Higgs Properties in CMS

A. Gritsan, N. Tran, A. Whitbeck

on behalf of CMS collaboration Johns Hopkins University August 31, 2011

- Intro: status of CMS
- Properties of SM Higgs
- Angular distributions
- Discriminating signal/background
- Separating hypotheses
- Measuring parameters
- Conclusions

- LHC continues to perform better than expected
 - Already $\sim 2.5 \, fb^{-1}$ on tape!
- $\bullet\,$ Can expect to $\sim\,$ double int. lumi. in 2011
- 2012: 10 fb^{-1} per experiment?
- Allowed parameter space for SM Higgs shrinking quickly

- Only free parameter of SM Higgs is its mass
 - Assuming a given mass, all properties of SM Higgs can, in principle, be calculated
- Given large excess in data what will we know:
 - mass, width, cross section
- What about Higgs specific properties?
 - $J^P = 0^+$
 - full angular correlations of final state particles
 - unique manifestations of J^P
 - has been demonstrated to be good handle for determining spin and parity of resonances

• For scalar resonance decaying into 2 vector bosons, most general amplitude:

$$A(X \rightarrow V_1 V_2) = v^{-1} \epsilon_1^{*\mu} \epsilon_2^{*\nu} (a_1 g_{\mu\nu} M_X^2) + a_2 q_{1\mu} q_{2\nu} + a_3 \epsilon_{\mu\nu\alpha\beta} q_1^{\alpha} q_2^{\beta})$$

- SM Higgs \rightarrow ZZ,WW: $a_1 \neq 0, a_2 \sim O(10^{-2}), a_3 \sim O(10^{-11})$
- SM Higgs $\rightarrow \gamma \gamma$: $a_1 = -a_2/2 \neq 0$
- BSM psuedo-scalar Higgs $a_3 \neq 0$
- One can write a general formula for all fermionic final states
- Can be applied to spin 1 & 2 resonances as well
- Including amplitude for production of X and decay of V's and integrating: $\frac{d\Gamma(\vec{\Omega};a_1,a_2,a_3)}{\Gamma d\vec{\Omega}}$

Kinematics of Decay

- Kinematics of final state fermions can be separated into three sets of (mostly) uncorrelated variables
 - P_T^X, Y^X
 - $m_{f1,f2}, m_{f3,f4}, m_{f1,f2,f3,f4}$
 - $\cos \theta^*, \Phi_1, \cos \theta_1, \cos \theta_2, \Phi$
- cos θ*, Φ₁ are related to production of the Z's (production angles)
- $\cos \theta_1$, $\cos \theta_2$, Φ are related to Z decays (helicity angles)
- The production/helicity angular distributions determined by helicity amplitudes $A_{00} = -\frac{m_X^4}{v}(a_1 x + a_2 \frac{M_Z M_*}{M_X^2}(x^2 - 1)),$ $A_{\pm\pm} = \frac{m_X^2}{v}(a_1 \pm i a_3 \frac{M_Z M_*}{M_H^2} \sqrt{x^2 - 1})$ $x = \frac{M_H^2 - M_Z^2 - M_*^2}{2M_Z M_*}$

Helicity Angular Distribution $(J_X = 0)$

$$\begin{aligned} d\Gamma(\theta^*, \Phi_1, \theta_1, \theta_2, \Phi) \propto & 4(1 - f_{++} - f_{--})\sin^2\theta_1 \sin^2\theta_2 \\ &+ (f_{++} + f_{--})((1 + \cos^2\theta_1)(1 + \cos^2\theta_2) + 4R_1R_2\cos\theta_1\cos\theta_2) \\ &- 2(f_{++} - f_{--})(R_1\cos\theta_1(1 + \cos^2\theta_2) + R_2(1 + \cos^2\theta_1)\cos\theta_2) \\ &+ 4\sqrt{f_{++}(1 - f_{++} - f_{--})}(R_1 - \cos\theta_1)\sin\theta_1(R_2 - \cos\theta_2)\sin\theta_2\cos(\Phi + \phi_{++}) \\ &+ 4\sqrt{f_{--}(1 - f_{++} - f_{--})}(R_1 + \cos\theta_1)\sin\theta_1(R_2 + \cos\theta_2)\sin\theta_2\cos(\Phi - \phi_{--}) \\ &+ 2\sqrt{f_{++}f_{--}}\sin^2\theta_1\sin^2\theta_2\cos(2\Phi + \phi_{++} - \phi_{--}) \end{aligned}$$

- Flat distribution of production angles, cos θ*, Φ₁ (background & J > 0 have non-trivial distributions)
- f_{ij} and ϕ_{ij} determined by helicity amplitudes \rightarrow couplings

$$f_{ij} = |A_{ij}|^2 / \sum_{k,l} |A_{kl}|^2,$$

$$\phi_{ij} = arg(A_{ij}/A_{00})$$

• $R_{1,2}$ determined by fermion type

Angular Distributions $(X \rightarrow ZZ \rightarrow 4I)$

‡Note there are no detector effects here.

