NEWS SCIENCE & ENVIRONMENT

Home UK Africa Asia-Pac Europe Latin America Mid-East South Asia US & Canada

27 August 2011 Last updated at 06:41 GMT

LHC results put supersymmetry theory 'on the spot'

... nevertheless

Overview of SUSY Global Fits

Results from the Large Hadron Collider (LHC) have all but killed the simplest version of an enticing theory of sub-atomic physics.

John ELLIS, Kings College London & CERN, Geneva, Switzerland

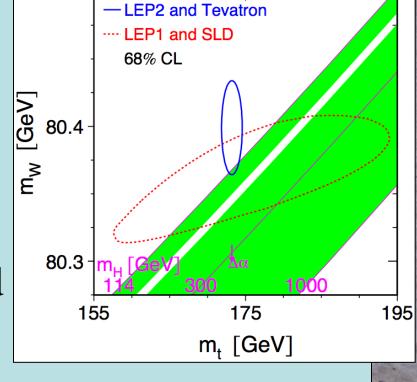
Outline

- Data
- Models
- Techniques
- Examples
- Perspectives

Data

- Electroweak precision observables
- Flavour physics observables
- g_{μ} 2
- Higgs mass
- Dark matter
- LHC

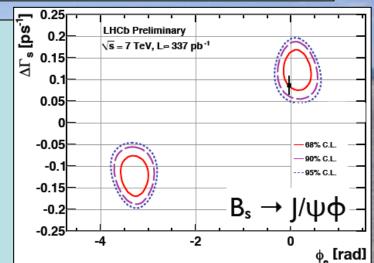
Observable	Source	Constraint		
	Th./Ex.			
$m_t \; [{ m GeV}]$	[39]	173.2 ± 0.90		
$\Delta lpha_{ m had}^{(5)}(m_{ m Z})$	[38]	0.02749 ± 0.00010		
M_Z [GeV]	[40]	91.1875 ± 0.0021		
Γ_Z [GeV]	[24] / [40]	$2.4952 \pm 0.0023 \pm 0.001_{\mathrm{SUSY}}$		
$\sigma_{ m had}^0 \; [m nb]$	[24] / [40]	41.540 ± 0.037		
R_l	[24] / [40]	20.767 ± 0.025		
$A_{ m fb}(\ell)$	[24] / [40]	0.01714 ± 0.00095		
$A_{\ell}(P_{\tau})$	[24] / [40]	0.1465 ± 0.0032		
R_{b}	[24] / [40]	0.21629 ± 0.00066		
$R_{ m c}$	[24] / [40]	0.1721 ± 0.0030		
$A_{\mathrm{fb}}(b)$	[24] / [40]	0.0992 ± 0.0016		
$A_{\mathrm{fb}}(c)$	[24] / [40]	0.0707 ± 0.0035		
A_b	[24] / [40]	0.923 ± 0.020		
A_c	[24] / [40]	0.670 ± 0.027		
$A_{\ell}(\mathrm{SLD})$	[24] / [40]	0.1513 ± 0.0021		
$\sin^2 \theta_{\mathrm{w}}^{\ell}(Q_{\mathrm{fb}})$	[24] / [40]	0.2324 ± 0.0012		
M_W [GeV]	[24] / [40]	$80.399 \pm 0.023 \pm 0.010_{SUSY}$		
$BR_{b\to s\gamma}^{EXP}/BR_{b\to s\gamma}^{SM}$	[41] / [42]	$1.117 \pm 0.076_{\rm EXP}$		
		$\pm 0.082_{\rm SM} \pm 0.050_{\rm SUSY}$		
$BR(B_s \to \mu^+ \mu^-)$	[27] / [37]	$(< 1.08 \pm 0.02_{SUSY}) \times 10^{-8}$		
$BR_{B\to\tau\nu}^{EXP}/BR_{B\to\tau\nu}^{SM}$	[27] / [42]	$1.43 \pm 0.43_{\rm EXP+TH}$		
$BR(B_d \to \mu^+ \mu^-)$	[27] / [42]	$< (4.6 \pm 0.01_{SUSY}) \times 10^{-9}$		
$\mathrm{BR}^{\mathrm{EXP}}_{B \to X_s \ell \ell} / \mathrm{BR}^{\mathrm{SM}}_{B \to X_s \ell \ell}$	[43]/ [42]	0.99 ± 0.32		
$\mathrm{BR}_{K\to\mu\nu}^{\mathrm{EXP}}/\mathrm{BR}_{K\to\mu\nu}^{\mathrm{SM}}$	[27] / [44]	$1.008 \pm 0.014_{\rm EXP+TH}$		
$\mathrm{BR}_{K \to \pi \nu \bar{\nu}}^{\mathrm{EXP}} / \mathrm{BR}_{K \to \pi \nu \bar{\nu}}^{\mathrm{SM}}$	[45]/ [46]	< 4.5		
$\Delta M_{B_s}^{ m EXP}/\Delta M_{B_s}^{ m SM}$	[45] / [47,48]	$0.97 \pm 0.01_{\rm EXP} \pm 0.27_{\rm SM}$		
$\frac{\frac{(\Delta M_{B_g}^{\rm EXP}/\Delta M_{B_g}^{\rm SM})}{(\Delta M_{B_d}^{\rm EXP}/\Delta M_{B_d}^{\rm SM})}}{\Delta \epsilon_K^{\rm EXP}/\Delta \epsilon_K^{\rm SM}}$	[27] / [42, 47, 48]	$1.00 \pm 0.01_{\rm EXP} \pm 0.13_{\rm SM}$		
	[45] / [47,48]	$1.08 \pm 0.14_{\rm EXP+TH}$		
$a_{\mu}^{ m EXP} - a_{\mu}^{ m SM}$	[49] / [38,50]	$(30.2 \pm 8.8 \pm 2.0_{SUSY}) \times 10^{-10}$		
M_h [GeV]	[26] / [51,52]	$> 114.4 \pm 1.5_{\rm SUSY}$		
$\Omega_{ m CDM} h^2$	[29] / [53]	$0.1109 \pm 0.0056 \pm 0.012_{\mathrm{SUSY}}$		
$\sigma_p^{ m SI}$	[23]	$(m_{ ilde{\chi}_{1}^{0}},\sigma_{p}^{\mathrm{SI}})$ plane		
$jets + E_T$	[16, 18]	$(m_0, m_{1/2})$ plane		
$H/A, H^{\pm}$	[19]	$(M_A, \tan \beta)$ plane		

