$A_{FB} \ met \ LHC$

J. A. Aguilar Saavedra
in collaboration with M. Pérez-Victoria

Departamento de Física Teórica y del Cosmos
Universidad de Granada

Workshop “Implications of LHC results for TeV scale physics”,
CERN, August 31st 2011
Status of A_{FB}: experiments vs theories

Tevatron: A_{FB} !!!

Models: Z', W', g', \ldots

LHC:

predictions
Status of A_{FB}: experiments vs theories

- **Tevatron:** A_{FB} !!!

- **Models:** Z', W', g', ...

- **Predictions**

- **LHC:** SM !!!

Explanations

Now: constraints
Timeline of Tevatron measurements

1995 – 2010
up to $\sim 2\sigma$ asymmetry excess in D0 & CDF measurements

01/2011
high-mass measurement by CDF triggers paper flood

$$A_{FB} = 0.158 \pm 0.075 \text{ (inclusive)} \quad \text{SM: 0.058 \ 1.3}\sigma$$
$$A_{FB} = 0.475 \pm 0.114 \ (m_{t\bar{t}} > 450 \text{ GeV}) \quad \text{SM: 0.088 \ 3.4}\sigma$$

07/2011
long awaited D0 measurement confirms inclusive but not high-mass A_{FB}
updated SM predictions reduce discrepancies

$$A_{FB} = 0.196 \pm 0.065 \text{ (inclusive)} \quad \text{SM: 0.0893 \ 1.6}\sigma$$
$$A_{FB} \sim 0.2 \ (m_{t\bar{t}} > 450 \text{ GeV}) \quad \text{SM: 0.139}$$
Timeline of models

AFB papers

Model flood

New trends

Most popular models

s channel:

\[G_\mu \sim (8, 1)_0 \]

\[
\begin{align*}
0 & \quad 0809.3354, 0906.0604, 0911.2955, 1007.0243, 1011.6380, 1011.6557, \\
& \quad 1101.2902, 1101.5203, 1103.0956, 1104.1917, 1105.3158, 1105.3333, \\
& \quad 1106.0529, 1106.4054, 1107.0978, 1107.1473, 1107.2120, 1107.5769
\end{align*}
\]

t channel:

\[Z' \sim (1, 1)_0 \]

\[
\begin{align*}
0 & \quad 0907.4112, 1101.4456, 1101.5625, 1102.0545, 1103.1266, 1103.4835, \\
& \quad 1104.1385, 1104.3139, 1106.5982, 1108.0350, 1108.1802
\end{align*}
\]

\[W' \sim (1, 1)_1 \]

\[
\begin{align*}
0 & \quad 0908.2589, 1002.1048, 1003.3461, 1101.1445, 1101.5392, 1102.0279, \\
& \quad 1104.0083, 1105.4606
\end{align*}
\]

\[\phi \sim (1, 2)_{-\frac{1}{2}} \]

\[
\begin{align*}
1104.4782, 1107.0841, 1107.4350, 1108.4005
\end{align*}
\]

u channel:

\[\omega^4 \sim (3, 1)_{-\frac{4}{3}} \]

\[
\begin{align*}
0 & \quad 0911.3237, 0911.4875, 0912.0972, 1007.2604, 1102.3374, \\
& \quad 1102.4736, 1103.2757, 1108.4027
\end{align*}
\]

\[\Omega^4 \sim (\bar{6}, 1)_{-\frac{4}{3}} \]
LHC: what to look for?

Various smoking guns related to A_{FB}:

- observation of new particles
- like-sign tops
- ...

whose non-observation (as yet) is unconclusive for models’ fate

But other probes which are robust and hard-to-evade:

- charge asymmetry A_C measured ✓
- excess in $t\bar{t}$ invariant mass tail waiting … ×

should be on top of CMS / ATLAS top physics wishlist !!!
Smoking gun: like-sign tops (Z')

$0907.4112, 1101.4456, 1101.5625, 1102.0545, 1104.1385$

\[\text{But for complex } Z': \text{ forget all this} \]

1103.4835
Excludes model parameter region consistent with $\sigma = 7.50 \pm 0.48$ pb, high-mass $A_{FB} = 0.475 \pm 0.114$

What if A_{FB} not so large? (D0)
No smoke, no gun: no like-sign tops

Excludes model parameter region consistent with $\sigma = 7.50 \pm 0.48$ pb, high-mass $A_{FB} = 0.475 \pm 0.114$

What if A_{FB} not so large? (D0)

Z' coupling from 0 to $\Delta \sigma = 2.3$ pb

$A_{FB}^{new} > 0$ still allowed for light Z'
Predictions for LHC charge asymmetries

How to read the plot

Coloured regions:
- Tevatron $t\bar{t}$ xsec within 1σ
- LHC $t\bar{t}$ tail not too large

