Materials Studies of Processes in Internal Oxidation Nb₃Sn wires: TU Bergakademie Freiberg Collaboration

Simon C. Hopkins, T. Boutboul (TE-MSC-LSC)

G. Rosaz (TE-VSC-SCC)

211th TE-TM Meeting, 3 June 2024

With thanks to A. Leineweber, J. Lachmann and S. Waschull (TU Bergakademie Freiberg)

Introduction

- Magnet designs for proposed future energy-frontier hadron colliders impose challenging performance targets for Nb₃Sn wire, including:
 - non-Cu $J_c \ge 1500 \text{ A/mm}^2$ (16 T and 4.2 K)
 - $d_{eff} \leq 20 \ \mu m$

A. Ballarino et al., *IEEE Trans. Appl. Supercond.* 29 (5) 6001709, <u>10.1109/TASC.2019.2896469</u>

- Internal oxidation methods show considerable potential to achieve these targets
- Collaborations in the context of the High Field Magnets (HFM) programme are developing the understanding needed to establish a scalable wire technology, and optimise wire designs and heat treatments
 - UNIGE (KE4663) is working towards a rod-in-tube internal oxidation wire design, producing and characterising trial wires
 - This presentation concerns a new collaboration agreement with TU Bergakademie Freiberg (KE5963) addressing the mechanisms of this process with fundamental materials studies

TU Bergakademie Freiberg

- Prof. Andreas Leineweber, Institute of Materials Science (IWW)
 - Particular expertise in phase equilibria and crystallographic analysis; intermetallics (e.g. solder systems, Nb₃Sn superconductors); XRD and Rietveld analysis
 - Equipment for alloy production, sintering, PVD and galvanic deposition
 - Characterisation by XRD, TEM and SEM (with EBSD), thermal analysis
- Also access to relevant methods in other departments:
 - Institute of Experimental Physics: semiconductor deposition
 - Materials Technology: Institute of Metal Forming

Nb₃Sn Wire Technology

- 2024 marks the 70th anniversary both of CERN and Nb₃Sn, now finally being united for HL-LHC in accelerator magnets
 - Key challenge: Nb₃Sn is **brittle**, and multifilamentary wires with a large fraction of stoichiometric, fine-grained Nb₃Sn are needed
- Our present baseline wire type is a variant of the internal tin process (1974):
 - Nb filaments are distributed in a Cu matrix containing a Sn core
 - Nb₃Sn grows by solid state reaction-diffusion
- The Restacked Rod Process (RRP[®], ~2001) was developed by Oxford in Carteret (NJ, USA), now Bruker OST
 - Subelements are produced from an assembly of Nb rods in Cu contained within a Nb diffusion barrier, stacked, and drawn to produce the wire
 - Wires are now Ti-doped (increases *B*_{c2})
 - Flexible configuration to customise Cu/non-Cu and effective filament size, and optimise J_c and RRR for the application

1954-2024

Nb Barrier

C

RRP[®] assembly sequence C. Sanabria, A new understanding of the heat treatment of Nb-Sn superconducting wires, <u>PhD thesis</u>, FSU 2017

Selected RRP[®] wire

designs (schematic)

3 June 2024

Limits on Nb₃Sn Wire Performance

- RRP[®] has been extremely successful as a magnet conductor:
 - High J_c and RRR
 - Long piece length production
 - Low degradation on Rutherford cabling
- ...but *J_c* performance has not advanced in recent years:
 - J_c decreases with smaller subelements ($d_s < -50 \ \mu m$)
 - Flux pinning is mostly by grain boundaries, so layer $J_c(B)$ is limited by grain size (~100 nm) and B_{c2}
 - Influenced by Sn stoichiometry and heat treatment – but a compromise between many parameters

(grain size, B_{c2} , RRR, stability, mechanical properties)

S. C. Hopkins *et al.*, *IEEE Trans. Appl. Supercond.* **33** (5) 6000609 (2023), <u>10.1109/TASC.2023.3254497</u> S. C. Hopkins *et al.*, *IEEE Trans. Appl. Supercond.* **34** (3) 6001308 (2024), <u>10.1109/TASC.2024.3375274</u>

Non-Cu J_c vs. d_s for RRP[®] wires of different Nb:Sn stoichiometry M. Field et al., *IEEE Trans. Appl. Supercond.* **24** (3) 6001105 (2014), <u>10.1109/TASC.2013.2285314</u>

