

Electromagnetic Physics-I

Vladimir Ivantchenko (Tomsk State University) Geant4 Advanced Course

The University of Manchester

Outline

- Electromagnetic physics (EM) overview
- Main Gamma processes
- Main charged particle processes
- Secondary production thresholds
- EM physics constructors
- User interface to EM physics
- Special EM topics

Gamma and electron transport

- γ conversion into e+e- pair
- Compton scattering
- Photoelectric effect
- Rayleigh scattering
- Gamma-nuclear interaction in hadronic sublibrary
- Electron and positron processes
 - Ionization
 - Coulomb scattering
 - Bremsstrahlung
 - Production of e+e- pair
 - Nuclear interaction in hadronic sub-library
 - Positron annihilation
- Suitable for HEP & many other Geant4 applications with electron and gamma beams

Located in \$G4INSTALL/sources/processes/electromagnetic

- Standard
 - γ, e up to 100 TeV
 - hadrons up to 100 TeV
 - ions up to 100 TeV
- Muons
 - up to 1 PeV
 - energy loss propagator
- X-rays
 - X-ray and optical photon production processes
- High-energy
 - processes at high energy (E>10GeV)
 - physics for exotic particles
- Polarisation
 - simulation of polarised beams

- Low-energy
 - Livermore library γ , e- from 10 eV up to 1 GeV
 - Livermore library based polarized processes
 - PENELOPE 2008 code rewrite , γ , e- , e+ from 250 eV up to 6 GeV
 - hadrons and ions up to 1 GeV
 - atomic de-excitation (fluorescence + Auger)
- DNA
 - Geant4 DNA modes and processes
 - Micro-dosimetry models for radiobiology
 - rom 0.025 eV to 10 MeV
 - many of them material specific (water)
 - Chemistry in liquid water
- Adjoint
 - sub-library for reverse Monte Carlo simulation from the detector of interest back to source of radiation
- Utils : general EM interfaces and helper classes

GFANT4

Software Design of EM Physics

- The uniform coherent approach for all EM packages
 - low energy and high energy models may work together
- A physical interaction or process is described by a process class
 - For example: G4ComptonScattering
 - Assigned to Geant4 particle types in Physics List
 - Three EM base processes:
 - G4VEmProcess
 - G4VEnergyLossProcess
 - G4VMultipleScattering
- A physical process can be simulated according to several models
 - each model being described by a model class
 - Naming scheme : « G4ModelNameProcessNameModel »
 - For example: G4LivermoreComptonModel
 - Models can be assigned to certain energy ranges and G4Regions
 - Inherit from G4VEmModel base class
- Model classes provide the computation of
 - Cross section and stopping power
 - Sample selection of atom in compound
 - Final state (kinematics, production of secondaries, ...)

EM Data Sharing for Geant4 MT

- The scalability of Geant4 application in the MT mode depends on how effectivly data management is performed
- Shared EM physics data:
 - tables for cross sections, stopping powers and ranges are kept by processes
 - Differential cross section data are kept by models
 - Material propertes are in material data classes
 - EM parameters established for Physics Lists in the G4EmParameters class

Main Gamma Processes

Geant4 EM physics

- Photo-effect is the main process for absorption of low-energy gamma
 - Rayleigh scattering should not be neglected if an accurate dosimetry simulation is needed
- At high energy gamma conversion dominates
- Gammas may be absorbed by nuclei due to giant dipole resonance
 - Producing neutrons, protons, and gamma

Photo-electric effect – example of gamma process

In the photo-electric absorption process a **photon is absorbed** by an atom and an **electron is emitted** with an energy:

$$E_{photoelectron} = E_{\gamma} - B_{shell}(Z_i) \tag{1}$$

The atom, left in an excited state with a vacancy in the ionized shell, decays to its ground state through a cascade of radiative and non-radiative transitions with the emission of characteristic x-rays and Auger and Coster-Kronig electrons.

