

SMAUG 2 – HRMT Users Day

Anthony Harrison, Jose A. F. Somoza

02/12/2024

Overview

- Background to experiment
 - HRMT#26
 - HRMT#59 SMAUG (1)
 - HRMT#62 Baby SMAUG (1.5) (Parasitic experiment)
- HRMT#66 SMAUG (2)
 - Experiment overview
 - Experimental results & observations
- Conclusion

HiRadMat Facility

02/12/2024

HiRadMat Facility (High-Radiation to Materials)

High-intensity proton LHC-like beam pulses with adjustable beam parameters are delivered to the facility which can be focused onto three experimental tables

Background

Motivation: Failure of two Beryllium windows in HiRadMat 2021 – windows were not studied at higher LIU intensities. After ~50 high brightness beam shots each

Beryllium PF-60 with niobium coating (0.254mm)

- Beryllium originally selected due low Z properties.
- High transparencies with respect to the proton beam.
- ✓ Good mechanical properties
- Toxic material
- Difficult to procure

Fracture propagates from air side to vacuum side.

Crack develops in the direction of the rolled structure.

Temporary solution to displace vacuum window by 1.5 m upstream to reduce beam brightness

HRMT #26 - Glassy Carbon study

- Development of material for vacuum structures including beam windows
- Maximum beam shot intensity = 3.7e⁺¹³ p (for 5x shots), optics from sigma 2mm to sigma 0.25mm.
- Maximum energy deposition density of 4.1kJ/mm³

SMAUG 1 recap

- Study of beam windows material.
- Maximum beam spot intensity = 4.6e⁺¹³ p (for 50x shots), optics of sigma 0.35 mm.
- Maximum energy deposition density of 3.8kJ/mm³

Experimental position	Window #	Material	Thickness (mm)
1	GC #03	Glassy carbon	2
2	GC #04	Glassy carbon	2
3	PF-60 #01	Beryllium PF-60	0.254
4	S-200-FH #01	Beryllium S-200-FH	3
5	I-200-H #01	Beryllium I-220-H	3
6	S-200-FH #02	Beryllium S-200-FH	3
7	GC #05	Glassy carbon	2
8	GC #02	Glassy carbon	2

- Optical microscopy: clear marks at shots 2, 4 & 6 on Glassy Carbon and Be alloyed sample; clear marks of point 4 and 6 on PF-60.
- SEM confirms no cracks initiation and propagation.
- Glassy Carbon windows installed during TT66 YETS23 (HRM-V-EC-0002)

# spot	Beam size	Brightness FP2 [p+/mm²]	# shots at 288 bunches
1	0.5	9.2E ⁺¹³	5
2	0.5	9.2E ⁺¹³	50
3	0.35	1.4E ⁺¹⁴	5
4	0.35	1.4E ⁺¹⁴	50
5	0.35	1.8E ⁺¹⁴	5
6	0.35	1.8E ⁺¹⁴	50

SMAUG 1.5 recap

- Si_3N_4 . (6mm x 6mm 1µm membrane)
- Glassy Carbon (Ø80mm x 2mm)
- Maximum energy deposition density of 6.0kJ/mm³
- Both glassy carbon and Si₃N₄ leak tight
- Indentation visible after venting Si₃N₄. No observed damage on glassy carbon

Total number of protons on single site $= 5.94E^{+15}$

SMAUG 2 concept

- Continued testing of materials for proton beam physics.
- Higher beam intensities.
- Six individual test sites:
 - Positions 1 & 2 to recreate the same conditions as failure \geq of beryllium PF-60 TT66 windows
 - Positions 3 & 4 to offset beam train frequency to analyze \geq Si_3N_4 'wave'.
 - Positions 5 & 6 maximum beam intensity to test the limits \geq of all windows - Beryllium/Si3N4/Glassy Carbon.

Window	Material	Supplier	Geometry
1	Si ₃ N ₄	Silson Ltd.	1µm thick membrane, 6 windows 6mmx6mm
2	Glassy Carbon Sigradur G®	HTW GmbH	2mm Ø80 disc (beam aperture Ø60mm)
3	Beryllium PF-60	Materion	0.25mm diffusion bonded to DN63CF flange
4	Beryllium S-200-FH	Materion	3mm Ø80mm disc (beam aperture Ø60mm)
5	Beryllium I-220-H	Materion	3mm Ø80mm disc (beam aperture Ø60mm)
6	Beryllium PF-60	Materion	0.25mm diffusion bonded to DN63CF flange
7	Si ₃ N ₄	Silson Ltd	1µm thick membrane, 6 windows 6mmx6mm
8	Glassy Carbon Sigradur G ®	HTW GmbH	2mm Ø80 disc (beam aperture Ø60mm)

Safety file

SMAUG 2 design

- 8 windows 4 vacuum chambers and 3 HELIOX chambers.
 - HELIOX tracer gas He 80%, O2 20%. Monitoring with leak detector.
- 6 test spots horizontal motion table.
- PLC automated valve control.
- All windows individually tested before final assembly.

Beam direction

Fiducialisation at surface (BA7) before plug and play in TNC.

