

## **Meet the Danes**

**Robert Garbrecht Larsen** 

30 May 2024

#### Min baggrund

- 2018 2021: Bachelor i fysik ved KU (NBI) projekt inden for kvanteoptik
- 2021 2023: Kandidat i fysik ved KU (NBI) projekt inden for kvante Hall effekt
- 2022: CERN summer student projekt om strålinghårde fibre
  - 2023 2026\* Phd-studerende ved CERN(CERN doctoral programme)





\*planlagt

### Mit projekt

#### The CERN accelerator complex Complexe des accélérateurs du CERN



Udvikling af ny instrumentering til brug i CERNs "North Area", særligt til linjer med høj strålingsdosis.

Skal måle profilen (størrelsen) af partikelstrålerne.

Har også anvendelsesmuligheder inden for FLASH terapi.

LHC - Large Hadron Collider // SPS - Super Proton Synchrotron // PS - Proton Synchrotron // AD - Antiproton Decelerator // CLEAR - CERN Linear Electron Accelerator for Research // AWAKE - Advanced WAKefield Experiment // ISOLDE - Isotope Separator OnLine // REX/HIE-ISOLDE - Radioactive EXperiment/High Intensity and Energy ISOLDE // MEDICIS // LEIR - Low Energy Ion Ring // LINAC - LINear ACcelerator // n TOF - Neutrons Time Of Flight // HiRadMat - High-Radiation to Materials // Neutrino Platform



#### **Beam Instrumentation in the North Experimental Area**

- There are different devices that measure the beam profile and intensity of secondary beams
  - Scintillator paddles
  - Multi-Wire Proportional Chambers (MWPC) (1.1 bar 50% Argon 50% CO<sub>2</sub>)
  - Delay Wire Chambers (DWC) another type of wire chamber
  - Filament Scintillators (FISC)
- Many of them are as old as the North Area
- Expertise is lost and they are difficult to maintain
- It's time to upgrade! Large North Area consolidation program on-going (2021 2035)





# North Area radiation-hard beam profile monitor R&D status update

**Robert Garbrecht Larsen** 

24 May 2024

#### **Contents**

- Motivation
- Previous work
  - Liquid scintillator filled capillaries
  - Silica glass rods
- Current work:
  - Hollow core fibers
  - Straw detectors



#### New Radiation Hard Profile Monitor Requirements and Timeline

- For installation in M2 and K12 beamlines (20 monitors)
- Active area of **20 cm x 20 cm**
- A low as possible material budget < 0.3% X0
- A spatial resolution between 6 mm (current) and 1mm.
- Measure particle rates from ~10<sup>5</sup> Hz to ~10<sup>11</sup> Hz in the full energy range of 0.5 – 450 GeV/c
- Operational up to a minimum of 10 years of operation
- Operational in vacuum (10<sup>-3</sup> mbar) and in air
- Possibility of in/out motorisation
- Installation of prototype during LS3 (2028)

|                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | REFERENCE                                                                                  |                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| CERN                                                                                                                                                       | SPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | X-B-ES-                                                                                    | 0001                                                                                                   |
|                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D                                                                                          | ate: 2022-07                                                                                           |
|                                                                                                                                                            | USER REQUIREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                            |                                                                                                        |
| User Require<br>Noi                                                                                                                                        | ments for XBPF<br>rth Area Beamliı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Detec<br>1es                                                                               | tors i                                                                                                 |
|                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                            |                                                                                                        |
| This document summ                                                                                                                                         | ABSTRACT:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ers and th                                                                                 | e nhysics                                                                                              |
| This document sumn<br>requirements for the X<br>a set of user requiren<br>implementation of thes                                                           | ABSTRACT:<br>narizes the needs of the us<br>BPF detectors for all North Area<br>nents and some technical detai<br>ie detectors.                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ers and th<br>Beamlines. I<br>Is that may                                                  | e physics<br>It provides<br>assist the                                                                 |
| This document sumn<br>requirements for the X<br>a set of user requirem<br>implementation of thes<br>DOCUMENT PREPARED BY:                                  | ABSTRACT:<br>narizes the needs of the us<br>BPF detectors for all North Area<br>nents and some technical detai<br>se detectors.                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ers and th<br>Beamlines. I<br>Is that may                                                  | e physics<br>(t provides<br>assist the                                                                 |
| This document sumn<br>requirements for the X<br>a set of user requirem<br>implementation of thes<br>DOCUMENT PREPARED BY:<br>Nikolaos Charitonidis (BE-EA) | ABSTRACT:<br>harizes the needs of the us<br>BPF detectors for all North Area<br>hents and some technical detai<br>se detectors.<br>DOCUMENT TO BE CHECKED BY:<br>Damien Brethoux (BE-EA)<br>Johannes Bernhard (BE-EA)<br>Inaki Ortega-Ruiz (SY-BI)                                                                                                                                                                                                                                                                                                                                        | ers and th<br>Beamlines. I<br>Is that may<br>DOCUMENT TO<br>Markus Br<br>Y. Kadi           | e physics<br>It provides<br>assist the<br>o BE APPROVED<br>rugger (BE-E/<br>i (NACONS)                 |
| This document sumn<br>requirements for the X<br>a set of user requirem<br>implementation of thes<br>DOCUMENT PREPARED BY:<br>Nikolaos Charitonidis (BE-EA) | ABSTRACT:<br>harizes the needs of the us<br>BPF detectors for all North Area<br>tents and some technical detai<br>is detectors.<br>DOCUMENT TO 8E CHECKED BY:<br>Damien Brethoux (BE-EA)<br>Johannes Bernhard (BE-EA)<br>Johannes Bernhard (BE-EA)<br>Inaki Ortega-Ruiz (SY-BI)<br>Michael Lazzaroni (BE-EA)<br>Sylvain Girod (BE-EA)<br>Sylvain Girod (BE-EA)<br>Giulia Romagnoli (BE-EA)<br>Francisco Sanchez Galan (BE-EA)<br>Antonio Lafuente Mazuecos (BE-EA)                                                                                                                        | ers and th<br>Beamlines. I<br>is that may<br>DOCUMENT TI<br>Markus Br<br>Y. Kadi<br>EATM ( | e physics<br>It provides<br>assist the<br>O BE APPROVED I<br>Ugger (BE-EJ<br>i (NACONS)<br>Chairperson |
| This document sumn<br>requirements for the X<br>a set of user requiren<br>implementation of thes<br>DOCUMENT PREPARED BY:<br>Nikolaos Charitonidis (BE-EA) | ABSTRACT:<br>harizes the needs of the us<br>BPF detectors for all North Area<br>tents and some technical detai<br>are detectors.<br>DOCUMENT TO BE CHECKED BY:<br>Damien Brethoux (BE-EA)<br>Johannes Bernhard (BE-EA)<br>Johannes Bernhard (BE-EA)<br>Jocelyn Tan (SY-BI)<br>Michael Lazzaroni (BE-EA)<br>Aboubakr: Ebn Rahmoun (BE-EA)<br>Giulia Romagnoli (BE-EA)<br>Alboubakr: Ebn Rahmoun (BE-EA)<br>Alboubakr: Albanoun (BE-EA)<br>Antonio Lafuente Mazuecos (BE-EA)<br>Antonio Lafuente Mazuecos (BE-EA)<br>Antonio Lafuente Mazuecos (BE-EA)<br>Antonio Lafuente Mazuecos (BE-EA) | DOCUMENT TO<br>Markus Br<br>Y. Kadi                                                        | e physics<br>(t provides<br>assist the<br>0 BE APPROVED I<br>ugger (BE-EJ<br>( (NACONS)<br>Chairperson |