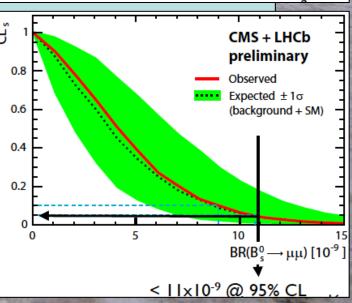

Electroweak Precision Observables

Inclusion essential for fair comparison with

Standard Model

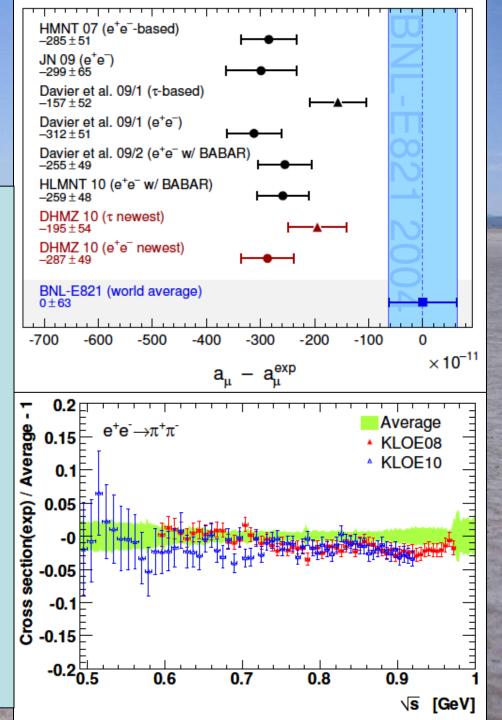
Some observables may be significantly different

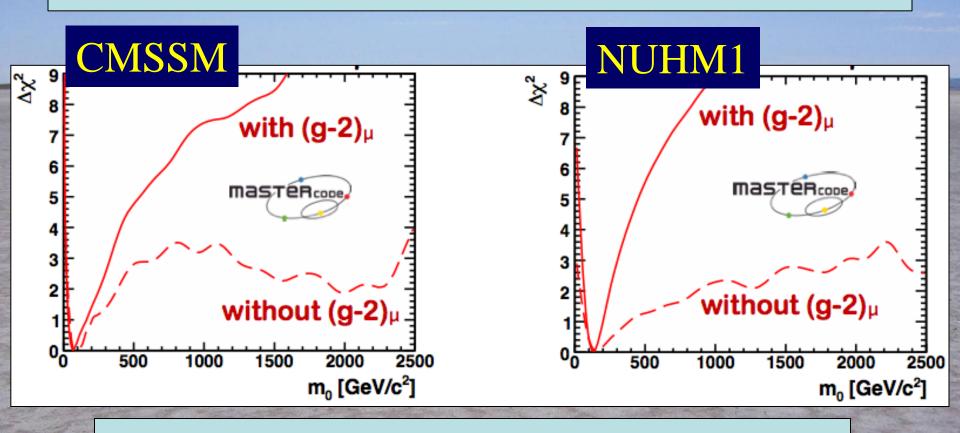

- E.g., m_W , $A_{fb}(b)$
- Advantage for SUSY?
- Some may not be changed significantly



Should be counted against/for all models

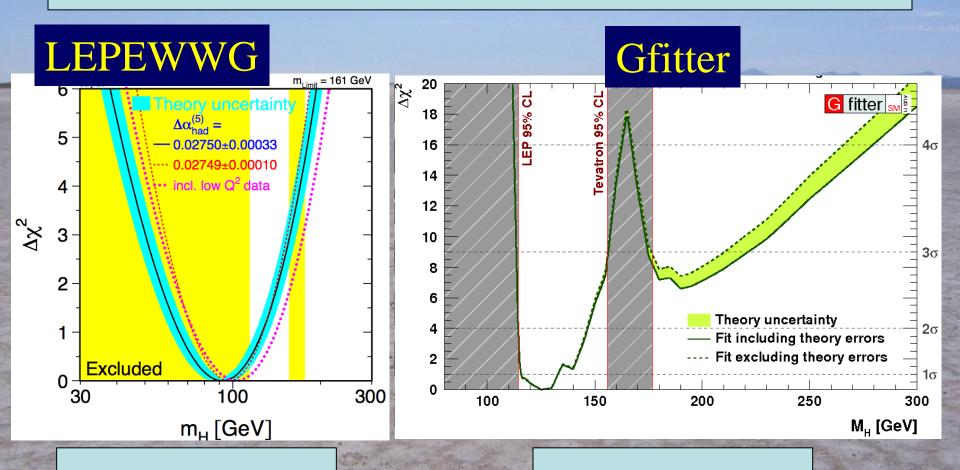
Flavour Physics Observables


- Inclusion requires additional hypotheses
 - E.g., minimal flavour violation
- Many anomalies reported
 - E.g., top production asymmetry, dimuon asymmetry, $B_s \rightarrow J/\psi \phi$
 - Difficult to interpret within SUSY
 - Significant progress with $B_s \rightarrow \mu^-$
 - Valuable constraint on SUSY models

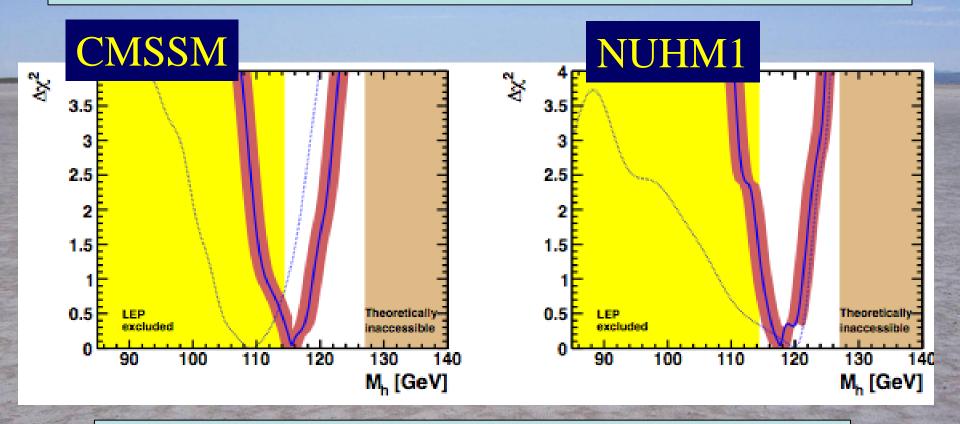


Quo Vadis g_{μ} - 2?