A. Gritsan, N. Tran, A. Whitbeck Slide

8/23

Angular Distributions cont.

Helicity Angles as a Background Discriminant

- Simplest application of angular distributions
- Within the $H \rightarrow ZZ$ decay channel this was applied to two final states, 4l and 2l2j
- Has been shown to increase sensitivity in 4l final state by $\sim 20\%$ ([1], arxiv.org:1001.3396)
- Model angular distributions as seen in detector
- Signal: (Ideal)×(uncorrelated acceptance)

 $P_{\textit{sig}} = P_{\textit{IDEAL}}(\theta^*, \theta_1, \theta_2, \Phi, \Phi_1; \vec{\xi}) A_{\theta^*}(\theta^*) A_{\theta_1}(\theta_1) A_{\theta_2}(\theta_2) A_{\Phi}(\Phi) A_{\Phi_1}(\Phi_1)$

- $\xi = (f_{ij}, \phi_{ij})$ fixed to SM Higgs values
- Background: product of 1D, uncorrelated functions

$$P_{bkg} = D_{\theta^*}(\theta^*) D_{\theta_1}(\theta_1) D_{\theta_2}(\theta_2) D_{\Phi}(\Phi) D_{\Phi_1}(\Phi_1)$$

• Define discriminant as:

$$D=rac{P_{sig}}{P_{sig}+P_{bkg}}$$

• $D\epsilon[0,1]$; cuts applied to D (e.g. D > .7 are signal-like)

Angular Distributions $(ZZ \rightarrow 4I)$

Angular Distributions $(ZZ \rightarrow 2/2j)$

Helicity Likelihood Discriminant $(ZZ \rightarrow 2I2j)$

‡ For more details, see twiki/PAS here - https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIG

A. Gritsan, N. Tran, A. Whitbeck Slide 13/23

Background Parameterization

- 4I final state: SM ZZ production is the major background
- Use MC, fit helicity amplitudes to

 $q\bar{q} \rightarrow ZZ \rightarrow 4I,$ $gg \rightarrow ZZ \rightarrow 4I$

 Using helicity amplitudes as basis for fits can recover correlations in background

- Example of helicity amplitude fit to SM ZZ events near 250 GeV
- Can use to measure fraction of gg vs qq initiated events in data

parameter	$qar{q} ightarrow ZZ$	gg ightarrow ZZ
f ₀₀	0.025	0.398
f_{++}	0.206	0.430
f	0.005	0.012
f_{+0}	0.007	0.047
<i>f</i> ₀₋	0.147	0.007
<i>f</i> ₊₋	0.228	0.026

- $\bullet~$ Cutting on $D{\rightarrow}~$ lose information
- Instead, maximum likelihood (ML) fit would be better

$$L = \exp(-n_{sig} - n_{bkg}) \prod_{i}^{N} (n_{sig} \times P_{sig}(\vec{\Theta_i}, m_{ZZ}; \vec{\xi}) + n_{bkg} \times P_{bkg}(\vec{\Theta_i}, m_{ZZ}))$$

• Fixing $\vec{\xi}$ and floating n_{bkg} , n_{sig} one can calculate upper limit, significance, etc. of n_{sig} for a given resonance hypothesis

Separating Signal Hypotheses $(ZZ \rightarrow 4I)$

- Using 5D likelihood for a given model (SM Higgs, pseudo-scalar, RS graviton, SM ZZ...)
 - evaluate $-2ln(L_1/L_2)$ for data and two choice models (e.g. SM Higgs, pseudo-scalar)
 - using MC psuedo-experiments, separation significance can be calculated
- Example: resonance with

$$m = 250, n_{sig} = 30, n_{bkg} = 24 (\sim 5 fb^{-1} @ \sqrt{s} = 14 TeV)$$

model 1: $J^P = 0^+$, model 2: $J^P = 0^-$ (A)
model 1: $J^P = 0^+$, model 2: $J^P = 2^+_m$ (B)

Separating Signal Hypotheses $(ZZ \rightarrow 4I)$ contd

 Separation significance, S, has been calculated for a number of hypothetical models (S - # of widths between peaks)

• all using a resonace of 250 GeV,

$$n_{sig} = 30, n_{bkg} = 24 (\sim 5 \text{ fb}^{-1} \text{ @ } \sqrt{s} = 14 \text{ TeV})$$

