JENA Computing Initiative: Software Challenges, Best Practices and Recommendations

Graeme Stewart, Paul Laycock, Adrien Matta

ICFA Data Lifecycles Panel, 2024-12-03

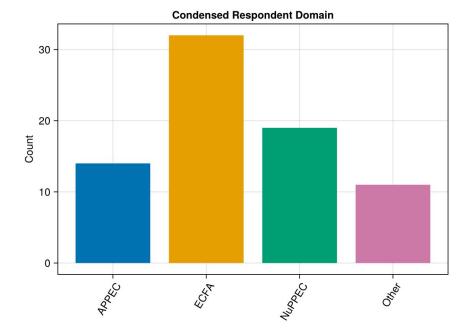
JENA Computing Initiative

- What is JENA?
 - Body that identifies synergies and opportunities that would be common between ECFA (European Committee for Future Accelerators - HEP), NuPPEC (Nuclear Physics European Collaboration Committee) and APPEC (Astroparticle Physics European Consortium)
 - Organised by the respective chairs of ECFA, NuPPEC and APPEC
- JENA Computing Initiative
 - <u>2022 symposium</u> there was a focused session on software and computing
 - It became clear that a more comprehensive identification of computing needs for the next decade, across communities, was needed
 - Particularly the *funding agencies* asked us to prepare some joint view
- There was a <u>follow up seminar</u> in Bologna in 2023
 - This reviewed the situation and formed a series of working groups to formulate a white paper for the next JENA Symposium

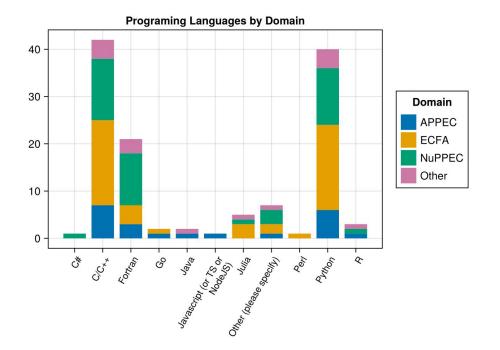
Working Groups and Timeline

- WP1 HPCs
- WP2 Software and Heterogeneous Architectures
- WP3 Federated Data Management, Virtual Research Environments and FAIR/Open Data
- WP4 Machine Learning and Artificial Intelligence
- WP5 Training, Dissemination, Education

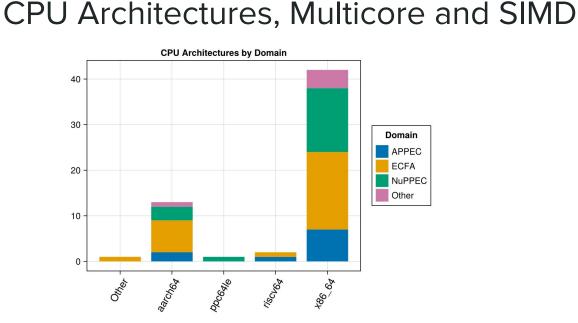
The timeline is for all the groups to produce draft reports by the end of November 2024, which will be synthesised into a combined white paper at the start of 2025.

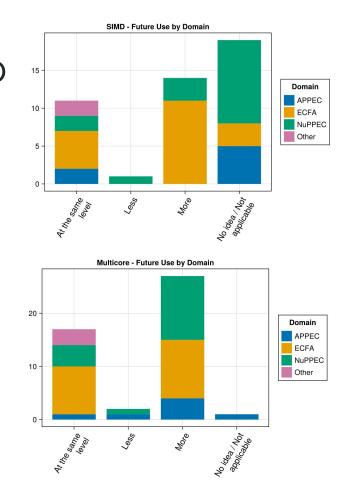

• Mostly these draft reports are close to ready

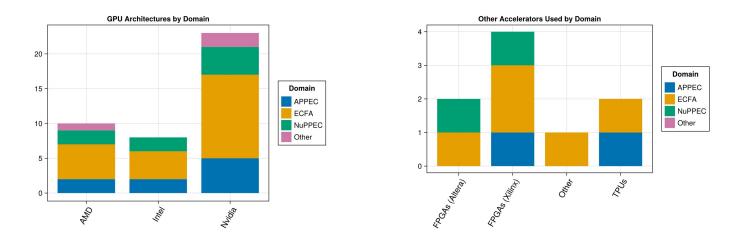
WP2 - Software and Heterogeneous Computing

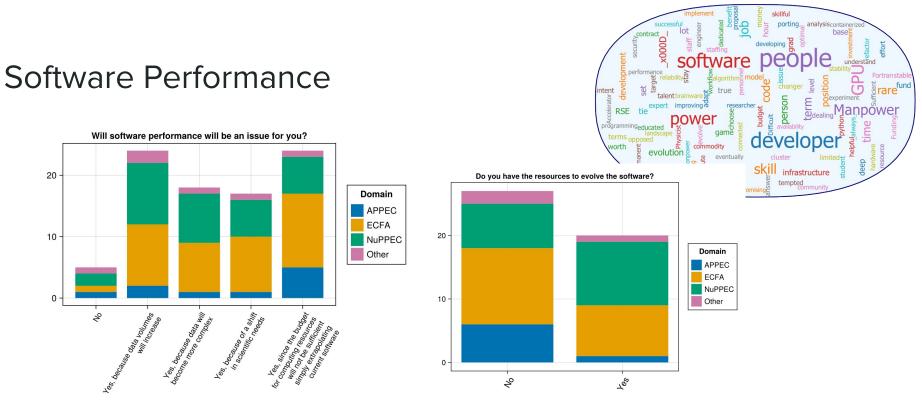

- Formed of ~15 experts from all three communities
- We firstly identified many <u>documents</u> that had already been prepared by the communities and experiments on future challenges
 - \circ $\,$ E.g., the HL-LHC upgrade documents from ATLAS and CMS $\,$
- We then summarised and synthesised these inputs
 - First into super-summaries, per community
 - Then into our final report
- In parallel, we wanted to survey the communities and gather more information
 - We prepared questions about software in common with our colleagues in the <u>Spectrum project</u> (which covers HEP and radio astronomy)
 - This survey ran from July to September