Advancing Nb₃Sn: Nausite (1)

- During heat treatment, Nb₃Sn grows at the surface of Nb filaments – basic approximation:
 - Sn diffuses through Cu-Sn and the Nb₃Sn layer to the Nb interface, where Nb₃Sn is formed
 - For internal tin wires, we pass through all phases of the complex binary Cu-Sn phase diagram, but interactions with Nb (and Ti...) not explicitly considered
- ...but far from the full picture
 - Rely on Cu favouring the formation of stoichiometric Nb₃Sn
 - Early reports of inward Cu diffusion and of Nb dissolution
 - Extensive intragranular Cu found in high resolution microscopy
- A ternary Cu-Nb-Sn phase was eventually identified ('nausite') (M. Naus *et al.*, 2001)
 - Forms a 'membrane' at the interface between the Nb filament bundle and the Sn-rich core, influencing Cu/Sn transport
 - Associated with Nb dissolution and formation of coarse/disconnected Nb₃Sn at CERN (I. Pong *et al.*, 2011)

M. T. Naus et al., IEEE Trans. Appl. Supercond. **11** (1) 3569–3572 (2001), <u>10.1109/77.919835</u> I. Pong et al., IEEE Trans. Appl. Supercond. **21** (3) 2537-2540 (2011), <u>10.1109/TASC.2011.2106473</u>

RRP[®] subelement after the 400 °C heat treatment step C. Sanabria, <u>PhD thesis</u>, FSU 2017

3 June 2024

Advancing Nb₃Sn: Nausite (2)

- Work between CERN and TUBAF began following an internship of their student Alexander Walnsch (2015)
- TUBAF identified the crystal structure of nausite $(Nb_{0.75}Cu_{0.25})Sn_2$ in 2016
- Meanwhile, Sanabria (at FSU) had found that optimisation of the heat treatment step at 350–400 °C could regulate nausite thickness ('nausite control') and improve J_c for small d_s wires
- The observations that:
 - Heat treatment optimisation even before Nb₃Sn forms could achieve progress towards performance targets defined for FCC
 - Knowledge of the ternary Cu-Nb-Sn diagram was remarkably incomplete, but necessary for optimisation

motivated the formulation of a collaboration agreement in 2017 (KE3985)

a) (Nb(Ta) Cu₃Sh₅ (Cu₃Sh₅) Cu (Nb₄7₅Cu₃0₅)Sh₂ Tu Tu

(a) Kikuchi pattern and (b) distribution of nausite in a PIT wire sample S. Martin *et al., Intermetallics* **80** 16-21 (2017) <u>10.1016/J.INTERMET.2016.09.008</u>

Improvements in $J_c(d_s)$ dependence for nausite control heat treatments C. Sanabria, <u>PhD thesis</u>, FSU 2017

3 June 2024

NbSn₂ and Nausite

- TUBAF optimised techniques (EBSD etc.) to distinguish NbSn₂ and Nausite, and clarified their structural relationships
 - Nausite is derived from NbSn₂ by partial substitution of Nb for Cu
 - Similar layered structures along [001]: lattice parameters are within ~1%, and the phase transition can be described by a change in stacking sequence
 - Both phases form with {001} faceted interfaces to a Sn-rich melt, and grow perpendicular to [001], but with differences in morphology vs. temperature

J. Lachmann et al., Mater. Charact. 168 110563 (2020), 10.1016/j.matchar.2020.110563

Examples of experimental Kikuchi patterns around [001] showing the characteristic bands with which the phases can be distinguished NbSn₂ – a {022}; nausite – e {111}, f {112}

Atomic volume over the Cu solubility range of NbSn₂ and nausite obtained from EDX and XRD of powder mixtures and diffusion couples

Nausite Decomposition

Thermal analysis of powder samples • was used to analyse the decomposition of nausite

S. C. Hopkins et al., IEEE Trans. Appl. Supercond. 31 (5) 6000706 (2021),

← Left

DSC

Cu-Nb-Sn Phase Diagram

- Phase equilibria were studied by microscopy and thermal analysis of Nb-Sn and Cu-Nb-Sn samples:
 - Powder pellets
 - Diffusion couples: Cu and Sn sputtered on Nb
- CALPHAD re-evaluation of Cu-Nb-Sn phase diagram, including nausite
- Later collaboration (KE5074) extended this to consider the effects of Ta and O
 - (Ta,Cu)Sn₂ identified
 - First steps towards analysing internal oxidation

