
Version 11.2

Multithreading .. and tasking

John Apostolakis (CERN)

Slides from Makoto Asai (Jefferson Lab) – with
small changes

Outline:

• Introduction

• Multithreading in Geant4 : the basics

• UI commands for multithreading

INTRODUCTION

Multithreading 2

The challenges of many-core era

• Higher frequency of CPU

increase power consumption

• Reached plateau around 2005

• No more increase in CPU frequency

• However number of transistors

per chip continues to grow

• Multi/Many-core era

• Note: quantity memory you can

buy with same $ scales slower

• Expect:

• Many core (double/2yrs?)

• Single core performance increases

slowly

• Less memory/core

• New software models need to

take these into account: increase

parallelism

3

CPU Clock Frequecy 1and usage: The Future of Computing Performance: Game Over or Next Level?

DRAM cost: Data from 1971-2000: VLSI Research Inc. Data from 2001-2002: ITRS, 2002 Update, Table 7a, Cost-Near-Term Years, p. 172. Data from 2003-2018: ITRS, 2004 Update, Tables 7a and 7b, Cost-Near-Term Years, pp. 20-21.

CPU cost: Data from 1976-1999: E . R. Berndt, E. R. Dulberger, and N. J . Rappaport, "Price and Quality of Desktop and Mobile Personal Computers: A Quarter Century of History," July 17, 2000, ;Data from 2001-2016: ITRS, 2002 Update, On-Chip Local Clock in Table 4c: Performance and Package Chips: Frequency On-Chip Wiring Levels -- Near-Term Years, p.

167. ;

Average transistor price: Intel and Dataquest reports (December 2002), see Gordon E. Moore, "Our Revolution,”

Multithreading 3

The challenges of many-core era

• Higher frequency of CPU

increase power consumption

• Reached plateau around 2005

• No more increase in CPU frequency

• However number of transistors

per chip continues to grow

• Multi/Many-core era

• Note: quantity memory you can

buy with same $ scales slower

• Expect:

• Many core (double/2yrs?)

• Single core performance increases

slowly

• Less memory/core

• New software models need to

take these into account: increase

parallelism

4

Multithreading 4

Graph by RenderingBlenders , reused under Creative Commons License version 1. Original in Wikimedia

https://commons.wikimedia.org/w/index.php?title=User:RenderingBlenders&action=edit&redlink=1
https://en.wikipedia.org/wiki/File:CPU_clock_speed_and_Core_count_Graph.png

In Brief

•Modern CPU architectures: need to introduce parallelism

•Memory and its access will limit number of concurrent processes

running on single chip

•Solution: add parallelism in the application code

•Geant4 needs back-compatibility with user code and simple

approach (physicists != computer scientists)

•Events are independent: each event can be simulated separately

•Multi-threading for event level parallelism was the natural choice

5

Multithreading 5

Geant4 Multi Threading – origin & evolution of capabilities

6

Multithreading 6

What is a thread?

7

Multithreading 7

An alternative to using threads

8

Multithreading 8

What is a thread?

9

Multithreading 9

What is a thread?

10

Multithreading 10

THE BASICS OF MULTI-THREADING
IN GEANT4

Multithreading 11

General Design

12

Multithreading 12

Simplified Master / Worker Model

• A G4 (with MT) application can be seen as simple finite state machine

13

Multithreading 13

Simplified Master / Worker Model

• A G4 (with MT) application can be seen as simple finite state machine

• Threads do not exists before first /run/beamOn

• When master starts the first run spawns threads and distribute work

14

Master

Worker

Multithreading 14

Shared Vs Thread-local

•To reduce memory footprint threads must share at least part

of the objects

•General rule in G4: threads can share whatever is invariant

during the event loop (e.g. threads do not change these

objects while processing events, these are used “read-only”)

- Geometry definition

- Electromagnetic physics tables

15

Multithreading 15

Shared ? Private?

• Shared by all threads
: stable during the event loop

– Geometry

– Particle definition

– Cross-section tables

– User-initialization classes

• Thread-local
: dynamically changing for every
event/track/step

– All transient objects such as run,
event, track, step, trajectory, hit, etc.

– Physics processes

– Sensitive detectors

– User-action classes

• In the multi-threaded mode, generally saying, data that are stable

during the event loop are shared among threads while data that are

transient during the event loop are thread-local.

Multithreading 16

Detector geometry &

cross-section tables MEMORY SPACE

Transient per event

data (tracks, hits, etc.)

