
Geant4
Visualisation:
User drawing
from C++

Wednesday 16 October 2024
John Allison Geant4 Advanced Course 2024.

Drawing
1

USER
DRAWING
(FROM C++
CODE)

• The Draw methods of the

vis manager

• Restrictions and limitations

• User vis actions

• Treated like a model—

refreshed as required

• Draw method of

trajectories

• Draw methods of hits and

digis

Wednesday 16 October 2024
John Allison Geant4 Advanced Course 2024.

Drawing 2

The Draw methods
• The user interacts with the vis manager through the abstract interface G4VVismanager in the low level library graphics_reps.

• It has many Draw methods—18 at the last count—for different types

• Also DrawGeometry

• The header files are copiously commented

• They must be protected by validating
the pointer to the vis manager

• G4VVisMananger::GetConcreteInstance()

• There might be no vis manager

• But your code will still compile

• This is also used to switch vis off

• They are inhibited if called from a worker thread
in multithreaded mode (e.g., stepping action)

• So use Serial mode if you want to draw during a run

• But you can add trajectories and hits to the scene,
and write user vis actions (next slide), even in
Multithreading/Tasking mode, or write your
own Draw methods of the trajectory or hits classes

• This is because the vis manager then can control when to draw

• Optional Begin/EndDraw methods
can improve speed

Wednesday 16 October 2024
John Allison Geant4 Advanced Course 2024.

Drawing
3

// Draw methods for Geant4 Visualization Primitives, useful
// for representing hits, digis, et
virtual void Draw (const G4Circle&,
const G4Transform3D& objectTransformation = G4Transform3D()) = 0;

...
virtual void Draw2D (const G4Polyline&,
const G4Transform3D& objectTransformation = G4Transform3D()) = 0;

...
// Draw methods for Geant4 Objects as if they were Visualization
// Primitives. Note that the visualization attributes needed in
// some cases override any visualization attributes that are
// associated with the object itself - thus you can, for example,
// change the colour of a physical volume.
virtual void Draw (const G4VTrajectory&) = 0;
virtual void Draw (const G4VHit&) = 0;
virtual void Draw (const G4VDigi&) = 0;
virtual void Draw (const G4LogicalVolume&, const G4VisAttributes&,
const G4Transform3D& objectTransformation = G4Transform3D()) = 0;

virtual void Draw (const G4VPhysicalVolume&, const G4VisAttributes&,
const G4Transform3D& objectTransformation = G4Transform3D()) = 0;

...
virtual void DrawGeometry

(G4VPhysicalVolume*, const G4Transform3D& t = G4Transform3D());
// Draws a geometry tree starting at the specified physical volume.

G4VVisManager* pVVisManager = G4VVisManager::GetConcreteInstance();
if (pVVisManager) {

User vis actions

• /examples/extended/vi

sualization/userVisActio

n

Wednesday 16 October 2024
John Allison Geant4 Advanced Course 2024.

Drawing
4

G4VisManager* visManager = new G4VisExecutive;
// Register User Vis Action with optional extent
visManager->RegisterRunDurationUserVisAction(
"My nice logo", new UVA_VisAction,
G4VisExtent(-20 * cm, -10 * cm, -25 * cm, -15 * cm, 20 * cm, 40 * cm));

visManager->Initialize();
#ifndef UVA_VISACTION_HH
#define UVA_VISACTION_HH
#include "G4VUserVisAction.hh"
class UVA_VisAction : public G4VUserVisAction
{

virtual void Draw();
};
#endif

void UVA_VisAction::Draw()
{

G4VVisManager* pVisManager = G4VVisManager::GetConcreteInstance();
if (pVisManager) {

// A simple logo...
G4Orb orb("my_logo_orb", 5 * cm);
G4Box box("my_cut_box", 5 * cm, 5 * cm, 5 * cm);
G4SubtractionSolid logo("my_logo", &orb, &box, G4Translate3D(-3 * cm, 3 * cm, 3 * cm));
G4VisAttributes va1(G4Colour::Red());
va1.SetForceSolid(true);
pVisManager->Draw(logo, va1, G4Translate3D(-15 * cm, -20 * cm, 25 * cm));

G4Text text("My beautiful logo");
G4VisAttributes va2(G4Colour::Magenta());
text.SetVisAttributes(va2);
text.SetScreenSize(12.);
pVisManager->Draw(text, G4Translate3D(-16 * cm, -18 * cm, 25 * cm));

}
}

User vis actions (contd)

• Each user vis action gets

turned into a model

• Demo

• User vis actions are

better than using direct

draw methods

• They are automatically re-

drawn as required

• They can be refreshed

• Opened with any driver

• Including file writing drivers (to

get a pdf, etc.)

