
Version 11.2

User classes

Makoto Asai (Jefferson Lab)

Geant4 Tutorial Course

Contents

• User limits

• User classes

• Attaching user information to G4 classes

• Stacking mechanism

User classes - M.Asai (JLab) 2

Contents

• User limits

• User classes

• Attaching user information to G4 classes

• Stacking mechanism

User classes - M.Asai (JLab) 3

G4UserLimits

• User limits are artificial limits affecting to the tracking.

G4UserLimits(G4double ustepMax = DBL_MAX,

G4double utrakMax = DBL_MAX,

G4double utimeMax = DBL_MAX,

G4double uekinMin = 0.,

G4double urangMin = 0.);

– fMaxStep; // max allowed Step size in this volume

– fMaxTrack; // max total track length

– fMaxTime; // max global time

– fMinEkine; // min kinetic energy remaining (only for charged particles)

– fMinRange; // min remaining range (only for charged particles)

Blue : affecting to step

Red : affecting to track

• You can set user limits to logical volume and/or to a region.

– User limits assigned to logical volume do not propagate to daughter volumes.

– User limits assigned to region propagate to daughter volumes unless

daughters belong to another region.

– If both logical volume and associated region have user limits, those of logical

volume win.
User classes - M.Asai (JLab) 4

Processes co-working with G4UserLimits
• In addition to instantiating G4UserLimits and setting it to logical volume or region,

you have to assign the following process(es) to particle types you want to affect.

• Limit to step

fMaxStep : max allowed Step size in this volume

– G4StepLimiter process must be defined to affected particle types.

– This process limits a step, but it does not kill a track.

• Limits to track

fMaxTrack : max total track length

fMaxTime : max global time

fMinEkine : min kinetic energy (only for charged particles)

fMinRange : min remaining range (only for charged particles)

– G4UserSpecialCuts process must be defined to affected particle types.

– This process limits a step and kills the track when the track comes to one of

these limits. Step limitation occurs only for the final step.

User classes - M.Asai (JLab) 5

Contents

• User limits

• User classes

• Attaching user information to G4 classes

• Stacking mechanism

User classes - M.Asai (JLab) 6

Geant4 key classes (sequential mode)

User classes - M.Asai (JLab) 7

main()

G4RunManager

G4EventManager

G4TrackingManager

G4SteppingManager

G4Run

G4Event

G4Track

G4Step

Geant4 key classes (multi-threaded mode)

User classes - M.Asai (JLab) 8

main()

G4MTRunManager G4Run

G4WorkerRunManager

G4EventManager

G4TrackingManager

G4SteppingManager

G4Run

G4Event

G4Track

G4Step

G4WorkerRunManager

G4EventManager

G4TrackingManager

G4SteppingManager

G4Run

G4Event

G4Track

G4Step

G4WorkerRunManager

G4EventManager

G4TrackingManager

G4SteppingManager

G4Run

G4Event

G4Track

G4Step

Worker thread #0 Worker thread #1 Worker thread #2

Master thread

To use Geant4, you have to…

• Geant4 is a toolkit. You have to build an application.

• To make an application, you have to

– Define your geometrical setup

• Material, volume

– Define physics to get involved

• Particles, physics processes/models

• Production thresholds

– Define how an event starts

• Primary track generation

– Extract information useful to you

• You may also want to

– Visualize geometry, trajectories and physics output

– Utilize (Graphical) User Interface

– Define your own UI commands

– etc.

User classes - M.Asai (JLab) 9

User classes
• main()

– Geant4 does not provide main().

• Initialization classes

– Use G4RunManager::SetUserInitialization() to define.

– Invoked at the initialization

• G4VUserDetectorConstruction

• G4VUserPhysicsList

• G4VUserActionInitialization

• G4UserThreadInitialization, G4UserTaskThreadInitialization

• Action classes

– Instantiate them in your G4VUserActionInitialization.