Primary gamma may be polarized, photoelectron angular distribution will be affected. Atomic deexcitation cascade will follow

Atomic de-excitation

- Atomic de-excitation is initiated by other EM physics interactions:
 - photoelectric effect, ionisation (by e- or ions PIXE), Compton scattering,...
 - these interactions leave the target atom in an excited state
- The EADL (Evaluated Atomic Data Library) contains transition probabilities:
 - radiative transition characteristic X-ray emission (fluoressence photon emission)

GEANT4

GEANT4 =

- Auger e- emission: initial and final vacancies are in different shells
- Coster-Kronig e- emission: initial and final vacancies are in the same shells
- Due to a common interface, the atomic de-excitation is compatible with both the standard and the low-energy EM physics categories:
 - can be enabled and controlled by UI command (before initialization):

/process/em/fluo true /process/em/auger true /process/em/pixe true

/run/initialize

- fluorescence transition is active by default in some EM physics constructor while others (Auger, PIXE) not

• Geant4 standard EM interactions for gamma interactions:

GEANTA - G GEANTA

	gamma SubType= 12				
LambdaP	rime table from 200	iev to 120 Tev in	51 bins		
	t models for the G4R	egion DefaultRegi	onForTheWorld	interaction is	
				AngularGenSauterGavril	a FluoActive
				$ \sim 2$	$\ell' + 1$
compt: for	gamma SubType= 1	3 BuildTable= 1		$= B \left[\left[\left(\theta_{1} \left(\theta_{1} \right) \right) \right] \right] > =$	$F_{\ell'} P_{\ell'} (\cos(\theta_2))$
	table from 100 eV t		r decade, spl	ine: 1	共在
	rime tubie from 1 Me				
				point above	by using the addition
	Nishina : Emin=			onicipanti)	- 65 ming the duties
RECEN			100 101		
conv: for	gamma SubType= 14	RuildTable 1			A
Lambda	table from 1 022 MeV	+0 100 TeV 18 hi	ns nen decade	spline: 1	$\approx 2\ell' + 1_{E, P, local}$
Luiibuu	M models for the G4R	co ico rev, 18 Di	onFonTheWonld	, spline: $1\cos(\theta_1)$	-4π
	I UI CITE OTA	legion beruurtikegt	on on menor Lu	Contraction of the second s	=0
Dethelle	Heitler : Emin=		100 T-V	AngularGenurbun	
BetheHet	clerLPM : Emin=	80 Gev Emax=	100 Tev	AngularGenUrban)) $\cos[m(\phi - \phi_1)]$ si
					enter en enter en enter
	aamma SubType= 11				e n h.
Lambda	table from 100 eV t	o 100 keV, 7 bins	per decade, s	pline: 0	
Luiibuur	time tuble from 100	keV to 100 TeV in	63 bins	contributions co	ming from the last te
E	M models for the G4R	egion DefaultRegi	onForTheWorld		
LivermoreR	ayleigh : Emin=	0 eV Emax=	100 TeV	CullenGenerator	

Main Charged Particle Processes

Geant4 EM physics

Electron and positron processes

- At low energies ionisation dominates for e-
 - For e+ annihilation dominates at very low energy
- Above critical energy bremsstrahlung is the main process
 - Radiation energy loss exceed ionization energy loss
 - Process of e+e- pair production has much less cross section
- Difference between electrons and positrons increased for low energy
 - Is practically negligible above critical energy

Simulation of a step of a charged particle

- Values of mean dE/dx, range, cross section of δ-electron production, and bremsstruhlung are precomputed at initialisation stage of Geant4 and are stored in a G4PhysicsTable
- At run time for each simulation step, a spline interpolation of tables is used to get mean energy loss
- At each step, a sampling of the energy loss fluctuation is performed
 - The interface to a fluctuation model is G4VEmFluctuationModel
- The cross sections of δ -electron production and bremsstrahlung are used to sample production above the threshold T_{cut} at PostStep
- If atomic de-excitation is active, then fluorescence and Auger electron production is sampled AlongStep and PostStep