A Few Survey Snippets

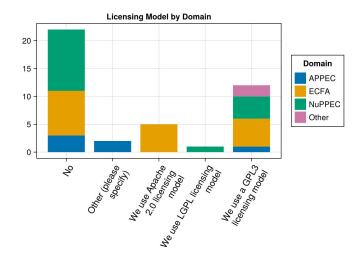

- 76 people in total answered
 - More from ECFA, but reasonable number of responses from APPEC and NuPPEC
- 48 people answered the questions on software
- For a more detailed presentation on the results, see <u>this talk</u>

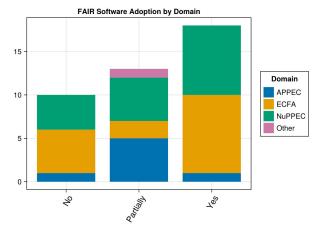

Programming Languages Used


- C++ and Python dominate, as expected
- Fortran had a strong showing
 - Theory codes, particularly in nuclear physics
- Some younger languages are attracting interest
 - Julia, Rust
- Programming accelerators is a hot topic


- x86_64 still dominates, strong showing for aarch64 (ARM)
- Expectation is to use more multicore
 - SIMD is much better known in the ECFA community

GPUs and other Accelerators


- GPUs are the dominant accelerator, small showing for FPGAs
- There is clear interplay between what centres provide and what processors are targeted by developers
- Direct programming and ad hoc SDKs dominate over heterogeneous toolkits

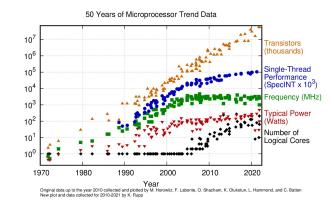


- Software performance is an issue, though resources are partially available
- Missing resources = people!

Licensing and FAIR Software

- A large number of respondents reported having **no** licensing model
 - This is surprisingly high, given this is a basic part of best practice
 - How can we help?
- Makes all the more difficult to believe that FAIR4RS is adopted
 - We suspect that people do not actually understand what FAIR4RS means!
 - As "partially" is also a popular response, what causes this? Difficult to understand? Lack of effort? Anachronistic policies?

Working Group Report


- This is an advanced draft stage
 - We will release very soon a first public draft

JENA Computing Initiative - WP2 Software Report	1
Executive Summary	1
1. Introduction	1
2. Computational and Data Management Challenges	2
3. Technology and Hardware Evolution and Challenges	5
4. Software Development and Best Practices	6
5. Open Science Data and Frameworks	10
6. Environmental Sustainability and Resource Allocation	11
7. Human Resources and Career Development	12
8. Conclusion and Recommendations	13

Stefan's talk next

Challenges

- Data volumes grow
 - We are asked to handle our data in a FAIR way
- Computing requirements grow
 - Pushed by both data volumes and physics needs
 - For those communities not yet at the distributed computing scale, it's coming...
- Efficient programming on modern processors is challenging
 - Heterogeneous CPUs with multi-core and SIMD
 - GPUs suit computationally intense uniform problems
 - FPGAs require very specialist skills, but are often needed just after data acquisition
- C++ is fast, but difficult and increasingly rarely known; Python is ubiquitous, accessible, but is very slow
 - Slow computing is bad for the environment!

Best Practices I

- We have identified core best practices, which are well aligned with software development best practices as well as favouring specific needs of our sciences
 - Adopt an open source model, aligned with FAIR4RS, e.g.
 - Ensure software is properly versioned
 - Provide appropriate documentation
 - Deployment and distribution of working software (with dependencies)
 - Automate workflows to improve robustness and minimise resource usage
 - Automation is also key for reproducibility
 - This includes treatment of Al/ML components
 - DevOps + MLOps

Best Practices II

. . .

• Strive for portable software

- At least across CPU architectures and OS versions
- Pay attention to performance for critical code paths
 - This might well mean the use of accelerators
- Maintain and modernise legacy software
 - Consider rewriting in certain cases (deprecated skills, performance needs)
- Strengthen software collaborations
 - Reused and widely used software helps minimise efforts
 - This helps extend software lifetimes and improve quality
- Develop institutional guidelines
 - This is especially valuable for smaller experiments and teams

Recommendations

- We conclude with recommendations to adopt policies, recognising that these also require investment
 - Support Open Science and FAIR principles for software, aligned with robust data preservation and access
 - Invest in software maintenance and in the development of modern software solutions that help reduce environmental impact
 - Strategically invest in software that serves multiple experiments and disciplines and optimises data and workflow management
 - Optimally use and allocate computational resources
 - Recognise new multi-paradigm techniques and invest in training and reward trainers
 - Reward software and computing work and provide suitable career paths

Summary

- JENA Computing Initiative has worked extensively with the HEP, nuclear and astroparticle communities to understand current practice and future needs
 - Touching on key areas such as HPCs, software, distributed computing, AI/ML, and training and careers
- Our reports are in the final drafting stages now
- They will be synthesised into a combined white paper for the community
 - As well as a 10 page executive summary, targeting the funding agencies
- We strongly believe that improved support for software is vital for the scientific outcomes we are striving for
 - That must be reflected in supporting training and careers of scientific software experts