– Invoked during an event loop

• G4VUserPrimaryGeneratorAction

• G4UserRunAction

• G4UserEventAction

• G4UserStackingAction

• G4UserTrackingAction

• G4UserSteppingAction User classes - M.Asai (JLab) 10

Note : classes written in red are
mandatory.

User action classes (sequential mode)

User classes - M.Asai (JLab) 11

main()

G4RunManager

G4EventManager

G4TrackingManager

G4SteppingManager

UserRunAction

UserEventAction

UserTrackingAction

UserSteppingAction

UserStackingAction

UserPrimaryGeneratorAction

User action classes (multi-threaded mode)

User classes - M.Asai (JLab) 12

G4WorkerRunManager

G4Event
Manager

G4TrackingManager

G4SteppingManager

UserRun
Action

UserEventAction

UserTrackingA
ction

UserStepping
Action

UserPrimary
GeneratorAction

UserStackingAction

G4WorkerRunManager

G4Event
Manager

G4TrackingManager

G4SteppingManager

UserRun
Action

UserEventAction

UserTrackingA
ction

UserStepping
Action

UserStackingAction

main()

G4MTRunManager UserRunAction

Worker thread #1 Worker thread #2

Master thread

G4WorkerRunManager

G4Event
Manager

G4TrackingManager

G4SteppingManager

UserRun
Action

UserEventAction

UserTrackingA
ction

UserStepping
Action

UserStackingAction

Worker thread #0

UserPrimary
GeneratorAction

UserPrimary
GeneratorAction

UserActionInitialization

• G4VUserActionInitialization has two virtual methods

• BuildForMaster() is invoked once in the master thread

MyActionInitialization::BuildForMaster()

{ SetUserAction(new MyRunAction); }

• Build() is invoked for each worker thread

MyActionInitialization::Build()

{

SetUserAction(new MyPrimaryGeneratorAction);

SetUserAction(new MyLocalRunAction);

SetUserAction(new MyEventAction);

…

}

User classes - M.Asai (JLab) 13

Contents

• User limits

• User classes

• Attaching user information to G4 classes

• Stacking mechanism

User classes - M.Asai (JLab) 14

Attaching user information

• Abstract classes

– You can use your own class derived from provided base class

– G4Run, G4VHit, G4VDigit, G4VTrajectory, G4VTrajectoryPoint

• Concrete classes

– You can attach a user information class object

• G4Event - G4VUserEventInformation

• G4Track - G4VUserTrackInformation

• G4PrimaryVertex - G4VUserPrimaryVertexInformation

• G4PrimaryParticle - G4VUserPrimaryParticleInformation

• G4Region - G4VUserRegionInformation

– User information class object is deleted when associated Geant4 class

object is deleted.

User classes - M.Asai (JLab) 15

Trajectory and trajectory point

• Trajectory and trajectory point class objects persist until the end of an event.

• G4VTrajectory is the abstract base class to represent a trajectory, and

G4VTrajectoryPoint is the abstract base class to represent a point which makes

up the trajectory.

– In general, trajectory class is expected to have a vector of trajectory points.

• Geant4 provides G4Trajectoy and G4TrajectoryPoint concrete classes as

defaults. These classes keep only the most common quantities.

– If the you want to keep some additional information, you are encouraged to

implement your own concrete classes deriving from G4VTrajectory and

G4VTrajectoryPoint base classes.

– Do not use G4Trajectory nor G4TrajectoryPoint concrete class as base

classes unless you are sure not to add any additional data member.

• Source of memory leak

User classes - M.Asai (JLab) 16

Creation of trajectories

• Naïve creation of trajectories occasionally causes a memory consumption
concern, especially for high energy EM showers.

• In UserTrackingAction, you can switch on/off the creation of a trajectory for the
particular track.

void MyTrackingAction

::PreUserTrackingAction(const G4Track* aTrack)

{

if(...)