J. Lachmann *et al.*, Thermodynamic re-modelling of the Cu–Nb–Sn system: Integrating the nausite phase, *CALPHAD* **77** 102409 (2022), <u>10.1016/J.CALPHAD.2022.102409</u>

Phase Transformations in Wires

- CERN and TUBAF also conducted a joint study of phase transformations in wire samples
 - Tested generality of Sanabria's observations of RRP[®] for other RRP[®] designs, and for R&D distributed barrier and distributed tin wires

S. C. Hopkins *et al.*, Phase Evolution During Heat Treatment of Nb₃Sn Wires Under Development for the FCC Study, *IEEE Trans. Appl. Supercond.* **31** (5) 6000706 (2021), <u>10.1109/TASC.2021.3063675</u>

BEI of samples quenched from 400 °C

Advancing Nb₃Sn: Internal Oxidation

- Flux pinning in conventional Nb₃Sn wires is mostly on grain boundaries:
 - Enhancing grain boundary pinning \rightarrow refining grain size (compromise with Nb₃Sn area, B_{c2} , heat treatment duration)
 - Adding point pinning → adding or growing precipitates (strengthening may impede wire drawing)
- 'Internal oxidation' has been proposed by Xu *et al.* (2014) as the solution:
 - Add a readily oxidised solute element (Hf or Zr) to the Nb alloy (e.g. Nb-Ta-Hf)
 - Embed a source of oxygen (e.g. SnO₂)
 - Precipitates (e.g. HfO₂) form only on heat treatment, in Nb₃Sn, and:
 - Impede Nb₃Sn grain growth and/or
 - Provide point pinning

X. Xu et al., Appl. Phys. Lett. 104 082602 (2014), <u>10.1063/1.4866865</u>

Advancing Nb₃Sn: Internal Oxidation

- Implemented in Hyper Tech Research (Columbus, USA) in collaboration with Ohio State University and Fermilab
 - Nb₃Sn grain sizes reduced to < 50 nm
 - Non-Cu J_c exceeds FCC-hh target of 1500 A/cm² at 4.2 K, 16 T
 - Shifts pinning peak towards higher reduced field (B / B_{irr})

- Very promising, but not yet an industrialised wire technology validated for accelerator magnet applications
 - Still to be demonstrated: long length production, degradation on cabling, magnetothermal stability...

Internal Oxidation: Next Steps

- Considerable progress with building understanding e.g. at UNIGE (KE4663):
 - Alternative oxygen source configurations have been evaluated
 - Established by XANES that HfO₂ precipitates form at the Nb₃Sn growth front
- but significant questions remain, e.g.:
 - Detailed understanding of oxide decomposition, oxygen transport, and interactions with Cu/Cu-Sn
 - Effects of Zr/Hf alloying on Cu-Nb-Sn thermodynamics and diffusion kinetics
 - Effects of Nb alloy microstructure on Nb₃Sn growth
- Addressing fundamental questions is challenging in wire studies:
 - Long lag between wire trials
 - Complex geometry
 - All processes coupled e.g. Cu-Sn phase transformations, Nb₃Sn growth, oxygen transport
- Key motivation for new TUBAF collaboration:
 - Use diffusion couples to **decouple** processes and better understand their mechanisms (SnO₂ decomposition, O transport, HfO₂ precipitation, influence of Hf/Ta/O on Cu-Nb-Sn, Nb₃Sn formation and grain coarsening)
 - Analyse wire samples to identify relevant model systems and validate applicability of conclusions
- 3-year collaboration (KE5963) signed in March 2024

Methods: Lessons Learnt

- Diffusion couple design
 - Sn dewetting: use higher-melting Cu-Sn alloys and structured films
 - Tune thicknesses and compositions to achieve representative Hf and O atomic fractions
- Purity
 - Characterisation of substrate materials and purity control during deposition to avoid the influence of other oxygen sources
 - cf. wire studies with Hf alloying and without an oxygen source in which HfO₂ precipitates were found