HELIOX 3

Vacuum 4

Si3N4 window with 6 individual sites (spots), membrane glued to S/steel plate

Vacuum 1

Vacuum 3

Pulse List & FLUKA

	Position	Shots	Bunches	Beam size [µm]	Brightness FP2 [E ⁺¹⁴ p+/mm ²]
Case 1	Spot 1	5	288	0.4 x 0.4	1.08
	Spot 2	50	288	0.4 x 0.4	1.08
Case 2	Spot 3	1	144	0.25 x 0.25	1.90
	Spot 4*	1	144	0.25 x 0.25	1.90
Case 3	Spot 5	5	288	0.25 x 0.25	2.76
	Spot 6	50	288	0.25 x 0.25	2.76

*increased train spacing – frequency shift

*FLUKA data pre-experiment - to be updated from TWISS

02/12/2024

Experimental week

Shot position	No. pulses	Optics [µm]	Average intensity	Total intensity	
1	5	0.4 x 0.4	3.48e+13	1.74e+14	
2	50	0.4 x 0.4	3.52e+13	1.76e+15	
3	1	0.25 x 0.25		2.99e+13	
4[1]	1	0.25 x 0.25		2.97e+13	
5[2]	5	0.25 x 0.25	5.55e+13	2.78e+14	
6 ^[3]	51	0.25 x 0.25	5.48e+13	2.80e+15	
[1]Pulse 4 = 7µs spacing		Total number of protons sent to experiment: 5.18E+15			

Pulse list achieve in 2 days – thanks the outstanding efforts of SPS Operations and BE-EA

Post experiment observations

- Disassembly in 867/R-P48 bunker.
- Leak detection of assembly and individual windows.
- Observations:

Gafchromic film shows focused beam upstream and divergence downstream

Window #1 Si_3N_4 – spots 5 & 6 broken

Window #2 GC – spots 5 & 6 beam traces

Window #4 & #5 Be no beam traces

Window #3 PF-60 – window broken by vacuum forces.

Clean-up in accordance with HRM-V-SYP-0001 and HSE expert

Analysis Si₃N₄

Window #1

- Maximum energy deposition density of 9.46 kJ/mm³
- 1st shot at higher intensity broke window
- Deposition of Gafchromic on spots #3 & #4

Window #7

- No damage
- Maximum energy deposition density of 7.2 kJ/mm³

*FLUKA data pre-experiment – to be updated from TWISS

Analysis Si₃N₄

Window #1

- Spot #3 rear, interferometer measurements no significant surface deflection.
- Surface roughness from Gafchromic deposition.

Measurements of SMAUG 1.5 Si_3N_4 window still to be performed

02/12/2024

Analysis Glassy Carbon

Window #2

- Maximum energy deposition density of 6.0kJ/mm³
- Craters observered on front face and rear face on spots #5 & #6.

Window #8

- Maximum energy deposition density of 3.9kJ/mm³
- No damage
- Deposition of Gafchromic on spots #5 & #6

*FLUKA data pre-experiment – to be updated from TWISS

Analysis Glassy Carbon

Window #2

- Maximum energy deposition density of 6.0kJ/mm³
- Higher sublimation rate seen on the rear of the window

Window #2		ΔΖ [µm]	ΔX [µm]	ΔY [µm]
Spot #5	Front	0.21	459	444
	Rear	0.35	582	537
Spot #6	Front	1.60	672	581
	Rear	3.29	728	631

Initial analysis indicate a sublimation rate of 3mg/shot (rear side at brightness 2.77E⁺¹⁴ p⁺/mm²)
Advanced interferometer measurement techniques still to be performed.

Analysis beryllium PF-60

Window #3

- Leak developed with high intensity beam
 - 19th shot 4.3e⁻⁶ mbar·I·s⁻¹
 - 20th shot 2.6e⁻⁵ mbar·l·s⁻¹
 - 21st shot 6.4e⁻⁵ mbar·I·s⁻¹
 - 22nd shot 1.3e⁻⁴ mbar·I·s⁻¹ vacuum valve closed
 - Window broken due to vacuum forces
- Maximum energy deposition density of 6.5kJ/mm³

Window #6

• Leak tight (Q_{BG} <1e⁻¹⁰ mbar·l·s⁻¹).

*FLUKA data pre-experiment - to be updated from TWISS

- Beam impact visible believed to be due to chemical composition change.
- Maximum energy deposition density of 5.3kJ/mm³

Window #6 Spot #6

Next steps...

- FLUKA update to include focal point offset from BTV measurements (TWISS data).
- Interferometer measurements of Si_3N_4 from SMAUG 1.5.
- Continued studies of Si₃N₄ for Muon Collider application.
- Two papers planned:
 - SMAUG experiments
 - Si₃N₄ for Muon Collider applications

• SMAUG 3...?