Wednesday 16 October 2024
John Allison Geant4 Advanced Course 2024.

Drawing
5

https://indico.cern.ch/event/1419928/contributions/6151941/attachments/2948684/5182563/User%20vis%20action.mov

User vis actions (contd)

• DrawGeometry can be

used in a vis action

• Do as much as you can in

the constructor (once and

for all)

• Note: this is part of

/examples/extended/visual

ization/

standalone

• See next slide

Wednesday 16 October 2024
John Allison Geant4 Advanced Course 2024.

Drawing
6

DrawGeometryVisAction::DrawGeometryVisAction()
{
// Get a physical volume from your detector construction
fDetectorConstruction = new B1::DetectorConstruction();
fPhysicalVolume = fDetectorConstruction->Construct();
// Give this an overall transform to avoid clash with other vis
// action(s) in this case
fTransform = G4Translate3D(-20 * cm, 20 * cm, 0);
G4PhysicalVolumeModel pvModel(fPhysicalVolume);
fExtent = pvModel.GetExtent();
fExtent.Transform(fTransform);

}

DrawGeometryVisAction::~DrawGeometryVisAction()
{delete fDetectorConstruction;}

void DrawGeometryVisAction::Draw()
{
G4VVisManager* pVisManager = G4VVisManager::GetConcreteInstance();
if (pVisManager) {
pVisManager->DrawGeometry(fPhysicalVolume, fTransform);

}
}

Standalone

• For debugging

geometry you can

build an app without

a run manager and

all its required

accompaniments

(physics lists, etc.)

• Useful when run

initialization (physics

tables, etc.) takes a

long time

• E.g., medical examples

• ICRP examples have a

standalone version

Wednesday 16 October 2024
John Allison Geant4 Advanced Course 2024.

Drawing
7

int main(int argc, char** argv)
{
G4UIExecutive* ui = new G4UIExecutive(argc, argv);
G4VisManager* visManager = new G4VisExecutive;
visManager->Initialize();

auto standaloneVisAction = new StandaloneVisAction;
visManager->RegisterRunDurationUserVisAction
("A standalone example - 3 boxes, 2 with boolean subtracted cutout",
standaloneVisAction,
G4VisExtent(-10 * cm, 10 * cm, -10 * cm, 10 * cm, -10 * cm, 10 * cm));

auto geometryVisAction = new DrawGeometryVisAction;
visManager->RegisterRunDurationUserVisAction
("A detector geometry", geometryVisAction,
geometryVisAction->GetVisxtent());

G4UImanager::GetUIpointer()->ApplyCommand("/control/execute standalone.mac");
ui->SessionStart();

delete geometryVisAction;
delete standaloneVisAction;
delete visManager;
delete ui;

}

Trajectory drawing

• Trajectories have a draw method, DrawTrajectory()

• The default implementation dispatches the

trajectory to the vis manager so that it can

use the provided modeling and filtering

• But, if you write your own trajectory class, you can override with your own

DrawTrajectory()—see examples/extended/runAndEvent/RE01

Wednesday 16 October 2024
John Allison Geant4 Advanced Course 2024.

Drawing
8

void G4VTrajectory::DrawTrajectory() const {

...

pVVisManager->DispatchToModel(*this);

Hit and digi drawing

• G4VHit::Draw() and G4VDigi::Draw()

• Empty default functions

• The user may provide in the concrete derived class

• The vis manager will draw on request

• /vis/scene/add hits

• /vis/scene/add/digis

• The user may also provide GetAttDefs() and CreateAttValues()

Wednesday 16 October 2024
John Allison Geant4 Advanced Course 2024.

Drawing
9

End of Drawing from C++

Wednesday 16 October 2024
John Allison Geant4 Advanced Course 2024.

Drawing
10

