Implications of LHC results for TeV-scale physics

V. Chiochia (Zürich University)
On behalf of the CMS and ATLAS Collaborations

29 August - 2 September 2011
CERN, Switzerland
Searches for rare decays:

- $B_s \rightarrow \mu^+ \mu^-$ and $B^0 \rightarrow \mu^+ \mu^-$
- $B^0 \rightarrow K^{*0} \mu^+ \mu^-$
- $D^0 \rightarrow \mu^+ \mu^-$
- $\tau \rightarrow 3$ leptons

CP violation in the B_s system:

- $B_s \rightarrow J/\psi \phi$ and $B_s \rightarrow J/\psi f_0$

Conclusions and outlook
Searches for rare decays
Why searching for $B_{s,d} \rightarrow \mu^+ \mu^-$?

- Decays highly suppressed in SM
 - Forbidden at tree level
 - $b \rightarrow s$ FCNC transitions only through Penguin or Box diagrams
 - Helicity suppressed by factors of $(m_{\mu}/m_B)^2$

- Standard Model predictions
 - $\mathcal{B}(B_s \rightarrow \mu \mu) = (3.2 \pm 0.2) \times 10^{-9}$
 - $\mathcal{B}(B^0 \rightarrow \mu \mu) = (1.0 \pm 0.1) \times 10^{-10}$

- Sensitivity to new physics
 - MSSM Br proportional to $(\tan \beta)^6$
 - Very effective at high $\tan \beta$
Event characteristics

Signal characteristics:
- Two muons from a single decay vertex
- Mass compatible with B_s (or B^0)
- Well reconstructed secondary vertex
- Momentum aligned with flight direction

Background sources:
- Two semi-leptonic B decays (gluon splitting)
- One semi-leptonic B decay + misidentified hadron
- Rare B decays (e.g. $B_s \rightarrow KK$, $B_s \rightarrow K\mu^+\nu$)

Key ingredients:
- Good di-muon vertex, correct B mass assignment, momentum pointing to interaction point
Signal event selection

All selection criteria optimized for limit sensitivity before unblinding of signal window

- Mass window requirement:
 - Resolution: 36 (85) MeV in barrel (endcap)
 - 5.3-5.45 (5.2-5.3) GeV for B_s (B^0)
- Selection cuts differentiated for **barrel** (both $|\eta(\mu)|<1.4$) and **endcap** region (all other μ pairs)
- Primary vertex consistent with $p(B)$ direction
- Secondary vertex fit χ^2/dof<1.6
- Decay length and flight direction:
 - $l_{3D}/\sigma(l_{3D})>15$ (20), $\alpha_{3D}<50$ (25) mrad
- Single muon and B candidate selection:
 - $p_T(\mu)>4.5$ or 4.0 GeV, $p_T(B)>6.5$ GeV

Diagrams showing signal event selection criteria, including mass windows, resolution requirements, and selection cuts for primary and secondary vertices.
Signal event selection: isolation

- Relative isolation of muon pairs
 - Cone with $\Delta R=1$ around di-muon momentum
 - Include all tracks with $p_T>0.9$ GeV from same PV or $d_{CA}<500$ μm from B vertex
 - Require isolation larger than 75%

- Distance of closest approach of any track w.r.t. B vertex larger than 150 μm (endcap region only)

\[
\text{Isolation} = \frac{p_T(\mu^+ + \mu^-)}{p_T(\mu^+ + \mu^-) + \sum_{\Delta R<1} p_T} > 75\%
\]
Selection efficiency

- Validation of MC simulation performed with two exclusive decays
 - $B_s \rightarrow J/\psi (\mu^+\mu^-)\phi (KK)$
 - $B^+ \rightarrow J/\psi (\mu\mu)K^+$

- Signal and normalization efficiencies from simulation
 - **Signal efficiency**: 0.4% (0.2%) in barrel (endcap)
 - **Normalization efficiency**: 0.08% (0.03%) in barrel (endcap)

- Good agreement with simulation after sideband subtraction
 - Residual differences adopted as systematics
Branching ratio calculation

- Branching ratios calculated w.r.t. normalization channel $B^+ \rightarrow J/\psi (\mu^+ \mu^-) K^+$
 - Many systematic uncertainties cancel in ratio
 - No need for absolute luminosity and b-quark cross section
 - Large B^+ yield and well known branching ratio to $J/\psi K^+$ (3% uncert.)
 - Ratio of fragmentation fractions, f_u/f_s, from PDG (13% uncert.)

\[
\text{Br}(B_s \rightarrow \mu^+ \mu^-) = \frac{N(B_s \rightarrow \mu^+ \mu^-)}{N(B^+ \rightarrow J/\psi K^+)} \frac{f_u}{f_s} \frac{B^+}{B_s} \frac{\text{Br}(B^+ \rightarrow J/\psi K^+)}{\text{tot}}
\]