{ fpTrackingManager->SetStoreTrajectory(true); }

else

{ fpTrackingManager->SetStoreTrajectory(false); }

}

• If you want to use user-defined trajectory, object should be instantiated in this
method and set to G4TrackingManager by SetTrajectory() method.

fpTrackingManager->SetTrajectory(new MyTrajectory(…));

User classes - M.Asai (JLab) 17

Bookkeeping issues

• Connection from G4PrimaryParticle to G4Track

G4int G4PrimaryParticle::GetTrackID()

– Returns the track ID if this primary particle had been converted into G4Track,

otherwise -1.

• Both for primaries and pre-assigned decay products

• Connection from G4Track to G4PrimaryParticle

G4PrimaryParticle* G4DynamicParticle::GetPrimaryParticle()

– Returns the pointer of G4PrimaryParticle object if this track was defined as a

primary or a pre-assigned decay product, otherwise null.

• G4VUserPrimaryVertexInformation, G4VUserPrimaryParticleInformation and

G4VUserTrackInformation may be used for storing additional information.

– Information in UserTrackInformation should be then copied to user-defined

trajectory class, so that such information is kept until the end of the event.

User classes - M.Asai (JLab) 18

RE01RegionInformation

• RE01 example has three regions, i.e. default world region, tracker region and
calorimeter region.

– Each region has its unique object of RE01RegionInformation class.

class RE01RegionInformation : public G4VUserRegionInformation

{

…

public:

G4bool IsWorld() const;

G4bool IsTracker() const;

G4bool IsCalorimeter() const;

…

};

• Through step->pre/postStepPoint->physicalVolume->logicalVolume->region->
regionInformation, you can easily identify in which region the current step
belongs.

– Don’t use volume name to identify.

User classes - M.Asai (JLab) 19

Use of RE01RegionInformation

void RE01SteppingAction::UserSteppingAction(const G4Step * theStep)

{ // Suspend a track if it is entering into the calorimeter

// get region information

G4StepPoint* thePrePoint = theStep->GetPreStepPoint();

G4LogicalVolume* thePreLV = thePrePoint->GetPhysicalVolume()->GetLogicalVolume();

RE01RegionInformation* thePreRInfo

= (RE01RegionInformation*)(thePreLV->GetRegion()->GetUserInformation());

G4StepPoint* thePostPoint = theStep->GetPostStepPoint();

G4LogicalVolume* thePostLV = thePostPoint->GetPhysicalVolume()->GetLogicalVolume();

RE01RegionInformation* thePostRInfo

= (RE01RegionInformation*)(thePostLV->GetRegion()->GetUserInformation());

// check if the track is entering to the calorimeter volume

if(!(thePreRInfo->IsCalorimeter()) && (thePostRInfo->IsCalorimeter()))

{ theTrack->SetTrackStatus(fSuspend); }

}

User classes - M.Asai (JLab) 20

Contents

• User limits

• User classes

• Attaching user information to G4 classes

• Stacking mechanism

User classes - M.Asai (JLab) 21

Track stacks in Geant4

• By default, Geant4 has three track stacks.

– "Urgent", "Waiting" and "PostponeToNextEvent"

– Each stack is a simple "last-in-first-out" stack.

– User may arbitrarily increase the number of stacks.

• ClassifyNewTrack() method of UserStackingAction decides which stack each

newly storing track to be stacked (or to be killed).

– By default, all tracks go to Urgent stack.

• A Track is popped up only from Urgent stack.

• Once Urgent stack becomes empty, all tracks in Waiting stack are transferred to

Urgent stack.

– And NewStage() method of UserStackingAction is invoked.

• Utilizing more than one stacks, user can control the priorities of processing

tracks without paying the overhead of "scanning the highest priority track".

– Proper selection/abortion of tracks/events with well designed stack

management provides significant efficiency increase of the entire simulation.