## Initial idea: radiation hard (or easily replaceable) fibers

- Scintillation based:
  - Organic scintillators
  - Inorganic scintillators
  - Liquid scintillators
- Cherenkov based:
  - Simple commercial fibres
  - Silica glass rods



## Initial idea: radiation hard (or easily replaceable) fibers

- Scintillation based:
  - Organic scintillators
  - Inorganic scintillators
  - Liquid scintillators
- Cherenkov based:
  - Simple commercial fibres
  - Silica glass rods





| Pros                                           | Cons                                                             |
|------------------------------------------------|------------------------------------------------------------------|
| Could reuse XBPF motorization solution easily. | Will need radiation hard<br>photosensors or transport<br>fibers. |
| Easy to meet resolution requirements.          | Difficult to satisfy entire dynamic range.                       |
|                                                | Fragile                                                          |
|                                                | Time consuming to produce                                        |
|                                                | Liquid scintillator (EJ-309) is toxic                            |



#### **Single fiber tests**

IRRAD

#### **CLEAR**



#### **CLEAR**

- Multiple experiments since summer 2022.
- Positive results for intense beams with silica rods.
- Positive results with liquid scintillator filled capillaries.



Charge (pC)

#### **IRRAD**

- Experiment conducted in summer 2023.
- Fiber 1 was a silica glass rod, and fiber 2 was a liquid scintillator filled capillary.
- Especially glass rod shows dramatic drop in signal as the dose received increases.





1.0

0.8

Integral (AU) 90

0.4

0.2

0.0

00

S.

20

Total particles



Fiber 2 normalised beam signal over dose





24 May 2024

Data

20

le16

Fit

#### **XBPF-style prototype**

- First campaign in August/September 2023 in M2 beamline.
- Second installation closer to targets in June 2024.
- Combination of Silica fibres, capillaries with liquid scintillator, and plastic scintillating fibres.







#### **Two main current directions of research**

**Straw detectors** 

#### **Gas filled Hollow Core Fibers (HCF)**





- Light is guided in air, so not susceptible to color center formation.
- Can be filled with liquid or gas.
- Very small hollow core compared to glass capillaries.
- Difficult to model light-trapping in GEANT4.





#### **Gas choice**

- CF4 scintillates in region where SiPM photodetectors have reasonable efficiency.
- For Argon a wavelength shifter, such as N2, is needed. (Main peak is at 127nm)



CERN

#### **GEANT4** simulation

- 200 Mev electrons.
- Plots show number of photons per primary.
- Trapping modelled with a reflective surface.













HCF mounted at ethe end of the CLEAR beamline









#### **Regular analysis pipeline**





#### **Regular analysis pipeline**



But something is clearly wrong, since zero signal does not correspond to zero charge!



## HCF1 (6 bar CF4)





## HCF2 (20 bar CF4)





- We saw no signal when HCF was filled with atmospheric air or vacuum.
- Transmission through fiber rapidly dropped when exposed to beam.
- We observed a faster drop when fiber was pressurized with a higher gas pressure.
- We suspect Fluor radicals chemically etched the silica structure.
- Fiber has been shipped back to Southampton for imaging.
- Follow up experiment with Argon and Nitrogen mix planned for September





#### **Straw based monitor**







#### **GARFIELD** simulations













#### **Space charge**





1.0

+

+

#### **Straw based monitor**

- We are assembling a 4-straw demonstrator for testing first with a radioactive source in the lab, and then in IRRAD.
- If this proves successful, we will assemble a full-sized prototype (20cm x 20cm).







home.cern