	0-	1^{+}	1-	2_{m}^{+}	2_{L}^{+}	2-
0+	4.1	2.3	2.6	2.8	2.6	3.3
0^{-}		3.1	3.0	2.4	4.8	2.9
1^+			2.2	2.6	3.6	2.9
1^{-}				1.8	3.8	3.4
2_{m}^{+}					3.8	3.2
2_{L}^{+}						4.3

• Most values are \gtrsim 3 and almost all are > 2

Measuring Helicity Amplitudes

- floating $\vec{\xi}$ one could use the ML to measure helicity amplitudes of a given spin hypothesis
- Example study:
 - for $ZZ \rightarrow 4I$ final state
 - $n_{sig} = 150, \ n_{bkg} = 120 \ (\sim 25 \ fb^{-1} \ \mathbb{Q} \ \sqrt{s} = 14 \ TeV)$
 - Generate MC for $J^p = 0^+, 0^-$ resonance at 250 GeV (A), (B)

(A)	generated	$m_X = 250 \text{ GeV}$ without detector	with detector	- 150)		 1 4			
nsig	150	150 ± 13	153 ± 15	-	-					-
$(f_{++} + f_{})$	0.208	0.21 ± 0.07	0.23 ± 0.08	Its	Į.		1	•		-
$(f_{++} - f_{})$	0.000	0.01 ± 0.13	0.01 ± 0.14	້ອີ 100)-		/` 🔺	X		-
$(\phi_{++} + \phi_{})$	2π	6.30 ± 1.46	6.39 ± 1.54	<u>=</u> .	Ē.	/	′ T	1		-
$(\phi_{++}-\phi_{})$	0	0.00 ± 1.06	0.01 ± 1.09	ber	F	/		•		-
(B)	generated	$m_X = 250 \text{ GeV}$ without detector	with detector	- <u>ũ</u> 50) - -			**		
n _{sig}	150	150 ± 13	151 ± 15	-	- -					
$(f_{++} + f_{})$	1.000	1.00 ± 0.05	1.00 ± 0.06	, i	0	0.1	0.2	0.3	0.4	0.5
$(f_{++} - f_{})$	0.000	0.00 ± 0.35	0.00 ± 0.40				f	⊥f		
$(\phi_{++} + \phi_{})$	N/A	free	free				'+	+ + 1		
$(\phi_{++} - \phi_{})$	π	3.15 ± 0.31	3.14 ± 0.41							
				=		_		_		

A. Gritsan, N. Tran, A. Whitbeck

Slide 18/ 23

$ZZ \rightarrow 4I$ below threshold

- All of the above is valid below threshold also
- Angular distributions require an additional parameter: m_{Z^*}

• Separation significance between $0^+/0^-$: S=3.3 $n_{sig} = 20, n_{bkg} = 30, m = 140 \text{ GeV} (\sim 10 \text{ fb}^{-1} @ \sqrt{s} = 7 \text{ TeV})$

Conclusions

- Angular distributions have been very beneficial to Higgs searches thus far
 - have been exploited for signal/background discrimination
 - has been shown to improve sensitivity in the $ZZ \to 4I$ channel by $\sim 20\%$
 - can ultimately help to discover new resonances
- Angular variables are physically motivated
 - have been parameterized in terms of helicity amplitude (coupling constants)
 - can be used to measure properties of new resonances
- Methods described above are already being implemented in analyses
 - Already implemented in $ZZ \rightarrow 2/2j$ analysis
 - Will be implemented in $ZZ \rightarrow 4I$ analysis

BACKUP SLIDES

A. Gritsan, N. Tran, A. Whitbeck Slide 21/23

▲□ ▶ ▲ 三 ▶ ▲

CMS documentation

[1] Y.Gao, A.Gritsan, Z.Guo, K.Melnikov, M.Schulze, N.Tran, "Spin determination of single-produced resonances at hadron colliders"

http://arxiv.org/abs/1001.3396

ATLAS documentation

[2] C.P.Buszello, I.Fleck, P.Marquard and J.J. van der Bij, "Prospective Analysis of Spin- and CP-sensitive Variables in $H \rightarrow ZZ \rightarrow I^+I^-I^+I^-$ with ATLAS", (Eur Phys J C32,209,2004SN-ATLAS-2003-025) • JHU generator is intended for generating resonances with the following decay topologies:

$$ab \rightarrow X \rightarrow ZZ \rightarrow 4I$$
,

$$ab
ightarrow X
ightarrow ZZ
ightarrow 2/2j$$

- Proper angular correlations are computed
- Resonances can be spin 0,1,2 with arbitrary couplings
- Output is a standard LHE file
- Code and further documentation can be found here: http://www.pha.jhu.edu/spin/