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G4UserLimits

• User limits are artificial limits affecting to the tracking.

G4UserLimits(G4double ustepMax = DBL_MAX,

G4double utrakMax = DBL_MAX,

G4double utimeMax = DBL_MAX,

G4double uekinMin = 0.,

G4double urangMin = 0. );

– fMaxStep;        // max allowed Step size in this volume 

– fMaxTrack;       // max total track length

– fMaxTime;        // max global time

– fMinEkine;       // min kinetic energy remaining (only for charged particles)

– fMinRange;      // min remaining range (only for charged particles)

Blue : affecting to step

Red : affecting to track

• You can set user limits to logical volume and/or to a region. 

– User limits assigned to logical volume do not propagate to daughter volumes.

– User limits assigned to region propagate to daughter volumes unless 

daughters belong to another region.

– If both logical volume and associated region have user limits, those of logical 

volume win.
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Processes co-working with G4UserLimits
• In addition to instantiating G4UserLimits and setting it to logical volume or region, 

you have to assign the following process(es) to particle types you want to affect.

• Limit to step

fMaxStep : max allowed Step size in this volume 

– G4StepLimiter process must be defined to affected particle types. 

– This process limits a step, but it does not kill a track.

• Limits to track

fMaxTrack : max total track length

fMaxTime : max global time

fMinEkine : min kinetic energy (only for charged particles)

fMinRange : min remaining range (only for charged particles)

– G4UserSpecialCuts process must be defined to affected particle types. 

– This process limits a step and kills the track when the track comes to one of 

these limits. Step limitation occurs only for the final step.
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Geant4 key classes (sequential mode) 
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main()

G4RunManager

G4EventManager

G4TrackingManager

G4SteppingManager

G4Run

G4Event

G4Track

G4Step



Geant4 key classes (multi-threaded mode)

User classes - M.Asai (JLab) 8

main()

G4MTRunManager G4Run

G4WorkerRunManager

G4EventManager

G4TrackingManager

G4SteppingManager

G4Run

G4Event

G4Track

G4Step

G4WorkerRunManager

G4EventManager

G4TrackingManager

G4SteppingManager

G4Run

G4Event

G4Track

G4Step

G4WorkerRunManager

G4EventManager

G4TrackingManager

G4SteppingManager

G4Run

G4Event

G4Track

G4Step

Worker thread #0 Worker thread #1 Worker thread #2

Master thread



To use Geant4, you have to…

• Geant4 is a toolkit. You have to build an application.

• To make an application, you have to

– Define your geometrical setup

• Material, volume

– Define physics to get involved

• Particles, physics processes/models 

• Production thresholds

– Define how an event starts

• Primary track generation

– Extract information useful to you

• You may also want to

– Visualize geometry, trajectories and physics output

– Utilize (Graphical) User Interface

– Define your own UI commands

– etc.
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User classes
• main()

– Geant4 does not provide main().

• Initialization classes

– Use G4RunManager::SetUserInitialization() to define.

– Invoked at the initialization

• G4VUserDetectorConstruction

• G4VUserPhysicsList

• G4VUserActionInitialization

• G4UserThreadInitialization, G4UserTaskThreadInitialization

• Action classes

– Instantiate them in your G4VUserActionInitialization.

– Invoked during an event loop

• G4VUserPrimaryGeneratorAction

• G4UserRunAction

• G4UserEventAction

• G4UserStackingAction

• G4UserTrackingAction

• G4UserSteppingAction User classes - M.Asai (JLab) 10
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User action classes (sequential mode)
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main()

G4RunManager

G4EventManager

G4TrackingManager

G4SteppingManager

UserRunAction

UserEventAction
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UserStackingAction

UserPrimaryGeneratorAction



User action classes (multi-threaded mode)
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UserActionInitialization

• G4VUserActionInitialization has two virtual methods

• BuildForMaster() is invoked once in the master thread

MyActionInitialization::BuildForMaster()

{ SetUserAction(new MyRunAction); }

• Build() is invoked for each worker thread

MyActionInitialization::Build()

{

SetUserAction(new MyPrimaryGeneratorAction);

SetUserAction(new MyLocalRunAction);

SetUserAction(new MyEventAction);

…

}
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Attaching user information

• Abstract classes

– You can use your own class derived from provided base class

– G4Run, G4VHit, G4VDigit, G4VTrajectory, G4VTrajectoryPoint

• Concrete classes

– You can attach a user information class object

• G4Event - G4VUserEventInformation

• G4Track - G4VUserTrackInformation

• G4PrimaryVertex - G4VUserPrimaryVertexInformation

• G4PrimaryParticle - G4VUserPrimaryParticleInformation

• G4Region - G4VUserRegionInformation

– User information class object is deleted when associated Geant4 class 

object is deleted.
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Trajectory and trajectory point

• Trajectory and trajectory point class objects persist until the end of an event.