C. Tarantini et al., Sci. Rep. 11 17845 (2021), <u>10.1038/s41598-021-97353-w</u>

- Superconducting characterisation of diffusion couple samples
 to close the loop with wire samples
 - Prepare some samples in a form suitable for VSM at CERN
- Grain size determination of very fine-grained regions challenging: multiple methods needed

Dewetting of Sn plated on Nb

Nb₃Sn SRF Cavities

- Cavities: transfer energy from an EM wave to the beam
- Current technology at CERN: Nb/Cu (LHC, HIE-ISOLDE)
- Objective: decrease by 10× the surface resistance at 4.5 K
 FCC mid-term report, ods.cern.ch/record/2887249/
- Proposal: Replace Nb by Nb₃Sn
- Material validated on bulk Nb cavities (expensive, high flux sensitivity)

Nb₃Sn SRF Cavities: A Comparison

- Targets:
 - High $E_{acc} \rightarrow$ high peak field
 - High quality factor \rightarrow low surface resistance (~0.4 n Ω), high T_c (~18.3 K)
- Compared to wires:
 - Many of the same parameters are influential, but the desired condition is different
 - Operation in full Meissner state flux penetration to be avoided at all costs!
 - Detailed knowledge and control required of phase diagram, interdiffusion, purity/alloying, microstructure
 - Temperature budget: Max 800 °C (cavity material integrity/flange brazing)

	Wire	Cavity
Key Aim	Maximise flux pinning, optimise $F_p(B)$	Minimise resistance, avoid defects
Defects	Point pinning increases J_c at high field	Increase residual resistance
Refined microstructure	Fine grains (<100 nm) increase $F_{ ho}$ and J_{c}	Typically ~1 µm (gb losses possible)
Alloying	Ti/Ta increase $B_{c2} \rightarrow$ increase J_c at high field	Increase residual resistance
Presence of Cu	Favours Nb ₃ Sn growth	Surface Cu contamination
Stoichiometry	Optimise T_c and B_{c2}	Maximise T_c , avoid secondary phases

Methods Transferrable from SRF

- High Power Impulse Magnetron Sputtering (HiPIMS)
 - Nb and Nb alloy/composite targets (e.g. for Nb_3Sn)
 - Purity, cleanliness, UHV good practices (control O₂ sources)
 - Macrostructure control: porosity
 - Microstructure control e.g. by ion bombardment energy
 - Nb surface preparation (electropolishing, Buffered Chemical Polish, etc.)
- Thin film characterisation:
 - XPS profiling
 - XRD (EN-MME)
 - SHPM, VSM etc.
- Materials
 - RRR 300 Nb
 - Microstructural control by cold work rolling studies (EN-MME)

HIPIMS Microstructural Control

Diffusion Couples: Basic Approach

- Produce layered structures of:
 - Nb and its alloys ('Nb-X': Nb, Nb-1Hf, Nb-4Ta-1Hf)
 - Cu-Sn
 - SnO₂ (oxygen source)
 - 'Inert' substrates (e.g. Y₂O₃, sapphire) using Nb-X sheets and sputtered films
- Perform heat treatments for different temperatures and durations, and analyse the resulting microstructures by:
 - Optical microscopy
 - Scanning Electron Microscopy (SEM; cross-section and top-view)
 - X-ray diffraction
 - Analyse grain sizes by Electron Backscatter Diffraction (EBSD) and/or Transmission Kikuchi Diffraction (TKD)
 - For selected samples:
 - Transmission Electron Microscopy (TEM) e.g. for precipitate analysis
 - Vibrating Sample Magnetometry (VSM) at CERN comparative study of J_c , T_c

New Approaches: Cu-Sn and SnO₂

- High-melting Cu-Sn substrates:
 - Prepare < 25 at.% Sn substrates by arc melting for heat treatments above 400 °C without melting
 - Intermetallics (e.g. Cu₃Sn) and Cu(Sn) solid solutions
- SnO₂ patterned films:
 - Optimise sputter deposition of SnO₂
 - Create laterally structured SnO₂ coatings, e.g. by photolithography:
 - Mitigate dewetting (additional metal interfaces)
 - Provide internal reference away from without oxygen source