- Strong discrepancy between BNL experiment and e⁺e⁻ data:
 - now $\sim 3.6 \sigma$
- Better agreement between e⁺e⁻ experiments
- Increased discrepancy between BNL experiment and τ decay data
 - now $\sim 2.4 \sigma$
- Convergence between e⁺e⁻ experiments and τ decay data
- More credibility?


To $g_{\mu} - 2$ or not to $g_{\mu} - 2$?

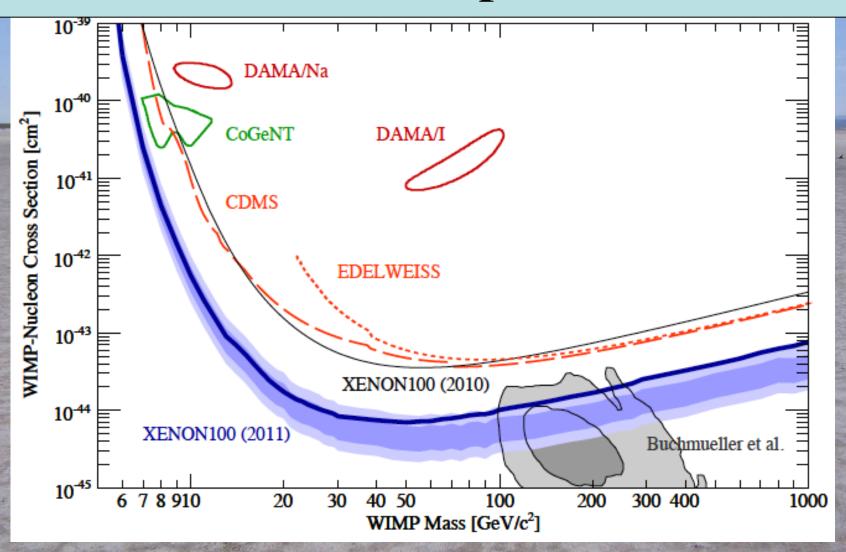
Pre-LHC fits:


Mild preference for small masses even without $g_{\mu} - 2$?

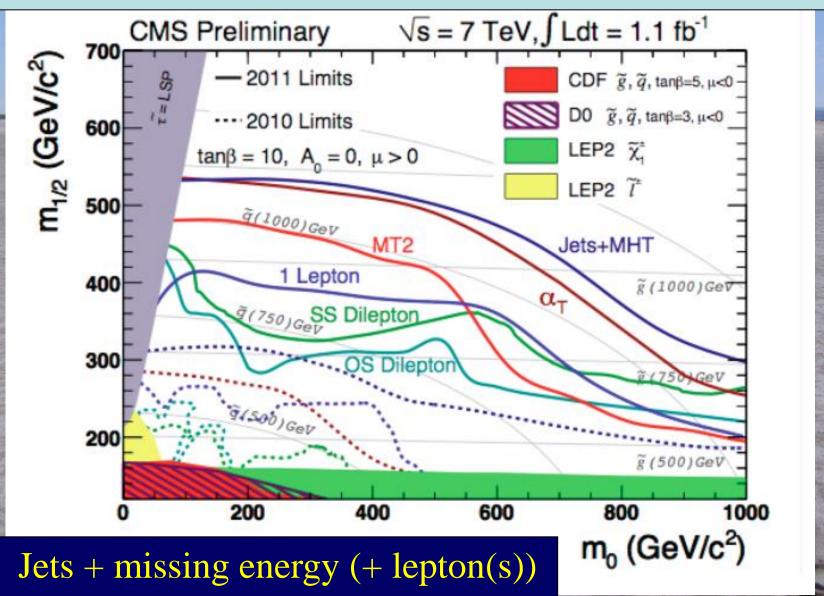
m_H: Blue Band vs Green Band

Precision data vs LEP, Tevatron Combination with LHC

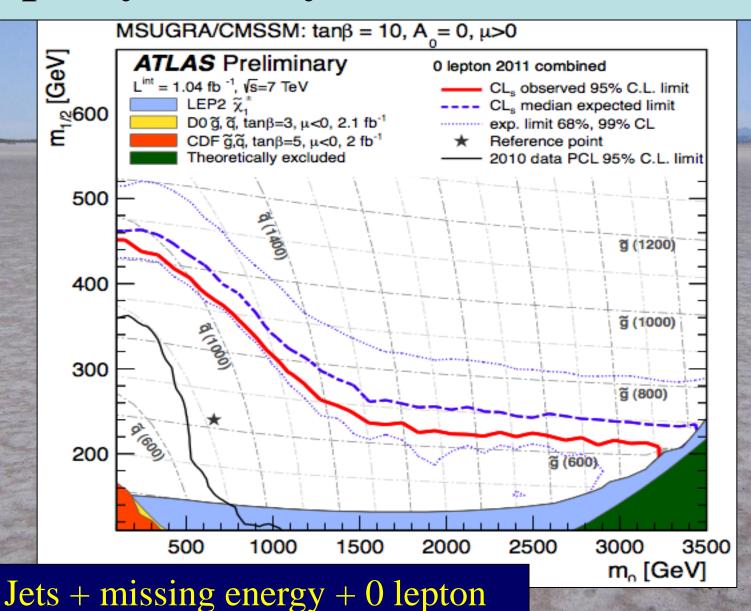
m_H: Blue Band vs Red Band


Dotted: pre-LHC fits $(\Delta \chi^2 \sim 1)$

Solid: post-2010-LHC fits (red band = TH error)