• G4VTrajectory is the abstract base class to represent a trajectory, and 

G4VTrajectoryPoint is the abstract base class to represent a point which makes 

up the trajectory.

– In general, trajectory class is expected to have a vector of trajectory points.

• Geant4 provides G4Trajectoy and G4TrajectoryPoint concrete classes as 

defaults. These classes keep only the most common quantities.

– If the you want to keep some additional information, you are encouraged to 

implement your own concrete classes deriving from G4VTrajectory and 

G4VTrajectoryPoint base classes.

– Do not use G4Trajectory nor G4TrajectoryPoint concrete class as base 

classes unless you are sure not to add any additional data member. 

• Source of memory leak
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Creation of trajectories

• Naïve creation of trajectories occasionally causes a memory consumption 
concern, especially for high energy EM showers.

• In UserTrackingAction, you can switch on/off the creation of a trajectory for the 
particular track.

void MyTrackingAction

::PreUserTrackingAction(const G4Track* aTrack)

{

if(...)

{ fpTrackingManager->SetStoreTrajectory(true); }

else

{ fpTrackingManager->SetStoreTrajectory(false); }

}

• If you want to use user-defined trajectory, object should be instantiated in this 
method and set to G4TrackingManager by SetTrajectory() method.

fpTrackingManager->SetTrajectory(new MyTrajectory(…));
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Bookkeeping issues

• Connection from G4PrimaryParticle to G4Track

G4int G4PrimaryParticle::GetTrackID()

– Returns the track ID if this primary particle had been converted into G4Track, 

otherwise -1.

• Both for primaries and pre-assigned decay products

• Connection from G4Track to G4PrimaryParticle

G4PrimaryParticle* G4DynamicParticle::GetPrimaryParticle()

– Returns the pointer of G4PrimaryParticle object if this track was defined as a 

primary or a pre-assigned decay product, otherwise null.

• G4VUserPrimaryVertexInformation, G4VUserPrimaryParticleInformation and 

G4VUserTrackInformation may be used for storing additional information.

– Information in UserTrackInformation should be then copied to user-defined 

trajectory class, so that such information is kept until the end of the event.
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RE01RegionInformation

• RE01 example has three regions, i.e. default world region, tracker region and 
calorimeter region.

– Each region has its unique object of RE01RegionInformation class.

class RE01RegionInformation : public G4VUserRegionInformation

{

…

public:

G4bool IsWorld() const;

G4bool IsTracker() const;

G4bool IsCalorimeter() const;

…

};

• Through step->pre/postStepPoint->physicalVolume->logicalVolume->region-> 
regionInformation, you can easily identify in which region the current step 
belongs.

– Don’t use volume name to identify.
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Use of RE01RegionInformation

void RE01SteppingAction::UserSteppingAction(const G4Step * theStep)

{ // Suspend a track if it is entering into the calorimeter

// get region information

G4StepPoint* thePrePoint = theStep->GetPreStepPoint();

G4LogicalVolume* thePreLV = thePrePoint->GetPhysicalVolume()->GetLogicalVolume();

RE01RegionInformation* thePreRInfo

= (RE01RegionInformation*)(thePreLV->GetRegion()->GetUserInformation());

G4StepPoint* thePostPoint = theStep->GetPostStepPoint();

G4LogicalVolume* thePostLV = thePostPoint->GetPhysicalVolume()->GetLogicalVolume();

RE01RegionInformation* thePostRInfo

= (RE01RegionInformation*)(thePostLV->GetRegion()->GetUserInformation());

// check if the track is entering to the calorimeter volume

if( !(thePreRInfo->IsCalorimeter()) && (thePostRInfo->IsCalorimeter()) )

{ theTrack->SetTrackStatus(fSuspend); }

}
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Track stacks in Geant4

• By default, Geant4 has three track stacks.