Active cores Unused cores

AVAILABLE CORES

MEMORY SPACE

Active cores

AVAILABLE CORES

W
it

h
o

u
t

M
T

W
it

h
 M

T

17Multithreading

Multithreading

Memory consumption on Intel Xeon Phi

18
Intel Xeon Phi 3120A

Scalability on Intel Xeon Phi

Multithreading 19

Physical
cores
only

First hyper-
threading

Second
hyper-
threading

Third
hyper-
threading

Intel Xeon Phi 3120A

Shared ? Thread-local?

• In general, geometry and physics tables are shared, while event, track,
step, trajectory, hits, etc., as well as several Geant4 manager classes such
as EevntManager, TrackingManager, SteppingManager,
TransportationManager, FieldManager, Navigator,
SensitiveDetectorManager, etc. are thread-local.

• Among the user classes, user initialization classes
(G4VUserDetectorConstruction, G4VUserPhysicsList and newly
introduced G4VUserActionInitialization) are shared, while all user action
classes and sensitive detector classes are thread-local.

– It is not straightforward (and thus not recommended) to access from
a shared class object to a thread-local object, e.g. from detector
construction to stepping action.

– Please note that thread-local objects are instantiated and initialized at
the first BeamOn.

• To avoid potential errors, it is advised to always keep in mind which class
is shared and which class is thread-local.

Multithreading 20

Sequential mode

main()

G4RunManager

G4EventManager

G4TrackingManager

G4SteppingManager

G4Run

G4Event

G4Track

G4Step

Multithreading 21

Multi-threaded mode

main()

G4MTRunManager G4Run

G4WorkerRunManager

G4EventManager

G4TrackingManager

G4SteppingManager

G4Run

G4Event

G4Track

G4Step

G4WorkerRunManager

G4EventManager

G4TrackingManager

G4SteppingManager

G4Run

G4Event

G4Track

G4Step

G4WorkerRunManager

G4EventManager

G4TrackingManager

G4SteppingManager

G4Run

G4Event

G4Track

G4Step

Worker thread #0 Worker thread #1 Worker thread #2

Master thread

Multithreading 22

Sequential mode

main()

G4RunManager

G4EventManager

G4TrackingManager

G4SteppingManager

UserRunAction

UserEventAction

UserTrackingAction

UserSteppingAction

UserStackingAction

UserPrimaryGeneratorAction

Multithreading 23

G4WorkerRunManager

G4Event

Manager

G4TrackingManager

G4SteppingManager

UserRun

Action

UserEventAction

UserTracking

Action

UserStepping

Action

UserPrimary

GeneratorAction

UserStackingAction

G4WorkerRunManager

G4Event

Manager

G4TrackingManager

G4SteppingManager

UserRun

Action

UserEventAction

UserTracking

Action

UserStepping

Action

UserStackingAction

main()

G4MTRunManager UserRunAction

Worker thread #1 Worker thread #2

Master thread

G4WorkerRunManager

G4Event

Manager

G4TrackingManager

G4SteppingManager

UserRun

Action

UserEventAction

UserTracking

Action

UserStepping

Action

UserStackingAction

Worker thread #0

Multi-threaded mode

UserPrimary

GeneratorAction

UserPrimary

GeneratorAction

Multithreading 24

UI COMMANDS FOR
MULTITHREADING

Number of worker threads

• You can specify the number of worker threads.

– They do not include master thread or visualization thread.

• Shell environment variable G4FORCENUMBEROFTHREADS. This will overwrite the
following alternative settings. G4FORCENUMBEROFTHREADS can be an integer or a
keyword "max". If "max" is specified, Geant4 uses all threads of the machine including
all hyper threads.

• UI command /run/numberOfThreads, /run/useMaximumLogicalCores

– This UI command has to be issued at PreInit> state.

• G4RunManager::SetNumberOfThreads(G4int)

– This method must be invoked prior to G4RunManager::Initialize().

• UI command /run/pinAffinity

– Locks worker threads to specific logical cores.

Multithreading 26

/run/eventModulo <N> <seedOnce>

• Set the event modulo for dispatching events to worker threads

– Each worker thread is tasked to simulate <N> events and then comes back to
G4MTRunManager for next set.

• If it is set to zero (default value), N is roughly given by this.

– N = int(sqrt(number_of_events / number_of_threads))

• The value N may affect on the computing performance in particular, if N is too small
compared to the total number of events.

• The second parameter <seedOnce> specifies how frequent each worker thread is
seeded by the random number sequence centrally managed by the master
G4MTRunManager.

– If <seedOnce> is set to 0 (default), seeds that are centrally managed by
G4MTRunManager are set for every event of every worker thread. This option
guarantees event reproducibility regardless of number of threads.