GFANT4

• Bethe-Bloch formula with corrections used for E>2 MeV

$$-\frac{dE}{dx} = 4\pi N_{e}r_{0}^{2}\frac{z^{2}}{\beta^{2}}\left(\ln\frac{2m_{e}c^{2}\beta^{2}\gamma^{2}}{I} - \frac{\beta^{2}}{2}\left(1 - \frac{T_{c}}{T_{max}}\right) - \frac{C}{Z} + \frac{G - \delta - F}{2} + zL_{1} + z^{2}L_{2}\right)$$

- G Mott correction
- $-\delta$ density correction
- F finite size correction
- L₁- Barkas correction
- L₂- Bloch correction
- Nuclear stopping
- Ion effective charge
- Bragg peak parameterizations for E< 2 MeV
 - ICRU'49, ICRU'73, ICRU'90, and NIST databases
- Scaling relation for heavy particles:
 - $S_h(E) = S(E^*M_p/M_h)^*Q_h^2$,
 - M_h, Q_h hadron mass and charge
 - Applicable to any charged particle including exotics and all ions
 - This is possible, because dE/dx depend mainly on β

Geant4 models of energy loss fluctuations

- Urban model based on a simple model of particle-atom interaction
 - Atoms are assumed to have only two energy levels E₁ and E₂
 - Particle-atom interaction can be:
 - an excitation of the atom with energy loss $E = E_1 E_2$
 - an ionization with energy loss distribution $g(E)^{-1}/E^2$
- PAI model uses photo absorption cross section data
 - Energy transfers are sampled with production of secondary e⁻ or γ
 - Relativistic model
 - Very slow model, should be applied for sensitive region of detector

Electron/positron Multiple Scattering

- The algorithm performs simulation of many elastic scatterings at a step of a particle
 - The physics processes and the geometry select the step length; MSC performs the $t \leftrightarrow z$ transformation only
 - Sampling of scattering angle (θ, Φ)
 - Computing of displacement and relocation of particle AlongStep
- To provide accurate simulation on geometry interface between different materials MSC step limitation is applied
 - Simple
 - UseSafety
 - UseSafetyPlus
 - UseDistanceToBoundary
- Other step limit parameters:
 - RangeFactor is the most important
 - Geometry factor
 - Safety factor
 - Skin
 - Lambda limit
- Default MSC parameters are optimized for
 - Accurate simulation of EM showers
 - HEP sampling calorimeters
 - Accurate simulation of shielding

Secondary production thresholds

Geant4 EM physics

Secondary production threshold for bremsstrahlung

- Bremsstrahlung photon emission:
 - low energy photons (k) will be emitted with high rate DCS ~ 1/k
 - generation and tracking of all these low energy photons would not be feasible (CPU time)
 - but low energy photons has a very small absorption length
 - If the detector spacial resolution is worst than this length then the followings are *equivalent*:
 - a: generating and tracking these low energy photons till all their energy will be deposited
 - *b*: or just depositing the corresponding energy at the creation point (at a trajectory point)
 - note, that we think in energy scale at the model level that translates to length (spacial) at the transport level
 - a secondary production threshold might be introduced (either in energy or length)

22 27. Passage of particles through matter

🜀 Geant4 =

Secondary production threshold technique

- Introduce secondary photon production threshold:
 - secondary photons, with initial energy below a gamma production threshold(k<E_γ), are not generated
 - the corresponding energy (that would have been taken away from the primary) is accounted as *CONTINUOUS* energy loss of the primary particle along its trajectory

- Electron makes a step with a given length *L*, one can compute the mean energy loss (due to sub-threshold photon emissions) along the step as $L \times dE/dx$ (would be true only if E = const along the step)