X: Tevatron high-mass A_{FB}
Y: LHC inclusive A_{C}
(only NP contributions)
Constraints from LHC charge asymmetries

How to read the plot

Z': disfavoured

W': disfavoured if $A_{FB}^{\text{new}} \gtrsim 0.1$

also in D0 measurement

rest: some tension with CDF high-mass A_{FB}
Next in CMS / ATLAS “to do” list

Measure mass dependence of A_C

How to read the plot

Three benchmark points:
same high-mass A_{FB} and inclusive A_C

X: cut on minimum $m_{t\bar{t}}$
Y: A_C

(only NP contributions)

CMS: apparently no A_C enhancement with $m_{t\bar{t}}$ ➞ bad for heavy G_μ !!!
\(t\bar{t} \) invariant mass tail

Measurement not yet addressed by CMS / ATLAS

despite its importance was pointed out months ago \([1103.2297,1103.2765]\)

But public \(m_{t\bar{t}} \) distributions scrutinised by theorists’ sharp eye 😊

Result: \(\sim \) agree with the SM

CMS-PAS-EXO-11-055

In the absence of a proper limit ⟷ make estimations
Constraints from $m_{t\bar{t}}$ tail

$\sigma(m_{t\bar{t}} > 1 \text{ TeV}) < 3 \times \text{SM}$

A_{FB}^{new} for $m_{t\bar{t}} > 450$ GeV

- Z' tail $< 3 \times \text{SM}$
- W' tail $< 3 \times \text{SM}$
- μ tail $< 3 \times \text{SM}$
- ϕ tail $< 3 \times \text{SM}$
- Ω^4 tail $< 3 \times \text{SM}$
Constraints from $m_{t\bar{t}}$ tail \[\sigma(m_{t\bar{t}} > 1 \text{ TeV}) \in 0.5 - 1.5 \times SM \]
Consequences of $t\bar{t}$ tail measurement theorists’ guess

1. Z' models disfavoured
2. W' models disfavoured
3. Heavy s-channel G_μ must be very heavy and couple strongly
 - Ugly model
4. Scalar ϕ: no problem
5. Exotic scalars: no problem if high-mass A_{FB} moderate

BUT

Remember physics is an experimental science: models must be ruled out by experimentalists
New trends

Models without a large $t\bar{t}$ tail

Example: “light” gluons with masses $M \lesssim 1$ TeV

1106.4054, 1107.0978, 1107.1473, 1107.2120

- invisible at Tevatron if very wide
- even more at LHC (gg fusion)
- small tail: gluon is lighter !!!
- diverse A_{FB} profiles vs $m_{t\bar{t}}$ possible

Talks by M. Schmaltz and M. Masip
A_{FB} profiles: from D0’s flat to CDF’s camel

Sustainable model

flat

![Flat profile](image)

g_μ below t threshold

m_t (GeV)

0
0.1
0.2
0.3
0.4
0.5

A_{FB}^{new}

m_t (GeV)

400 500 600 700 800

rising

![Rising profile](image)

g_μ, $M = 1050$ GeV

m_t (GeV)

0
0.1
0.2
0.3
0.4
0.5

A_{FB}^{new}

m_t (GeV)

400 500 600 700 800

hill

![Hill profile](image)

g_μ, $M = 870$ GeV

m_t (GeV)

0
0.1
0.2
0.3
0.4
0.5

A_{FB}^{new}

m_t (GeV)

400 500 600 700 800

dip-rising

![Dip-rising profile](image)

Two g_μ, $M = 450, 1050$ GeV

m_t (GeV)

0
0.1
0.2
0.3
0.4
0.5

A_{FB}^{new}

m_t (GeV)

400 500 600 700 800

dip-hill

![Dip-hill profile](image)

Two g_μ, $M = 450, 870$ GeV

m_t (GeV)

0
0.1
0.2
0.3
0.4
0.5

A_{FB}^{new}

m_t (GeV)

400 500 600 700 800

camel

![Camel profile](image)

Three g_μ, $M = 450, 570, 870$

m_t (GeV)

0
0.1
0.2
0.3
0.4
0.5

A_{FB}^{new}

m_t (GeV)

400 500 600 700 800
Minutes of the meeting

★ Smoking guns not seen at LHC – unconclusive.

★ New effects in $t\bar{t}$ production searched. LHC data roughly agrees with SM, disfavouring some models.