– "Urgent", "Waiting" and "PostponeToNextEvent"

– Each stack is a simple "last-in-first-out" stack. 

– User may arbitrarily increase the number of stacks.

• ClassifyNewTrack() method of UserStackingAction decides which stack each 

newly storing track to be stacked (or to be killed).

– By default, all tracks go to Urgent stack.

• A Track is popped up only from Urgent stack.

• Once Urgent stack becomes empty, all tracks in Waiting stack are transferred to 

Urgent stack.

– And NewStage() method of UserStackingAction is invoked.

• Utilizing more than one stacks, user can control the priorities of processing 

tracks without paying the overhead of "scanning the highest priority track".

– Proper selection/abortion of tracks/events with well designed stack 

management provides significant efficiency increase of the entire simulation.
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Stacking mechanism
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G4UserStackingAction

• User has to implement three methods.

• G4ClassificationOfNewTrack ClassifyNewTrack(const G4Track*)

– Invoked every time a new track is pushed to G4StackManager.

– Classification

• fUrgent – push into Urgent stack

• fWaiting – push into Waiting stack

• fPostpone – push into PostponeToNextEvent stack

• fKill – delete the track : physics quantities of the track (energy, charge, 

etc.) are not conserved but completely lost

• void NewStage()

– Invoked when Urgent stack becomes empty and all tracks in Waiting stack 

are transferred to Urgent stack.

– All tracks which have been transferred from Waiting stack to Urgent stack 

can be reclassified by invoking stackManager->ReClassify()

• void PrepareNewEvent()

– Invoked at the beginning of each event for resetting the classification 

scheme. 
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RE05StackingAction

• RE05 has simplified collider detector 

geometry and event samples of Higgs 

decaying into four muons.

• Stage 0

– Only primary muons are pushed into 

Urgent stack and all other primaries 

and secondaries are pushed into 

Waiting stack.

– All of four muons are tracked without 

being bothered by EM showers caused 

by delta-rays.

– Once Urgent stack becomes empty (i.e. 

end of stage 0), number of hits in 

muon counters are examined.

– Proceed to next stage only if sufficient 

number of muons passed through 

muon counters. Otherwise the event is 

aborted.
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RE05StackingAction

• Stage 1

– Only primary charged particles are 

pushed into Urgent stack and all other 

primaries and secondaries are pushed 

into Waiting stack.

– Each of primary charged particles are 

tracked until they reach to the surface 

of calorimeter. Tracks reached to the 

calorimeter surface are suspended 

and pushed back to Waiting stack.

– All charged primaries are tracked in 

the tracking region without being 

bothered by the showers in calorimeter.

– At the end of stage 1, isolation of 

muon tracks is examined.
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RE05StackingAction

• Stage 2

– Only tracks in "region of interest" are 

pushed into Urgent stack and all other 

tracks are killed.

– Showers are calculated only inside of 

"region of interest".
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Tips of stacking manipulations 

• Classify all secondaries as fWaiting until Reclassify() method is invoked. 

– You can simulate all primaries before any secondaries.

• Classify tracks below a certain energy as fWaiting until Reclassify() method is 

invoked. 

– You can roughly simulate the event before being bothered by low energy 

EM showers.

• Suspend a track on its fly. Then this track and all of already generated 

secondaries are pushed to the stack.

– Given a stack is "last-in-first-out”, secondaries are popped out prior to the 

original suspended track.

– Quite effective for Cherenkov / scintillation lights

• Suspend all tracks that are leaving from a region, and classify these suspended 

tracks as fWaiting until Reclassify() method is invoked. 

– You can simulate all tracks in this region prior to other regions.

– Note that some back-splash tracks may come back into this region later.
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Set the track status

• In UserSteppingAction, user can change the status of a track.

void MySteppingAction::UserSteppingAction

(const G4Step * theStep)

{

G4Track* theTrack = theStep->GetTrack();

if(…) theTrack->SetTrackStatus(fSuspend);

}

• If a track is killed by the stacking mechanism, physics quantities of the track 

(energy, charge, etc.) are not conserved but completely lost.
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