

FPF progrès

23/05/2024

Anastasiya Magazinik

Distance between detectors

FASER2 with crystal-puller magnet

Clash \rightarrow longer tunnel?

FLArE slightly longer

Cranes in the cavern

Surface building

Surface building

Old slides

Transport study from the first glance

Turbo-Brayton

 Has to be transferred inclined by 60 degrees

Combination of movements in + Z, - Y directions

Table with components

Configuration 1

Configuration 2

Configuration 3 baseline

Remove ADV FORMOSa-ok

General layout (02.2024)

- A 10 m extension allows an additional space for the services (cryogenics, electrical)
- The services do not clash with the transport path
- The services are kept separately from the rest of the cavern
- A radius increase enlarges the transport path and give room for the services inside the cavern (cable trays, pipes etc.)
- A radius increase enlarges the crane movement rate
- Need to understand effect for cavern placement (keeping minimum distance from LHC tunnel, and effect of LOS in cavern)

14/02/2024

Requirements

- Additionally have LAr and N² lines down shaft:
 - GAr out 30 cm diameter
 - GAr in 10 cm (vacuum jacket included)
 - LN² 20 cm (vacuum jacket included)
 - LAr 20 cm (vacuum jacket included)
 - Dewars on surface: $50m^3 LAr$, $10m^3 N^2$
- CV
 - Extraction de fumée (section rectangulaire) : 1000x700
 - Extraction d'argon : diamètre 600
 - Pressurisation : diamètre 400
 - Pulsion (supply) : diamètre 700
 - Extraction : diamètre 700

• Size constraints

Rough sketch of 20tn (active volume) LArTPC detector

Full size of cryostat: Inner size: $2.1 \times 2.1 \times 8.2 \text{ m}^3$ (~50 ton LAr in total) Outer size: $3.5 \times 3.5 \times 9.6 \text{ m}^3$

Handling requirements:

Cryostat would be assembled in the cavern, biggest pieces for transport to the cavern: $6m \times 1m \times 0.5m$

Cooling unit needs to be transported in 1 piece: 8mx 1.6mx 2.7m

Can be lowered vertically and turned if needed (to save space in shaft)

25tn crane should be OK

Need to be able to have a man lift on all sides of detector

Product21 Preview of ST1382167_01 a.04 PM17_1102_INTEGRATION

Preview of ST1382167_01 a.04 (Preview of ST1382167_01 a.04.1)

Applications

Product20 Preview of ST0756787_01 a.11 SD17_1104_INTEGRATION
Preview of ST0756787_01 a.11 (Preview of ST0756787_01 a.11.1)
Applications

roduct36 Preview of ST1564551_01 a.00 LS3 New Services Help Assembly US15

¹⁰% Preview of ST1564551_01 a.00 (Preview of ST1564551_01 a.00.1)