- Secondary photons, with initial energy above a gamma production threshold (k> E_{γ}^{cut}), are generated (*DISCRETE*)
- the emission rate is determined by the corresponding (restricted) cross section(σ)

$$\frac{\mathrm{d}E}{\mathrm{d}x}(E,E_{\gamma}^{\mathrm{cut}},Z) = \mathcal{N} \int_{0}^{E_{\gamma}^{\mathrm{cut}}} k \frac{\mathrm{d}\sigma}{\mathrm{d}k}(E,Z) \mathrm{d}k$$

$$\sigma(E, E_{\gamma}^{\text{cut}}, Z) = \int_{E_{\gamma}^{\text{cut}}}^{E} \frac{\mathrm{d}\sigma}{\mathrm{d}k}(E, Z) \mathrm{d}k$$

GEANT4 -

- Cuts are provided in units of length, the default value is 0.7 mm.
 - internally translated to energies at initialisation depending on material and particle type
 - the corresponding energy has a minimum value: default 1 keV but the user can set it
- UI commands to define cuts:
 - /run/setCut 0.1 mm
 - /run/setCutForAGivenParticle e- 0.01 mm
 - /run/setCutForRegion GasDetector 0.001 mm
 - /cuts/setLowEdge 500 eV
- it's not mandatory to use production thresholds
 - high energy physics simulation would not be feasible without them !

Example demonstrating importance of cuts

Compute the mean of the energy deposit in the target: E₀ - primary, E_f - final energy

🜀 Geant4 – 🌀 Geant4

Golden rule:

For transport in solid/liquid media cut in range should be below minimal geometry size

EM PHYSICS CONSTRUCTORS

Geant4 EM physics

- A Physics list is the mandatory user class making the general interface between the physics the user needs and the Geant4 kernel
- List of particles: for which EM physics processes are defined
 - $\quad \gamma, \, \mathsf{e}^{\pm}, \, \mu^{\pm}, \, \pi^{\pm}, \, \mathsf{K}^{\pm} \, , \, \mathsf{p}, \, \Sigma^{\pm}, \, \Xi^{-}, \, \Omega^{-}, \, \mathsf{anti}(\Sigma^{\pm}, \, \Xi^{-}, \, \Omega^{-})$
 - $\tau^{\pm}, B^{\pm}, D^{\pm}, D_{s}^{\pm}, \Lambda_{c}^{+}, \Sigma_{c}^{+}, \Sigma_{c}^{++}, \Xi_{c}^{+}, \underline{anti}(\Lambda_{c}^{+}, \Sigma_{c}^{+}, \Sigma_{c}^{++}, \Xi_{c}^{+})$
 - d, t, He3, He4, Genericlon, anti(d, t, He3, He4)
 - 12 light hyper- and anti-hyper- nuclei
- The G4ProcessManager of each particle maintains a list of processes
- Geant4 provides several configurations of EM physics lists called constructors (G4VPhysicsConstructor) in the physics_lists library of Geant4
- These constructors can be included into a modular Physics list in a user application (G4VModularPhysicsList)

- Geant4 standard EM Physics Constructors for HEP applications
 - Description of Coulomb scattering:
 - e[±]: Urban MSC model below 100 MeV and the Wentzel-WVI + Single scattering (mixed simulation) models above 100 MeV
 - muon and hadrons: Wentzel-WVI + Single scattering (mixed simulation)
 - ions: Urban MSC model

Constructor	Components	Comments
G4EmStandardPhysics	Defaults (FTFP_BERT)	ATLAS and other HEP applications
G4EmStandardPhysics_option1	ApplyCuts for gamma processes, Gamma general process, simple MSC and ionisation step limitation (FTFP_BERT_EMV)	CMS and other applications with crystal calorimeters, not good for sampling calorimeters
G4EmStandardPhysics_option2	Simple MSC and ionisation step limitation, no MSC displacement, Livermore photoelectric model (FTFP_BERT_EMX)	LHCb specific

EM Physics Constructors for medical and space applications

- Ionisation: strong step limitation for all charged particle type, use ICRU90 and ICRU73 data for ions
- Enable nuclear stopping
- Strong step limitation for MSC
- Enabled fluorescence for the photoelectric and the Compton scattering processes

