{W}}, C_{\phi \tilde{B}}$
- Limits from angular observables at LHC from $H{\rightarrow}$ 4 lepton

Future colloders need NLO SMEFT

NLO corrections

• Loop corrections include logarithms which can be found from renormalization group running (RGEs) and constant pieces

$$\sigma \sim (...) \log \left(\frac{M_Z^2}{\Lambda^2}\right) + (...)$$

- RGEs known at 1 loop for dimension-6 operators
 - Partial dimension-8 results exist
- NLO QCD SMEFT corrections automated
- NLO EW SMEFT corrections not automated and must be done on **case by case** basis

NLO Electroweak SMEFT: constants matter

- Example: $H \rightarrow Z\gamma$
 - Λ~ 1 TeV, constants can give large effects (very dependent on specific values of coefficients)

* Similar conclusions for $H \rightarrow \gamma \gamma$

Recap

- NLO corrections open window to new interactions
- Logarithms from RGEs may not tell the whole story

What does it mean?

- I don't particularly care about the numerical value of some coefficient
- But... an unambiguously non-zero value of a Wilson coefficient is a clear sign of new physics.
- Power of EFTs is that coefficients can be matched to high scale models of underlying UV physics

Different BSM models will have different (calculable) patterns of coefficients

Patterns

- Only a small number of operators generated in specific models
- Coefficients can be computed in terms of BSM inputs

The Inverse Problem?

- If we measure non-zero SMEFT coefficients, can we determine the underlying high scale model?
- In simple models (ie 1 new massive particle, whose interactions are described in terms of a single parameter) the particles that can contribute to dimension-6 operators have been categorized long ago
- Dimension-6 contributions only sensitive to C/Λ^2 : Scale interpretation ambiguous

Global fit with C=1

2204.05260

Even better

- Can probe simple models with 1loop matching at high scale
- Assume Λ =1 TeV and vary coupling
- NLO is one-loop matching, with automated coded MATCH2FIT
- For most models, loop matching effects are small
- Limits from EWPOs and LHC data

2309.04523

Coefficients have scale

- SMEFT coefficients defined at high scale, Λ
- Measurements at weak scale
- Running is solved problem

$$C_i(\mu) = C_i^0 - \frac{1}{32\pi^2\hat{\epsilon}}\gamma_{ij}C_j$$

- Running of UV scale coefficients of poorly constrained operators may generate operators that are tightly limited at weak scale.
- Ex: matching to scalar singlet model generates $C_{H\Box}, C_{H}$

$$C_{H\square}(M_W) = C_{H\square}(\Lambda) + \frac{10e^2}{3c_W^2} C_{HD} \log\left(\frac{M_W^2}{\Lambda^2}\right)$$

Running gives new effects

<u>1312.2014</u>, <u>1310.4838</u>, <u>1309.0819</u>

 $C_{HD} \sim \Delta T$ highly constrained

Coefficients have scale

- Match SMEFT to model at high scale
- RGE evolve coefficients to M_Z to extract limits
- Singlet model corresponds to point in parameter space

Global fit to Scalar singlet model

Look for heavy Z's

- Many types of Z's: Interpretations model dependent
- Can match predictions to dimension-8 operators (ie include C/ Λ^4 operators)
- Generate (many) 2- and 4-fermion operators
- Calculate coefficients in terms of model parameters
- In this example, the dimension-8 operators give a very small contribution

2404.01375

38

Information from many places

- Primarily from LHC and Z pole measurements
- At LHC, info from Drell-Yan FB asymmetries and from dσ/dm_{ll} measurements
- Measurements complementary

2HDM more interesting

- Model has 2 Higgs doublets with vevs, v_1 and v_2 , tan $\beta = v_2/v_1$
- 5 physical Higgs bosons: h, H (neutral), A (pseudoscalar), H^{\pm}
- Diagonalize neutral Higgs mass matrix with angle $\boldsymbol{\alpha}$
- Take $M_{H'}, M_{A'}, M_{H^+} \rightarrow \infty$
- In this limit $\cos(\alpha \beta) \sim v^2/M^2$
- So: dimension-6 coefficients are proportional to $cos(\beta-\alpha)$
- Gauge couplings are dimension 8 since they are proportional to $sin(\beta-\alpha)$

Example of model where you need to go to dimension-8 to capture the physics

2HDM

- Global fit to Higgs data
- Include dim-6 squared terms $[O(1/\Lambda^4)]$ and dim-8 $O(1/\Lambda^4)$ matched to 2HDM
- Dim-6 fails to capture the physics of the 2HDM, type I model
- HVV couplings first arise at dim-8 in 2HDM

What if it's not SMEFT?

- What if Higgs is not part of an SU(2) doublet? → HEFT (Higgs Effective Field Theory)
- Expansion is different from SMEFT

$$V(h) = \frac{1}{2}m_h^2 h^2 \left(1 + \kappa_3 \frac{h}{v} + \frac{\kappa_4}{4} \frac{h^2}{v^2} + \dots\right)$$
 h is physical Higgs

- SM: κ₃=κ₄=1
- Suggests that hh \rightarrow hh, WW \rightarrow hh can distinguish between SMEFT and HEFT

SMEFT can always be written as HEFT

HH production via VBS can potentially distinguish SMEFT from HEFT If the theory is SMEFT, results must lie on red line

LHC

k_v

Conclusion

- SMEFT approach may be able to extract insights about new physics even if new physics is very heavy
 - It could be the only tool we have
- Experiments have begun to produce SMEFT results combining input from different types of physics
 - Really want these studies to be done consistently by experimentalists
- Most pressing theoretical need is to understand uncertainties