Dark Matter Observables

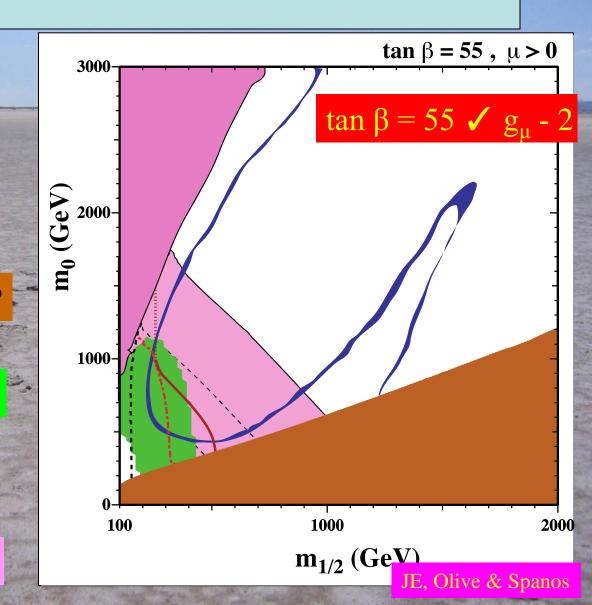
- Cosmological cold dark matter density
 - $-\Omega_{\rm CDM} \, h^2 = 0.1109 \, \pm \, 0.0056$
- Reduces dimensionality of SUSY space by ~ 1
 - Could be other sources of DM: little effect
- Upper limit on spin-independent scattering
- Other astrophysical constraints?
 - Annihilations inside Sun/Earth → neutrinos?
 - Anomalies in cosmic-ray γ /e+/e- spectra?
- Not explicable in models discussed here


Xenon100 Experiment

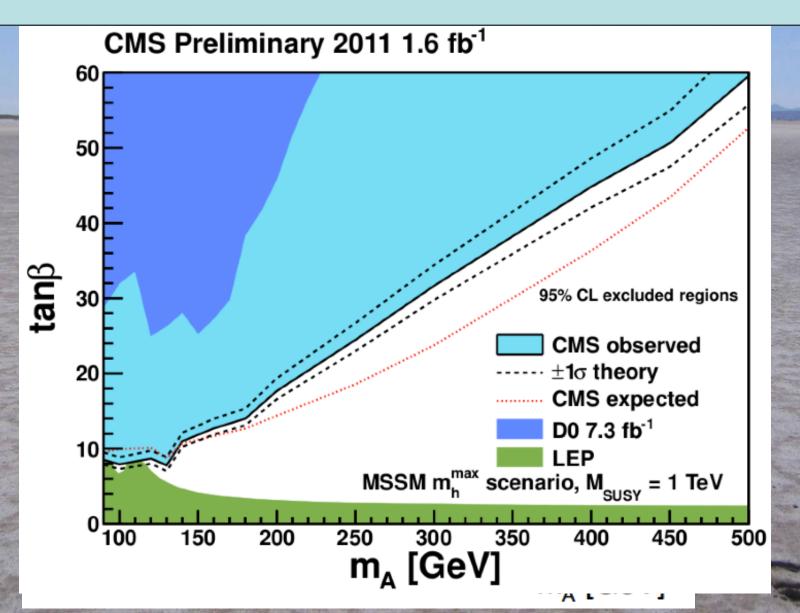
Supersymmetry Searches in CMS

Supersymmetry Searches in ATLAS

Impact of LHC on the CMSSM


Assuming the lightest sparticle is a neutralino

Excluded because stau LSP


Excluded by $b \rightarrow s$ gamma

WMAP constraint on CDM density

Preferred (?) by latest g - 2

Limits on Heavy MSSM Higgses

Meta-Analyses: Cuts vs Likelihood

- Theorists seek to combine many constraints
- Simply imposing 95% CL contours as cuts is inadequate
 - Seek to construct global likelihood function
- Want more information from experiments: several likelihood contours
 - Can be used to check our simulations
- Otherwise, we will resort to unreliable estimates/guesses \otimes

Supersymmetric Models to Study

- Gravity-mediated:
 - NUHM2
 - as below, $m_{\star} \neq m_{\star}$
 - NUHM1
 - as below, c in global fits

Also studied

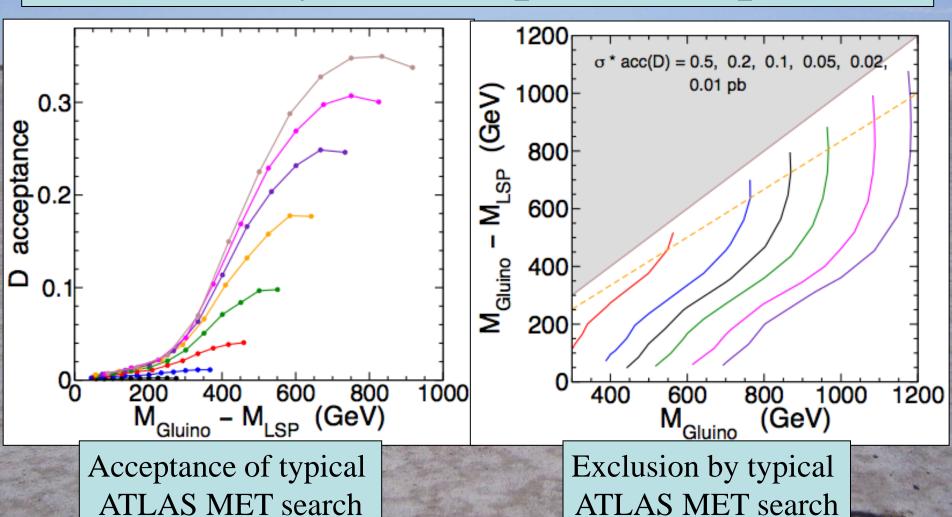
Some

Global

fits

- CMSSM
 - Most studied • m_0 , $m_{1/2}$, ta in global fits
- VCMSSM
 - as above, & A₀
- mSUGRA
 - as above, & ma
- RPV CMSSM