From PDG

From PDG

Candidates / 0.010 GeV

Barrel

Endcap

~13'000 candidates

~4'500 candidates
Background estimates

- **Combinatorial background:**
 - Measured in data from B mass sidebands
 - Interpolate to signal region under flat-shape assumption

- **Peaking backgrounds:**
 - $B \rightarrow hh$ backgrounds with two muons from misidentified hadrons
 - Muon mis-ID in data from $K_s \rightarrow \pi \pi$, $\phi \rightarrow KK$, $\Lambda \rightarrow p \pi$ decays
 - MC background samples with mis-ID probability from data
 - B^0 search more affected than B_s because of lower mass
Systematic uncertainties

<table>
<thead>
<tr>
<th>Source</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fragmentation fractions from PDG</td>
<td>13%</td>
</tr>
<tr>
<td>Background estimation: loosen cuts, invert isolation cut</td>
<td>4%</td>
</tr>
<tr>
<td>Signal acceptance: vary b-quark production processes</td>
<td>4%</td>
</tr>
<tr>
<td>Signal selection efficiency: cut-by-cut data/MC differences</td>
<td>8%</td>
</tr>
<tr>
<td>Track momentum scale: from J/ψ resonance</td>
<td>3%</td>
</tr>
<tr>
<td>Normalization selection efficiency: cut-by-cut data/MC differences</td>
<td>5%</td>
</tr>
<tr>
<td>Hadron tracking efficiency: from D decays*</td>
<td>4%</td>
</tr>
<tr>
<td>Normalization yield: vary fit functions</td>
<td>5%</td>
</tr>
<tr>
<td>Muon identification efficiency ratio: data/MC differences</td>
<td>5%</td>
</tr>
<tr>
<td>Trigger efficiency ratio: data/MC differences</td>
<td>3%</td>
</tr>
<tr>
<td>Total</td>
<td>19%</td>
</tr>
</tbody>
</table>
Consistent with expectation from background and SM signal in all four channels
CMS+LHCb combination

- LHCb analysis released at EPS 2011, based on 370 pb$^{-1}$
 - Upper limit = 1.6×10^{-9} at 95% CL (1.5×10^{-9} combining with 2010 result)

- CMS and LHCb upper limits combined
 - Utilize recent LHCb f_s/f_u value (8% uncert.)
 - Assumed 100% correlated between 48 LHCb bins and 2 CMS bins for signal expectation
 - p-value for background only = 8%
 - p-value for background+signal = 57%

![Graph showing CMS + LHCb combination](image-url)

Figure 2: The observed (solid curve) and expected (dotted curve) CLs values, for background-only (top) and background plus the Standard Model signal (bottom), as a function of $\text{BR}(B^0_s \rightarrow \mu^+ \mu^-)$. The green shaded area contains the $\pm 1\sigma$ interval of possible results compatible with the expected value; the 90w and 95w CL observed limits are illustrated by the dashed lines.

90% CL: 9×10^{-9}
95% CL: 11×10^{-9}
Implications on new physics

- Relevant impact on various SUSY scenarios at large $\tan\beta$
 - For large $\tan\beta$ (50) can extend limits from direct searches in some models

![NUHM](image1)

![CMSSM - $\mu > 0$](image2)

Current limits biting in the high $\tan\beta$ region (>50)

![Observation of SM branching would kill $\tan\beta > 45$ in CMSSM](image3)

![Many other global fitters available...](image4)
A three sigma evidence of SM branching may be at reach by early 2012

Improvement in sensitivity may be expected moving from cut&count to MV analyses

Simple scaling of current limits with no improvement in sensitivity!

5-7 times EPS11 luminosity needed for 3σ evidence of SM prediction with CMS+LHCb combination (35% already on tape!)
Prospects at Atlas

- Feasibility study based on MC:
 - Trigger:
 - L1 trigger p_T threshold at 6 GeV
 - Track+muon segment combination at L2, $M(\mu^+\mu^-)<7$ GeV
 - Offline selection:
 - $l_{2D}>500\,\mu m$, $\alpha<17$ mrad, Isolation$>90\%$
 - Asymmetric search window: 4-7 GeV
 - Mass resolution: 70 (124) MeV in barrel (endcap)

First results expected in autumn 2011
Other rare decays

- $B^0 \rightarrow K^{*0} \mu^+ \mu^-$
 - FCNC decay, $Br = (3.3 \pm 1.0) \times 10^{-6}$
 - Angular lepton asymmetries and polarization sensitive to helicity structure of new physics
 - Hints from b-factories and CDF unconfirmed by LHCb results (A_{FB}, F_L, dI/dq^2) at LP2011