★ New LHC constraints have prompted 2nd generation of models. They will be tested with precise measurements of $t\bar{t}$ production.
A day may come when the courage of men fails, when we forsake our models and break all bonds with A_{FB}. But it is not this day.
ADDITIONAL SLIDES
The FB asymmetry at Tevatron

A_{FB} in $t\bar{t}$ CM frame is the top quark FB asymmetry in opening angle θ

$$A_{FB} = \frac{N_t(\cos \theta > 0) - N_t(\cos \theta < 0)}{N_t(\cos \theta > 0) + N_t(\cos \theta < 0)}$$

where θ is the angle between the top quark momentum and the initial proton direction.

Also, since in CM frame $N_t(\cos \theta < 0) = N_{\bar{t}}(\cos \bar{\theta} > 0)$, it can be written as

$$A_{FB} = \frac{N_t(\cos \theta > 0) - N_{\bar{t}}(\cos \bar{\theta} > 0)}{N_t(\cos \theta > 0) + N_{\bar{t}}(\cos \bar{\theta} > 0)}$$

that is, a charge asymmetry where the initial partons stay fixed

♫ do not confuse with C, charge conjugation symmetry 　!!!!
The charge asymmetry at LHC

LHC is a pp collider, harder to define ‘forward’ and ‘backward’
[but it can be done event by event, depending on boost of CM wrt LAB]

Alternatively, charge asymmetries can be defined:

- t more forward than \bar{t}
 at parton level
- initial q larger momentum fraction than \bar{q}

\[A_C = \frac{N(\Delta > 0) - N(\Delta < 0)}{N(\Delta > 0) + N(\Delta < 0)} \]

with $\Delta = |y_t| - |y_{\bar{t}}|$ or $\Delta = |\eta_t| - |\eta_{\bar{t}}|$ (taken by CMS)
Tree-level particles in $q\bar{q} \rightarrow t\bar{t}$

Colour:

$3 \otimes \bar{3} = 8 \oplus 1$

$3 \otimes 3 = 6 \oplus \bar{3}$

Isospin:

$2 \otimes 2 = 3 \oplus 1$

$2 \otimes 1 = 2$

$1 \otimes 1 = 1$

Hypercharge:

$\sum Y = 0$

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B_μ</td>
<td>$(1, 1)_0$</td>
<td>ϕ</td>
<td>$(1, 2)_{-\frac{1}{2}}$</td>
</tr>
<tr>
<td>W_μ</td>
<td>$(1, 3)_0$</td>
<td>Φ</td>
<td>$(8, 2)_{-\frac{1}{2}}$</td>
</tr>
<tr>
<td>B^1_μ</td>
<td>$(1, 1)_1$</td>
<td>ω^1</td>
<td>$(3, 1)_{-\frac{1}{3}}$</td>
</tr>
<tr>
<td>G_μ</td>
<td>$(8, 1)_0$</td>
<td>Ω^1</td>
<td>$(\bar{6}, 1)_{-\frac{1}{3}}$</td>
</tr>
<tr>
<td>H_μ</td>
<td>$(8, 3)_0$</td>
<td>ω^4</td>
<td>$(3, 1)_{-\frac{4}{3}}$</td>
</tr>
<tr>
<td>G^1_μ</td>
<td>$(8, 1)_1$</td>
<td>Ω^4</td>
<td>$(\bar{6}, 1)_{-\frac{4}{3}}$</td>
</tr>
<tr>
<td>Q^1_μ</td>
<td>$(3, 2)_{\frac{1}{6}}$</td>
<td>σ</td>
<td>$(3, 3)_{-\frac{1}{3}}$</td>
</tr>
<tr>
<td>Q^5_μ</td>
<td>$(3, 2)_{-\frac{5}{6}}$</td>
<td>Σ</td>
<td>$(\bar{6}, 3)_{-\frac{1}{3}}$</td>
</tr>
<tr>
<td>Y^1_μ</td>
<td>$(\bar{6}, 2)_{\frac{1}{6}}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y^5_μ</td>
<td>$(\bar{6}, 2)_{-\frac{5}{6}}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
$\bar{t}t$ invariant mass distributions

![Graphs showing $\bar{u}u \rightarrow \bar{t}t$ and $d\bar{d} \rightarrow \bar{t}t$ distributions for Tevatron and LHC 7 TeV.]
CDF Camel profile

![Graph showing CDF Camel profile](image)

- Black line: data (+ lepton)
- Red line: data (- lepton)

Axes:
- Vertical axis: $A_{tt\bar{t}}^\text{t\bar{t}}(M)$
- Horizontal axis: $M_{tt\bar{t}}$ (GeV/c²)

Data Points:
- Data points are plotted at various points on the graph for different values of $M_{tt\bar{t}}$.

Legend:
- Black line with markers: data (+ lepton)
- Red line with markers: data (- lepton)

Scale:
- Y-axis scale ranges from -0.4 to 0.6
- X-axis scale ranges from 350 to 800 GeV/c²

Additional Information:
- J. A. Aguilar Saavedra (Univ. Granada)