– If <seedOnce> is set to 1, seeds are set only once for the first event of each run of
each worker thread. Event reproducibility is guaranteed only if the same number of
worker threads are used. On the other hand, this option offers better computing
performance in particular for applications with relatively small primary particle
energy and large number of events.

Multithreading 27

UI commands for cout/cerr

• /control/cout/useBuffer <flag>
– Store G4cout and/or G4cerr stream to a buffer so that output of each thread is grouped.
– The buffered text will be printed out on a screen for each thread at a time at the end of

the job or at the time the user changes the destination to a file.
• /control/cout/ignoreThreadsExcept <threadID>

– Omit output from threads except the one from the specified thread.
– If threadID is greater than the actual number of threads, no output is shown from

worker threads.
– To reset, use -1 as threadID.

• /control/cout/prefixString <prefix>
– In case G4cout and/or G4cerr are not buffered, output of all threads are displayed on

the screen simultaneously.
– With this command, the user may specify a prefix for each output line which is

supplemented by the thread ID. By default it is “G4MT”
• /control/cout/setCoutFile <fileName> <ifAppend>

/control/cout/setCerrFile <fileName> <ifAppend>
– Send G4cout/G4cerr stream to a file dedicated to each thread. The file name has

"G4W_n_" prefix where n represents the thread ID.
– File name may be changes for each run. If ifAppend parameter is false, the file is

overwritten when exactly the same file has already existed.
– To change the G4cout/G4cerr destination back to the screen, specify the special

keyword "**Screen**" as the file name.

Multithreading 28

LATEST DEVELOPMENTS

Multithreading 29

Tasking and developments in releases 10.7 and 11.0

• Tasking was introduced in Geant4 10.7 to adapt to frameworks of LHC experiments

which are task oriented. It comes in two variants:

– a native C++ implementation of the ‘task model’, and

– (Intel) Thread Building Block based ‘TBB task mode’.

• The tasking system, based on PTL (Parallel Tasking Library) v2.0.0, is the default

parallelism scheme for multi-threading starting in Geant4 11.0. To obtained either

– use the dedicated run manager (G4TaskRunManager), or

– Get it via the factory G4RunManagerFactory

Both enabled use of tasks for the event loop.

• The default behaviour for tasking is to submit the tasks to an internal thread-pool and

task-queue.

• Note: The tasking system with Intel TBB can be selected by specifying the option

GEANT4_USE_TBB=ON is specified when configuring CMake.

Multithreading 30

Moving from threads to tasks – since release 10.7

• There are now several types of RunManagers provided in the Geant4 release:

– Sequential (G4RunManager)

– ‘Old-style’ Multi-threading (G4MTRunManager)

– G4TaskRunManager in ‘native’ mode

– G4TaskRunManager in TBB mode

• A new class G4RunManagerFactory can be used to create any of these:

#include “G4RunManagerFactory.hh”

// [Option #1]

// Select from enum class G4RunManagerType: Default, Serial, MT,

Tasking, TBB

auto* runMgr =

G4RunManagerFactory::CreateRunManager(G4RunManagerType::Default);

// [Option #2] choose by string: “default”, “serial”, “mt”,

“task”, “tbb”

auto* runMgr = G4RunManagerFactory::CreateRunManager("default");

• This was provided for the first time in release 10.7 (December 2020).

Multithreading 31

	Slide 1: Multithreading .. and tasking
	Slide 2: Introduction
	Slide 3: The challenges of many-core era
	Slide 4: The challenges of many-core era
	Slide 5: In Brief
	Slide 6: Geant4 Multi Threading – origin & evolution of capabilities
	Slide 7: What is a thread?
	Slide 8: An alternative to using threads
	Slide 9: What is a thread?
	Slide 10: What is a thread?
	Slide 11: The basics of Multi-threading in Geant4
	Slide 12: General Design
	Slide 13: Simplified Master / Worker Model
	Slide 14: Simplified Master / Worker Model
	Slide 15: Shared Vs Thread-local
	Slide 16: Shared ? Private?
	Slide 17
	Slide 18: Memory consumption on Intel Xeon Phi
	Slide 19: Scalability on Intel Xeon Phi
	Slide 20: Shared ? Thread-local?
	Slide 21: Sequential mode
	Slide 22: Multi-threaded mode　
	Slide 23: Sequential mode
	Slide 24: Multi-threaded mode
	Slide 25: UI commands for multithreading
	Slide 26: Number of worker threads
	Slide 27: /run/eventModulo <N> <seedOnce>
	Slide 28: UI commands for cout/cerr
	Slide 29: Latest developments
	Slide 30: Tasking and developments in releases 10.7 and 11.0
	Slide 31: Moving from threads to tasks – since release 10.7