- Other SUSY X models:
 - Gauge-mediated
 - Anomaly-mediated
 - Mixed modulusanomaly-mediated
 - Phenomenological 19-


Less studied in global fits

If model has N parameters, sample 100 values/parameter: 10^{2N} points, e.g., 10⁸ in CMSSM

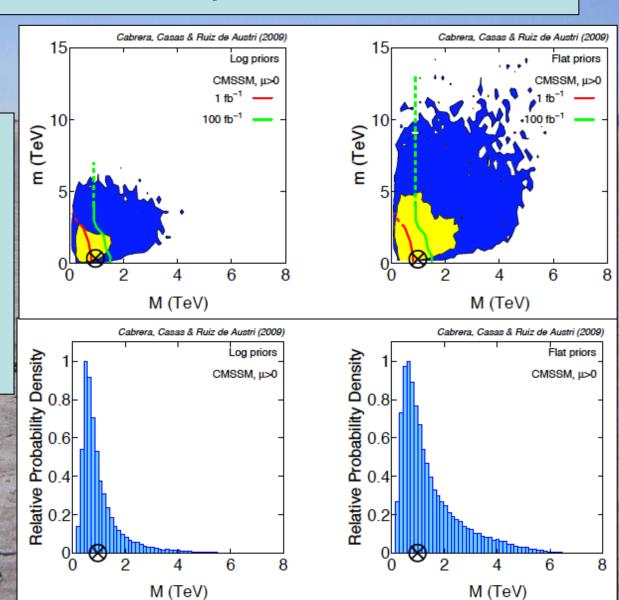
MSSM: > 100 parameters

Minimal Flavour Violation: 13 parameters (+ 6 violating CP) SU(5) unification: 7 parameters NUHM2: 6 parameters NUHM1 = SO(10): 5 parameters CMSSM: 4 parameters mSUGRA: 3 pai meters String?

Current LHC Searches have Reduced Sensitivity to Compressed Spectra

Bayesian vs Frequentist

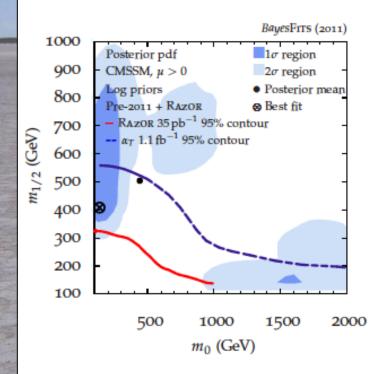
• Bayesian: "probability is a measure of the degree of belief about a proposition"

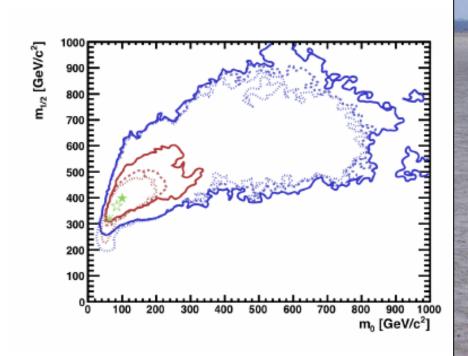

```
Bayes' theorem: posterior pdf p(\theta,\psi|d) = \frac{p(d|\xi)\pi(\theta,\psi)}{p(d)} p(d|\xi) = \mathcal{L}: \text{ likelihood} p(d,\psi): \text{ prior pdf} posterior = \frac{\text{likelihood} \times \text{ prior normalization factor}}{\text{normalization factor}}
```

- Frequentist: "probability is the number of times the event occurs over the total number of trials, in the limit of an infinite series of equiprobable repetitions"
- Louis Lyons: "Bayesians address the question everyone is interested in by using assumptions no—one believes, while frequentists use impeccable logic to deal with an issue of no interest to anyone"

Sensitivities to Bayesian Priors

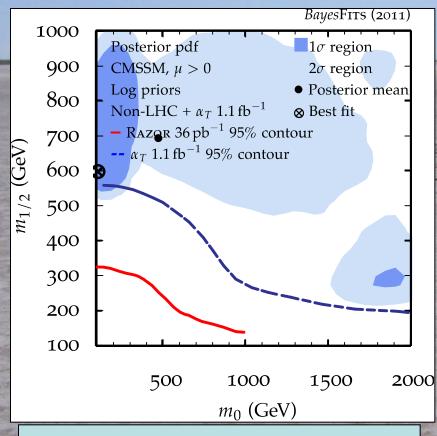
Pre-LHC: Logarithmic vs flat


- $(m_{1/2}, m_0)$ plane
- Probability density for $m_{1/2}$

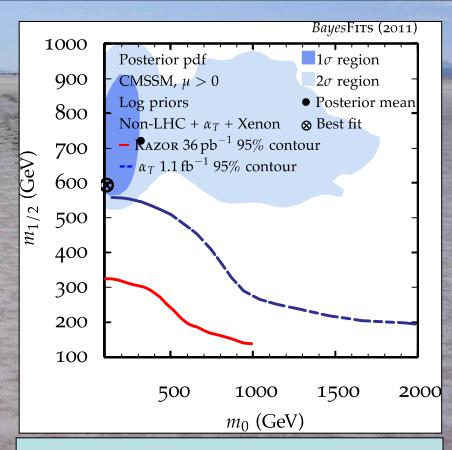

Cabrera, Casas & Ruiz de Austri

To Focus-Point or not to Focus-Point?

Bayesian pdf

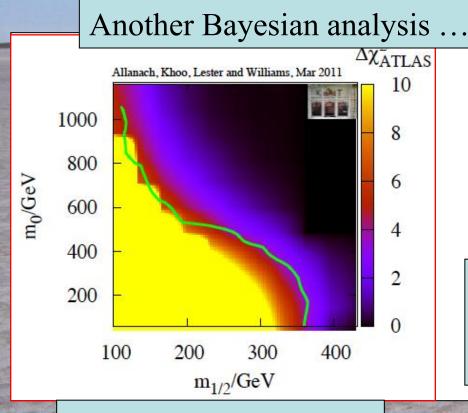


MasterCode



- lacksquare disagreement about large m_0 region

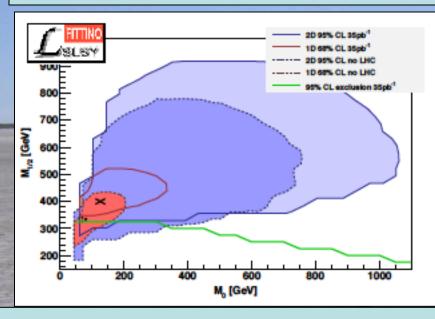
To Focus-Point or not to Focus-Point?