New Approaches: Nb-X

- Nb-X sheets
 - Plates/foils ~1 mm thick
 - Assess effect of microstructure with annealing and different degrees of cold work
 - Tests with RRR 300 Nb (certified purity) and different rolling reductions
- Nb-X sputtered films
 - Coatings ~10 μ m thick on 'inert' substrates (e.g. Y₂O₃ or sapphire)
 - Produced at TUBAF
 - Produced at CERN by HiPIMS:
 - Benchmarking for purity and defect populations
 - Control of microstructure

iPIMS Microstructural Control

Diffusion Couple Configurations

- Expected configurations are shown schematically below
- Designs will be finalised after trials in the first year

- These configurations are flexible enough to allow:
 - Cu-rich (Cu-Sn substrate) and Sn-rich (Cu/Sn coatings) compositions
 - SnO₂ decomposition and O transport with (Nb-Ta-Hf) and without (Nb) Hf oxide precipitation
 - Behaviour with and without an intentionally added oxygen source:
 - As shown internal reference between SnO₂ patterned strips
 - Samples produced with and without SnO₂ layer
- All with control of starting Nb alloy microstructure

•

Wire Studies

- Analysis of wire samples provided by CERN:
 - Consistent comparison of microstructures (e.g. Nb₃Sn grain sizes) in wires from different sources
 - Comparison with diffusion couples to identify inconsistencies or interesting cases for further study
 - Correlations with *I_c* measured at CERN → understanding of microstructural effects and heat treatment optimisation
- Supported by complementary studies in TE-MSC-LSC:
 - Ejection furnace: microscopy, VSM and RRR measurements of samples at different stages of the heat treatment
 - Studies of rolled wire samples and cables when sufficient internal oxidation wire is available
- Supports development of wire activities e.g. in UNIGE

Work Plan

Activity		24			25				26				27		
		Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	
D1	M1.1	Cu-Sn substrate preparation													
D2	M2.1	Patterning of SnO ₂ layers													
	M2.2	Interaction of SnO ₂ with Nb/Nb alloys													
D3	M3.1	Definition of diffusion couple designs													
	M3.2	Trial samples for magnetisation measurement													
	M3.3	Interim report: diffusion couple preparation and analysis													
	M3.4	Samples for CERN characterisation (e.g. VSM)													
	M3.5	Final report: diffusion couple preparation and analysis													
D4	M4.1	Analysis of wire samples (batch 1)													
	M4.2	Analysis of wire samples (batch 2)													

Current Status

- Visit to TUBAF in January 2024 to visit experimental facilities and discuss the planned work
- Agreement signature completed 18 March 2024
- Kick-off meeting by Zoom in April 2024
- TUBAF hired a PhD student, Simon Waschull, who visited CERN (22-31 May) for:
 - UHV system training in TE-VSC
 - Sample preparation and handling
 - Materials compatibility (UHV)
 - Bakeout procedure
 - He leak testing
 - Residual Gas Analysis
 - Familiarisation with superconducting wire and magnet technologies in TE-MSC
 - Nb₃Sn wire metallography and microscopy (103, 288)
 - Nb₃Sn cabling (103)
 - Superconducting tests (I_c , RRR, VSM, magnetothermal stability in 163)
 - Visit to UNIGE for TEM of internal oxidation sample produced for KE4663 (FIB lamella prepared by EN-MME)
 - Visits to LMF (180) and the polymer lab
 - Discussions with EN-MME
 - Visit of microscopy facilities (112)
 - Discussion of cold worked microstructures in RRR Nb

Additional Slides

Nb-Sn Phase Diagram

- Reports of the binary Nb-Sn (and Cu-Sn) phase diagrams have not always been consistent
 - The Nb-Sn phase diagram of Charlesworth was commonly used (1970), with the established stoichiometries of the Nb-Sn binary intermetallics
 - ...but solubility and composition ranges were wildly inconsistent between studies and evaluations

3 June 2024

The Influence of Ta

- Ta decreases nausite and (modestly) Nb₃Sn layer growth
- Note Nb-4Ta is typical for Nb3Sn wire doping

Courtesy of A. Leineweber

HiPIMS Microstructural Control

Nb₃Sn morphology in Cu/Ta/Nb₃Sn coatings vs. pressure

Tuning of dislocations in Nb/Cu thin films by ion bombardment energy

C. P. A. Carlos et al., CERN SRF Workshop, 2-3 Feb 2023, https://indico.cern.ch/event/1235920/