- $D^0 \rightarrow \mu^+ \mu^-$
 - FCNC decay, $Br \sim 4 \times 10^{-13}$ [PRD 66, 014099]
 - NP could enhance Br to 10^{-10}-10^{-8}
 - Best published limit from Belle: 1.4×10^{-7} (90%CL)

- $\tau \rightarrow 3$ leptons
 - SM branching $\propto (m_\tau/m_W)^4 \sim 10^{-50}$
 - NP could enhance Br to as much as 10^{-7}
 - Best limit for 3μ: 2.1×10^{-8} (90%CL) [PLB 687 (2010) 139]
 - CMS simulation:
 - 3.8×10^{-8} (95%CL) with 30 fb$^{-1}$
 - Single and di-muon triggers
 - Room for improvements at trigger level
CP violation in the B_s system
CP violation in $B_s \rightarrow J/\psi \phi$

- CP violating phase induced by mixing
 - Very small SM prediction (-36±2) mrad
- Polarization amplitudes depend on CP of final state
 - Requires flavour tagged, time dependent angular analysis
 - Combined fit of 5 variables (mass, lifetime, three polarization angles)

Lepton-Photon 2011

Yield: 8276 ± 96 candidates in 337/pb

$\phi_s = 0.13\pm0.18\text{(stat)}\pm0.07\text{(syst)}$ from $J/\psi \phi$ only

$\phi_s = 0.03\pm0.18\text{(stat)}\pm0.07\text{(syst)}$ combined with $J/\psi f_0$

$\phi_s = \phi_M - 2\phi_D$

$\phi_s = -2\beta = -2 \arg \left(\frac{V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*} \right)$

Transversity angles

$\Omega = \{ \theta, \phi, \psi \}$
Studies at CMS

Roadmap for J/ψφ studies:

- **Cross section and average lifetime:**
 - In agreement with NLO and PDG
 - Yield: ~550 signal candidates in 40 pb⁻¹
- **(Un)tagged angular analysis with >2 fb⁻¹ ongoing**
 - Lower yields observed in 2011 due to higher trigger thresholds but overall samples larger than Tevatron

8<p_T(B_s)<50 GeV, |y(B_s)|<2.4, σ=6.9±0.6(stat)±0.6(syst) nb
σ(MC@NLO)=4.6^{+1.9}_{-1.7}(scale)±1.4(Br) nb
Average lifetime measured with 2010 data:

- Yield: 463 signal candidates in 40/pb
- In good agreement with PDG, first step towards angular fit

Table

<table>
<thead>
<tr>
<th>B^0_{dJ}</th>
<th>B^0_s</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tau_{B, ps}$</td>
<td>1.51 ± 0.04</td>
</tr>
<tr>
<td>m_B [MeV]</td>
<td>5279.0 ± 0.8</td>
</tr>
<tr>
<td>σ_{m_B} [MeV]</td>
<td>34.3 ± 0.9</td>
</tr>
<tr>
<td>N_{sig}</td>
<td>2750 ± 90</td>
</tr>
<tr>
<td>$\tau_{B, ps}$ - ATLAS</td>
<td>1.51 ± 0.04 (stat) ± 0.04 (syst)</td>
</tr>
<tr>
<td>$\tau_{B, ps}$ - PDG value</td>
<td>1.525 ± 0.009</td>
</tr>
</tbody>
</table>
Conclusions and outlook

- **Competitive flavour physics program at CMS and ATLAS**

- **Search for rare decays $B_s \rightarrow \mu \mu$ and $B^0 \rightarrow \mu \mu$**
 - New results from CMS and LHCb with comparable sensitivity
 - CMS data sample ~ 3 times LHCb
 - New world best limit from LHC combination: 11×10^{-9} (95%CL)
 - Atlas result expected in Autumn 2011
 - 5-7 times the EPS11 luminosity could lead to 3σ evidence of SM decay
 - Important constraint on SUSY models at large $\tan \beta$

- **Searches for more FCNC decays ongoing**

- **CP violation in $B_s \rightarrow J/\psi \phi$ and $J/\psi f_0$:**
 - Cross section and average lifetime already measured by CMS and ATLAS
 - Measurement of lifetime difference by end of the year
New physics is under stress...

But don’t be desperate (yet)

...AND YOU THINK YOU HAVE STRESS...
Constraints on Susy

With $B_s \rightarrow \mu \mu$

No $B_s \rightarrow \mu \mu$

Frédéric Ronga – Implications of LHC results – September 1, 2011

Preliminary

NUHM1 (with)

NUHM1 (without)

CMSSM

NUHM

O. Buchmueller et al. this workshop