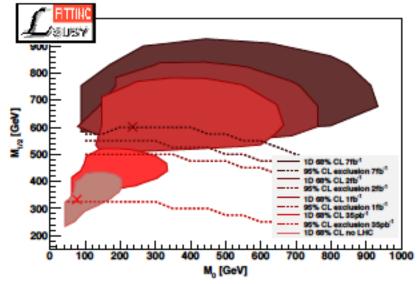


1/fb LHC data, no XENON100 Focus-point remains

1/fb LHC data, with XENON100 Focus-point disappears

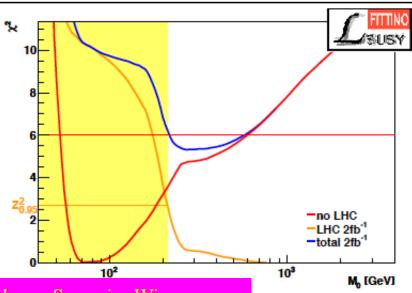
To Focus-Point or not to Focus-Point?

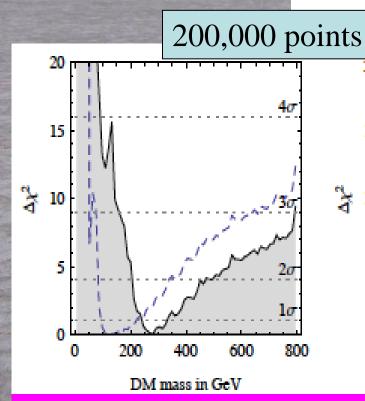




Detailed modelling of experimental likelihood

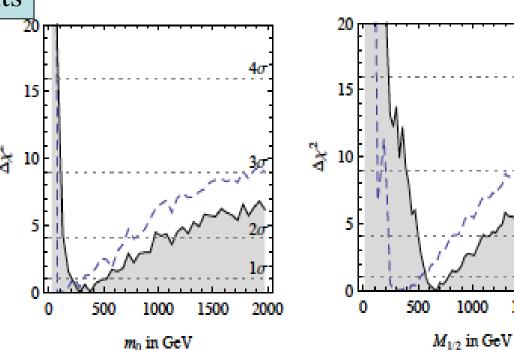
... no sign of the fixed-point region


Pre-LHC vs Post-LHC


Uses MasterCode package

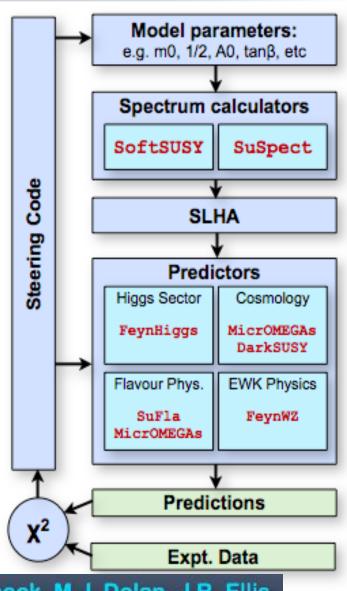
- LHC will push out in the $(m_{1/2}, m_0)$ plane if no SUSY
- Illustration of possible pre/post-LHC tension m_{1/2}

Including XENON100


quantity	experiment	Standard Model
$\alpha_3(M_Z)$ [45]	0.1184 ± 0.0007	parameter
$m_t \ [46]$	173.1 ± 0.9	parameter
$m_b \ [47]$	4.19 ± 0.12	parameter
$\Omega_{\mathrm{DM}}h^2$ [48]	0.112 ± 0.0056	0
δg_{μ} [49]	$(2.8 \pm 0.8)10^{-9}$	0
$BR(B_d \to X_s \gamma)$ [50]	$(3.50 \pm 0.17) 10^{-4}$	$(3.15 \pm 0.23) 10^{-4}$
$BR(B_s \to \mu^+ \mu^-)$ [19]	$(0.9 \pm 0.6) 10^{-8}$	$(0.33 \pm 0.03) 10^{-8}$
$BR(B_u \to \tau \bar{\nu})/SM$ [51]	1.25 ± 0.40	1

The data we fit, together with LHC and Xenon100 bounds.

 1σ


2000

MasterCode

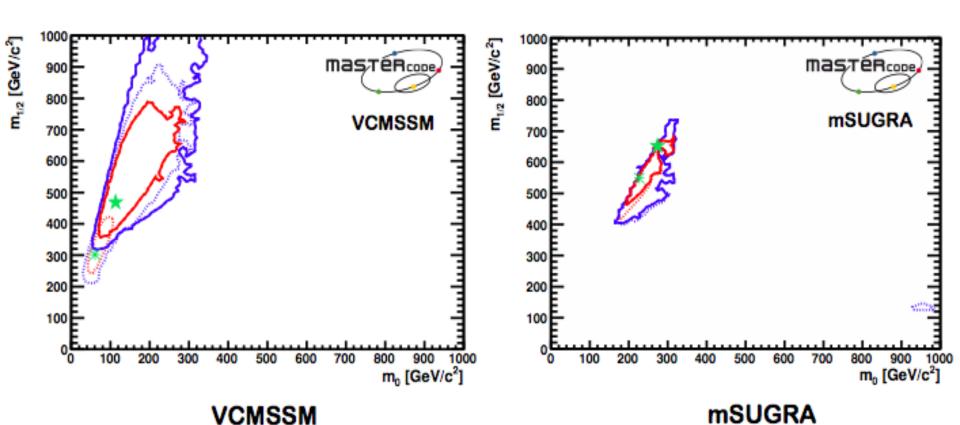
- Combines diverse set of tools
 - different codes : all state-of-the-art
 - Electroweak Precision (FeynWZ)
 - Flavour (SuFla, micrOMEGAs)
 - Cold Dark Matter (DarkSUSY, micrOMEGAs)
 - Other low energy (FeynHiggs)
 - Higgs (FeynHiggs)
 - different precisions (one-loop, two-loop, etc)
 - different languages (Fortran, C++, English, German, Italian, etc)
 - different people (theorists, experimentalists)
- Compatibility is crucial! Ensured by
 - close collaboration of tools authors
 - standard interfaces