Applications

R

ST1803787_01_US17_1102_INTEGRATION_phase 1 5T1059867_01 (ST1059867_01.1) US17-UW17_1102_Consultant Phase 4 - 👼 <u>st1779837_01 (ST1779837_01.1)</u> US17-PM17_jointure ≻😴 5T1675875_01 (ST1675875_01.1) US17_1102_EN-HE_Transport 535 ST0696546_01 (ST0696546_01.1) US17 equipements electriques - 1105 LHCEY___1083 511066756_01 (ST1073379_01.1) US17 echelles a cables - 1105 LHCEIW_1074 ► 📆 ST 1080769_01 (ST 1080769_01.1) Door_UW • 😽 ST 1082607_01 (ST 1082607_01.1) Door_SAS_P1 - 📆 ST1200412_01 (ST1200412_01.1) Door_SAFE ROOM_out - 👼 ST1201128_01 (ST1201128_01.1) US17 GSM CABLE 511393988_01 (ST1393988_01.1) US17 services generaux - 1105 5 ST1596048_01 (ST1596165_01.1) UW17 echelles a cables - 1105 LHCEIW_1075 - 💥 ST0337513_01 (ST0337513_01.1) CBAM- Telephone Rouge • 📆 5T0337513_01 (ST0337513_01.2) CBAM- Telephone Rouge - 📆 ST0337513_01 (ST0337513_01.3) CBAM- Telephone Rouge - 👼 ST 1602534_01 (ST 1602534_01.1) Crane - Lower radio control cabinet 🐨 ST0915560_01 (ST0915560_01.4) Tableautin Bris glace pano sirene 200-400-4 📲 ST0755543_01 (ST0755543_01.3) ASD535 sur Platine - 2 aller •😴 ST0899204_01 (ST0899204_01.8) Sirene WERMA + Sorties 🐨 sT0904742_01 (ST0904742_01.1) Wifi Aruba 310 + Support Violett - 😴 sT0904742_01 (ST0904742_01.2) Wifi Aruba 310 + Support Violett 510904742_01 (ST0904742_01.3) Wifi Aruba 310 + Support Violett 📆 5T0698053_01 (ST0698053_01.1) Awake - Antenne GSM I-APT1-380/2700-02 5T1656303_01 (ST1656303_01.1) US_UW_door_damper 5T0899204_01 (ST0899204_01.1) Sirene WERMA + Sorties 😼 ST0915560_01 (ST0915560_01.1) Tableautin Bris glace pano sirene 200-400-4 🕨 🐙 securite (securite.1) 5T1806514_01 (ST1806514_01.1) [3134 - US17-UW17] 1102 EN/CV Systems Phase 1 Applications

Coordinate system FPF

- Current configuration:
 - 'Y' is line of Sight
 - Tunnel floor is parallel to 'Y'
 - Tunnel wall is perpendicular to 'Y'
 - Shaft is perpendicular to the ground
 - 617300 mm is disctance to IP1.

BEAM

30

Skeleton

Skeleton is a file with critical positions for the main components for the integration:

- Point is a start and end positions with respect to '0';
- A new coordinate system will be created 1184, it is our '0';

Exchange folder

- Regular Technical meetings: <u>Technical Meetings · Indico (cern.ch)</u>
- DETECTORS & skeleton
 - <u>https://cernbox.cern.ch/s/byQMkFSNBPt9Bnm</u>
- Access to the full model via the new PLM platform
 - CERN Light account is required
 - <u>https://plm.cern.ch/prod/?StartItem=ST_Document:11796331AD5D4FB2CEFE</u> <u>C36143D6E026</u>

Skeleton

X

- 1. The latest model according to Chris Hill.
- 2. Formosa is bigger than the initial envelop (next slide)
- 3. Clash with hadron/muon calorimeter (next slide)

1. The latest model according to Chris Hill.

- 2. Formosa is bigger than the initial envelop (next slide)
- 3. Clash with hadron/muon calorimeter (next slide)

FLARE

1. Need to integrate the cryostat 3D model.

FLARE

- <u>Turbo-Brayton cryo-freezers</u> | <u>Air Liquide Advanced Technologies</u>
- Air Liquide presents the latest developments to its Turbo-Brayton cryogenic technology to the Go LNG project | Air Liquide Advanced Technologies

Turbo-Brayton cryo-freezers

One of the most reliable systems on the International Space Station

AdvSND & FASERnu2

- 1. Bigger than the initial envelop.
- 2. Clash with FASERnu2 and the floor.
- 3. The transport path is 2 m.

FASER2

- 1. Bigger than the initial envelop (next slide).
- 2. No space to the wall.
- 3. Transport path is 2.8 m.
- 4. No access to the cable trays and the water pipes (if needed?)

Critical aspects

CABLE TRAYS and RACKS

- For the racks need to check with RP (no space in the cavern)
- Can be on the surface building
- No place for the cable trays access (see the previous slide)

Transport

Contacts

- RP Angelo Infantino
- CV Roberto Bozzi
- Transport HE Roberto Rinaldesi
- FORMOSA Chris Hill
- FLARE Steven Linden & Connor
- FASER2 Jamie
- FASERnu2
- AdvSND