User classes - M.Asai (JLab) 22

Stacking mechanism

User classes - M.Asai (JLab) 23

Event Manager

Tracking

Manager

Stacking

Manager

User Stacking

Action

Urgent

Stack

Waiting

Stack

Postpone To

Next Event

Stack

Push

Pop
Push

Push

Push

Pop

Classify

secondary

and suspended

tracks

Process

One

Track

primary

tracks

RIP

Deleted

Transfer

NewStage
Urgent

Stack

Waiting

Stack

Temporary

Stack

Reclassify

Pop

End Of

Event

Postpone To
Next Event

Stack

Transfer

Prepare

New Event

G4UserStackingAction

• User has to implement three methods.

• G4ClassificationOfNewTrack ClassifyNewTrack(const G4Track*)

– Invoked every time a new track is pushed to G4StackManager.

– Classification

• fUrgent – push into Urgent stack

• fWaiting – push into Waiting stack

• fPostpone – push into PostponeToNextEvent stack

• fKill – delete the track : physics quantities of the track (energy, charge,

etc.) are not conserved but completely lost

• void NewStage()

– Invoked when Urgent stack becomes empty and all tracks in Waiting stack

are transferred to Urgent stack.

– All tracks which have been transferred from Waiting stack to Urgent stack

can be reclassified by invoking stackManager->ReClassify()

• void PrepareNewEvent()

– Invoked at the beginning of each event for resetting the classification

scheme.

User classes - M.Asai (JLab) 24

RE05StackingAction

• RE05 has simplified collider detector

geometry and event samples of Higgs

decaying into four muons.

• Stage 0

– Only primary muons are pushed into

Urgent stack and all other primaries

and secondaries are pushed into

Waiting stack.

– All of four muons are tracked without

being bothered by EM showers caused

by delta-rays.

– Once Urgent stack becomes empty (i.e.

end of stage 0), number of hits in

muon counters are examined.

– Proceed to next stage only if sufficient

number of muons passed through

muon counters. Otherwise the event is

aborted.
User classes - M.Asai (JLab) 25

RE05StackingAction

• Stage 1

– Only primary charged particles are

pushed into Urgent stack and all other

primaries and secondaries are pushed

into Waiting stack.

– Each of primary charged particles are

tracked until they reach to the surface

of calorimeter. Tracks reached to the

calorimeter surface are suspended

and pushed back to Waiting stack.

– All charged primaries are tracked in

the tracking region without being

bothered by the showers in calorimeter.

– At the end of stage 1, isolation of

muon tracks is examined.

User classes - M.Asai (JLab) 26

RE05StackingAction

• Stage 2

– Only tracks in "region of interest" are

pushed into Urgent stack and all other

tracks are killed.

– Showers are calculated only inside of

"region of interest".

User classes - M.Asai (JLab) 27

Tips of stacking manipulations

• Classify all secondaries as fWaiting until Reclassify() method is invoked.

– You can simulate all primaries before any secondaries.

• Classify tracks below a certain energy as fWaiting until Reclassify() method is

invoked.

– You can roughly simulate the event before being bothered by low energy

EM showers.

• Suspend a track on its fly. Then this track and all of already generated

secondaries are pushed to the stack.

– Given a stack is "last-in-first-out”, secondaries are popped out prior to the

original suspended track.

– Quite effective for Cherenkov / scintillation lights

• Suspend all tracks that are leaving from a region, and classify these suspended

tracks as fWaiting until Reclassify() method is invoked.

– You can simulate all tracks in this region prior to other regions.

– Note that some back-splash tracks may come back into this region later.

User classes - M.Asai (JLab) 28

Set the track status

• In UserSteppingAction, user can change the status of a track.

void MySteppingAction::UserSteppingAction

(const G4Step * theStep)

{

G4Track* theTrack = theStep->GetTrack();

if(…) theTrack->SetTrackStatus(fSuspend);

}

• If a track is killed by the stacking mechanism, physics quantities of the track

(energy, charge, etc.) are not conserved but completely lost.

User classes - M.Asai (JLab) 29