Conclusions

- Glassy Carbon is outperforming the original beryllium PF-60 material.
- Sublimation rate of GC in the region of 3mg/shot at Beam Brightness levels of 2.77E⁺¹⁴ p⁺/mm^{2*}
- Si₃N₄ performing above simulated expectations. The ripples (SMAUG 1.5) caused by plastic deformation causing a 'bubble'.
- PF-60 failure due to fatigue from high intensity beams

*to be confirmed after advanced TWISS analysis and FLUKA update

Aknowledgements

- Thanks
- Merci
- Ευχαριστώ
- Grazie
- Takk
- Gracias

TE-VSC: J. Somoza, A. Gutierrez, X. Sax, M. Morrone, V. Giovinco, F. Santangelo, A. Vassallo CERN wide: N. Charitonidis, A. Goillot, A. Ebn Rahmoun, N. Solieri, A. Lund, A. T. Perez Fontenla, B. Descargues, E. Soria, F. Philippon, D. Manousou, SPS Operations Team.

Spare slides

Initial observations – Gafchromic film

All 6 Pulse sites clearly visible and represent beam intensities

Round beam trace upstream, indicating more focused beam. Elliptical beam tract downstream – focal point of experiment was towards the front of the experiment

SMAUG 2 HRMT Users Day (A. Harrison)

02/12/2024

Case 1	From	То	Shots	Avg. total intensity	Std. dev.	%RSD	Avg. number of bunches	Avg. bunch intensity
Pre shots	01/07/24 17:22:25	01/07/24 17:27:49	5	3.483E+11	2.734E+11	0.79	288 (constant)	1.505E+11
Experiment	24-07-01 17:54:49	24-07-01 18:44:19	50	3.519E+11	2.326E+11	0.66	288 (constant)	1.521E+11
Case 2	From	То	Shots	Avg. total intensity	Std. dev.	%RSD	Avg. number of bunches	Avg. bunch intensity
Experiment	24-07-02 11:48:16	24-07-02 11:59:58	4	2.968E+13	2.353E+11	0.79	144 (constant)	2.061E+11
Case 3	From	То	Shots	Avg. total intensity	Std. dev.	%RSD	Avg. number of bunches	Avg. bunch intensity
Pre shots	24-07-02 13:34:32	24-07-02 13:37:57	2	5.497E+13	3.885E+11	0.71	288 (constant)	1.909E+11
Leak observed in window 1, between sector 1 & 2								
Experiment	24-07-02 14:09:15	24-07-02 15:24:54	27	5.498E+13	5.277E+11	0.96	288 (constant)	1.910E+11
Experiment	24-07-02 16:49:22	24-07-02 17:54:21	28	5.490E+13	5.119E+11	0.93	288 (constant)	1.906E+11
Total	24-07-02 14:09:15	24-07-02 17:54:21	55	5.494E+13	5.258E+11	0.96	288 (constant)	1.9075E+11

Total number of protons sent to experiment: 5.18E+15

Window #1 Si₃N₄ #2

Vacuum failed

Pulses #1 & #2 - No visible impact marks

Pulses #3 & #4 - Impact mark can be seen

Pulse #5 – Failed after 1st Pulse Pulse #6 – Failed (probably 1st Pulse but unable to verify)

Window #1 Si₃N₄ #2

Vacuum failed

Pulses #1 & #2 - No visible impact marks

Pulses #3 & #4 - Impact mark can be seen

Pulse #5 – Failed after 1st Pulse Pulse #6 – Failed (probably 1st Pulse but unable to verify)

Window #2 Glassy Carbon #8

Window leak tight

Pulses #1, #2, #3 & #4 – No visible impact mark

Pulse #5 – Barely visible impact mark on back face

Pulse #6 – Visible impact mark on back face

Window #3 PF-60 #2

Vacuum failed Pulse #6, leak rate increased in steps during each Pulse

- after 19 Shots $Q_{LR} = 4.3e^{-6} \text{ mbar} \cdot 1 \cdot s^{-1}$
- after 20 Shots $Q_{LR} = 2.6e^{-5} \text{ mbar} \cdot 1 \cdot s^{-1}$
- after 21 Shots $Q_{LR} = 6.4e^{-5}$ mbar·l·s⁻¹
- after 22 Shots $Q_{LR} = 1.3e^{-4}$ mbar·l·s⁻¹
- Vacuum chamber closed after shot #22

Inspection in 867/R-P48 found vacuum forces fully broke the PF-60 material

Window #4 S-200-FH #3

Window leak tight

Pulse #1, #2, #3, #4, #5 & #6 - No visible impact marks

Window #5 I-220-H #3

Window leak tight

Pulse #1, #2, #3, #4, #5 & #6 - No visible impact marks

Window #6 PF-60 #3

Window leak tight

Pulse #1, #2, #3, #4, #5 & #6 - No visible impact marks

Window #7 Si₃N₄ #3

Window leak tight

Pulse #1, #2, #3, #4, #5 & #6 - No visible impact marks

Window #8 Glassy Carbon #9

Window leak tight

Pulse #1, #2, #3 & #4 - No visible impact marks

Pulse #5 & #6 – Impact mark on back face (possibly from Gafchromic film?)

Downstream Gafchromic

All 6 Pulse sites clearly visible and represent beam intensities

Elliptical beam trace in horizontal plane, indicating more defocused beam