O. Buchmueller, R. Cavanaugh, D. Colling, A. de Roeck, M.J. Dolan, J.R. Ellis, H. Flaecher, S. Heinemeyer, G. Isidori, D. Martinez Santos, K.A. Olive, S. Rogerson, F.J. Ronga, G. Weiglein

Constructing the χ^2

$$\chi^{2} = \sum_{i}^{N} \frac{(C_{i} - P_{i})^{2}}{\sigma(C_{i})^{2} + \sigma(P_{i})^{2}} + \sum_{i}^{M} \frac{\left(f_{SM_{i}}^{obs} - f_{SM_{i}}^{fit}\right)^{2}}{\sigma(f_{SM_{i}})^{2}} + \chi^{2}(b \to s\gamma) + \chi^{2}(g_{\mu} - 2) + \chi^{2}(\Omega h^{2}) + \chi^{2}(m_{h}) + \chi^{2}(BR(B_{s} \to \mu\mu)) + \chi^{2}(LHC) + \chi^{2}(XENON100)$$

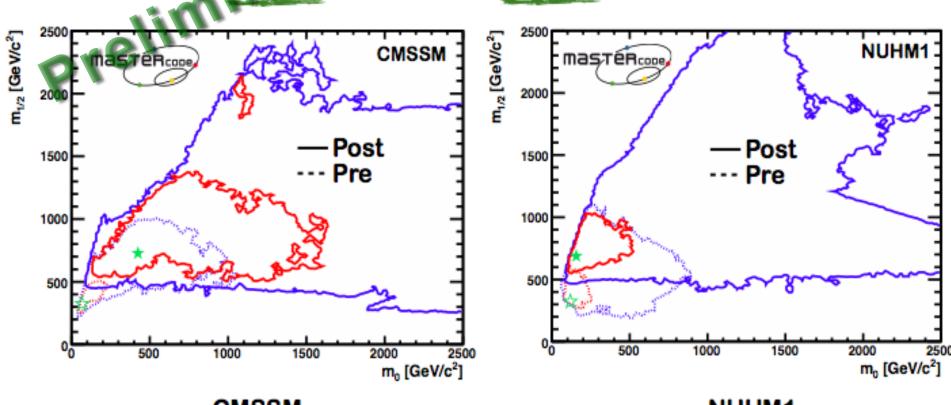
Recent Experimental Data!


- Fit Methods (globally over all model parameters!)
 - Markov Chain Monte Carlo (MCMC)
 - Actually used as a mere sampling method (sampling density not used)
 - success and failure of the steps defined by the χ²
 - χ² fit: Minuit minimisation
 - used for "scans" or in conjunction with MCMCs to get overall best minimum

Afterburners

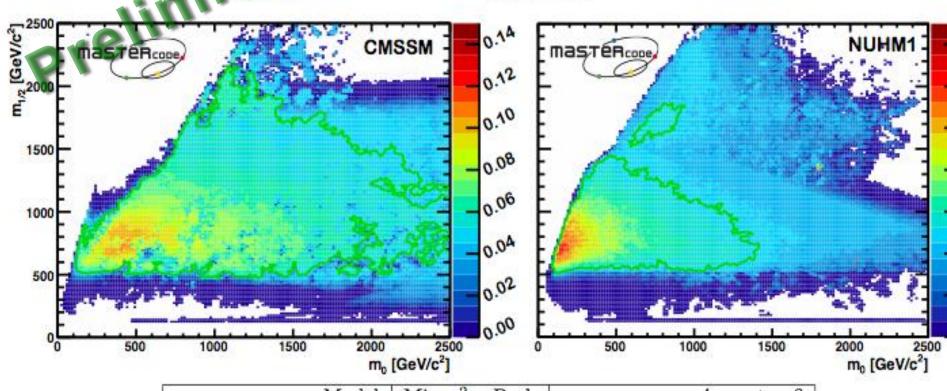
- χ² terms additive → effects therefore also additive
- Study effect of "interesting" (g-2, b→sγ, Ωh², etc) observables!
 - sample space without "interesting" terms → larger, more general sampling
 - a posteriori add "interesting" terms after general sampling
 - Only need to sample multi-d space once! Enormous cost savings to due RGEs

2010 ATLAS + CMS with 36 pb⁻¹ of LHC Data


VCMSSM 60 million points sampled

60 million points sampled

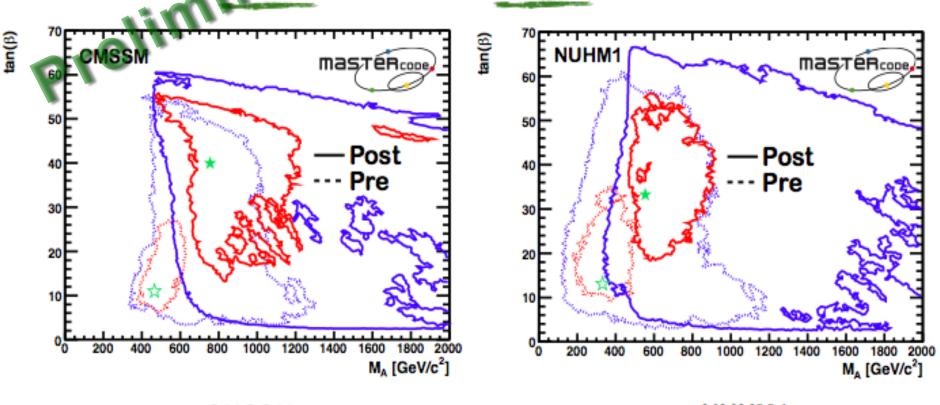
Model	$Min \chi^2$	Prob	$m_{1/2}$	m_0	A_0	$\tan \beta$
VCMSSM	22.5	31%	300	60	30	9
post-LHC/XENON100	27.1	13%	390	90	70	11
mSUGRA	29.4	6.1%	550	230	430	28
post-LHC/XENON100	30.9	5.7%	550	230	430	28


CMSSM 60 million points sampled NUHM1
70 million points sampled

Red and blue curves represent $\Delta \chi^2$ from global minimum, located at \bigstar

Preferred region "opens up" at cost of worsening global χ^2 value!