Constructor	Components	Comments
G4EmStandardPhysics_option3	Urban MSC model for all charged particles (FTFP_BERT_EMY)	Considered for simulation of proton/ion therapy
G4EmStandardPhysics_option4	GS MSC model in "error free" configuration, Penelope ionisation, Livermore gamma processes (FTFP_BERT_EMZ)	The most accurate EM physics
G4EmLivermorePhysics	GS MSC model in "error free" configuration, Livermore gamma and e- ionisation models (FTFP_BERT_LIV)	Recommended for cross-checks of option4
G4EmPenelopePhysics	GS MSC model in "error free" configuration, Penelope gamma and e [±] ionisation and bremsstrahlung models (FTFP_BERT_PEN)	Recommended for cross-checks of option4

EM Physics Constructors for testing of new models

- Experimental and special physics constructors
 - G4EmStandardPhysicsSS single scattering instead of MSC
 - G4EmLowEPPhysics test new polarized models
 - G4EmLivermorePolarized test of linear polarized gamma transport

•

• Extra experimental constructors are available in Geant4 examples

USER INTERFACE TO EM PHYSICS

Geant4 EM physics

EM parameters

- EM parameters of any EM physics list may be modified at initialization of Geant4 using C++ interface to the G4EmParameter class or via UI commands
- Example of interfaces of G4EmParameters:
 - SetMuHadLateralDisplacement()
 - SetMscMuHadRangeFactor()
 - SetMscMuHadStepLimitType()
- Corresponding UI commands:
 - /process/msc/MuHadLateralDisplacement
 - /process/msc/RangeFactorMuHad
 - /process/msc/StepLimitMuHad
- Some other UI commands:

. . . .

- /process/em/deexcitationIgnoreCut true
- /process/eLoss/UseAngularGenerator true
- /process/em/lowestElectronEnergy 50 eV
- /process/em/lowestMuHadEnergy 100 keV

User Interfaces and Helper Classes

- Geant4 UI commands to define cuts and other EM parameters
- G4EmCalculator
 - easy access to cross sections and stopping powers (TestEm0)
- G4EmParameters
 - C++ interface to EM options alternative to UI commands
- G4EmSaturation
 - Birks effect (satuaration of response of sensitive detectors)
- G4ElectronIonPair
 - sampling of ionisation clusters in gaseous or silicon detectors
- G4EmConfigurator
 - add models per energy range and geometry region
- G4NIELCalculator
 - Helper class allowing computation of NIEL at a step, which should be added in user stepping actions or sensitive detector (TestEm1)

How to extract Physics ?

- Possible to retrieve Physics quantities using a G4EmCalculator object
- Physics List should be initialized
- Example for retrieving the total cross section of a process with name procName, for particle and material matName

```
#include "G4EmCalculator.hh"
...
G4EmCalculator emCalculator;
G4Material* material =
```

```
G4NistManager::Instance()->FindOrBuildMaterial(matName);
G4double density = material->GetDensity();
G4double massSigma = emCalculator.ComputeCrossSectionPerVolume
(energy, particle, procName, material)/density;
G4cout << G4BestUnit(massSigma, "Surface/Mass") << G4endl;
```

• A good example: \$G4INSTALL/examples/extended/electromagnetic/TestEm0 Look in particular at the RunAction.cc class

SPECIAL EM TOPICS

Geant4 EM physics

CERN

- Special EM models can be set to be used only for a given G4Region
 - Example to use Geant4-DNA physics inside a detector region on the top of the standard physics
- the G4EmConfigurator can be used to add Geant4-DNA models
 - the DNA models are used only in the region B. for energies below 10 MeV
- makes possible CPU and physics performance optimisation
 - the more accurate CPU intense simulation is done only in the region of interest
- UI commands are available for configuration of some models per-region on the top of any EM constructor
 - /process/em/AddPAIRegion proton MYREGION pai
 - /process/em/AddMicroElecRegion MYREGION
 - /process/em/AddDNARegion MYREGION opt0

Quantum entanglement in positron annihilation

(arXiv: 2012.04939v1)

GEANT4

THANK YOU

Geant4 EM physics