

- Model
- Phase-space longitudinally frozen
- Phase-space with longitudinal motion

Model

- Xsuite + Xmask
 - /afs/cern.ch/eng/lhc/optics/runIII/RunIII_dev/Proton_2024/opticsfile.43
 - All beam-beam interactions, including separated IP2 and 8, weak-strong model without orbit effect subtracted
 - Tunes: 0.31/.32
 - Chroma 20
 - Octupoles: 300A
 - dpp 2E-4
 - No machine errors

Particles highlighted in red end up beyond the primary cut at the secondary in the same turn by about 1.5sigma \rightarrow There indeed exists trajectories that can break the hierarchy

diffusing from the expect particles to be lost here first (spanning many phases while doing betatron motion)

Impact of lower tunes: 0.305/0.315

Impact of lower chroma: 5

Impact of octupoles: 0A

Removing octupoles also helped (which wasn't the case in the end-of-fill tests. However I suspect that an interplay with the triplet non-linearities could change the picture...)

With longitudinal motion and some triplet errors

 \rightarrow Need to refine error model and understand what proportion of phase space can be lost in this manner

Same as first slide but on momentum