ATLAS + CMS with 1 fb-1 of LHC Data



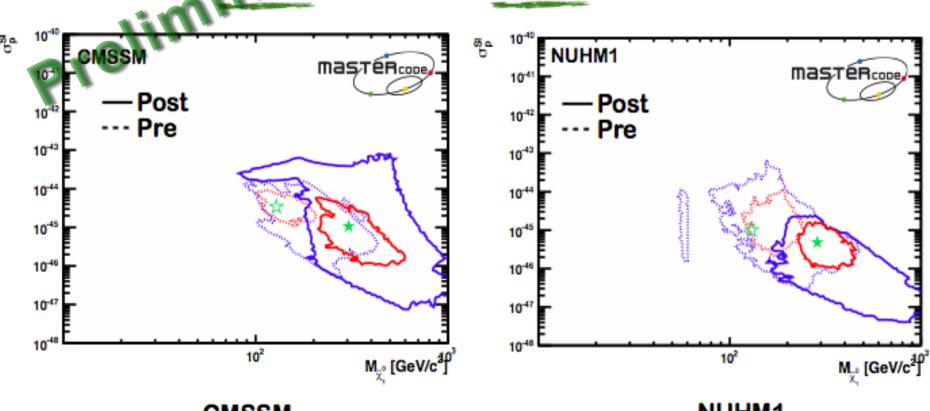
Model	Min χ^2	Prob	$m_{1/2}$	m_0	A_0	$\tan \beta$
CMSSM	22.5	26%	310	60	-60	10
post-LHC/XENON100	29.3	11%	730	420	-1100	40
NUHM1	20.5	25%	310	60	-60	10
post-LHC/XENON100	27.3	13%	690	160	-880	33

With 1 fb⁻¹: CMSSM and NUHM1 still above 10% CL VCMSSM and mSUGRA now less than 5% CL

ATLAS + CMS with 1 fb-1 of LHC Data

CMSSM 60 million points sampled

NUHM1 70 million points sampled


Red and blue curves represent $\Delta \chi^2$ from global minimum, located at \bigstar

Preferred region "opens up" at cost of worsening global χ^2 value!

ATLAS + CMS with 1 fb-1 of LHC Data

CMSSM 60 million points sampled

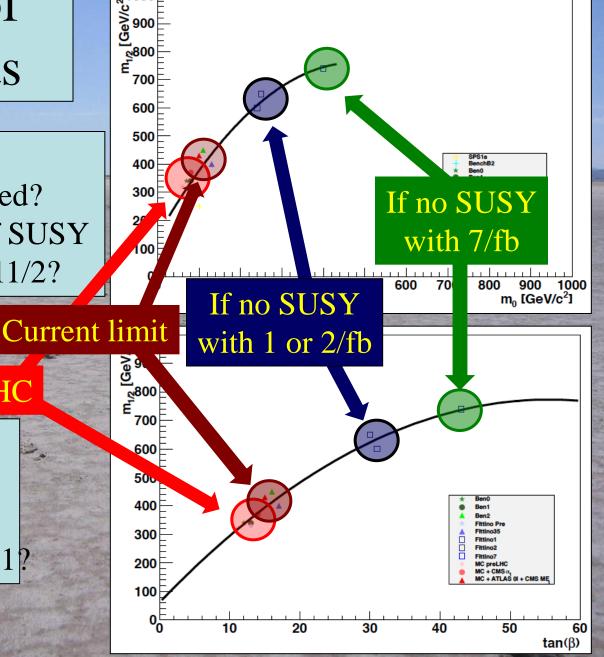
NUHM1
70 million points sampled

Red and blue curves represent $\Delta \chi^2$ from global minimum, located at \bigstar

Preferred region "opens up" at cost of worsening global χ^2 value!

Trajectory of CMSSM Fits

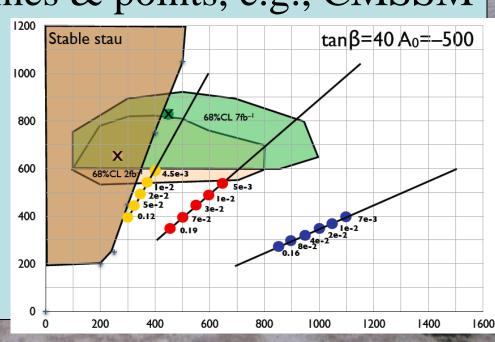
How have best-fit CMSSM points evolved? How would they evolve if SUSY is not discovered in 2011/2?


Old benchmarks

After LHC 2010

After LHC 2011?

★ Pre-LHC fits


Pre-LHC

Sustainable Benchmarks

- Many models:
 - CMSSM, NUHM1, RPV-CMSSM, mGMSB,
 mAMSB, MM-AMSB and pMSSM
- Benchmark planes, lines & points, e.g., CMSSM
 - Varied signatures
 - Similar along lines
 - Move to next point if/as needed

AbdusSalam, Allanach, Dreiner, Ellis, Heinemeyer, Krämer, Mangano, Olive, Rogerson, Roszkowski, Weiglein

Summary & Perspectives

- LHC data putting pressure on popular models
- Theorists want to combine various constraints
 - Seek to construct global likelihood function
 - Tension between LHC and $g_{\mu} 2$
 - Mitigated at larger tan β
- Need more information than 95% CL
- Desirable to improve TH-EXP dialogue
- Need to extend studies to other models
 - Compressed spectra, RPV, ...