Implementation of BDT and NM searches in Chec IATE

Krzysztof Rolbiecki (U. Warsaw)

Reinterpretation & OpenMAPP mini-workshop Grenoble, 17 – 20 June 2024

ATIONAL SCIENCE CENTRE

Contents

- NN example 1, <u>arxiv:2106.09609</u>, <u>SUSY-2019-04</u>
- NN example 2, <u>arXiv:2211.08028</u>, <u>SUSY-2018-30</u>
- Boosted decision tree, <u>arxiv:2010.14293, SUSY-2018-22</u>
- BDT example 2, <u>arXiv:2209.13935</u>, SUSY-2019-02

Examples available at https://github.com/CheckMATE2/checkmate2 but not yet merged into master branch

CheckMATE for recasting

- CheckMATE is a general tool for recasting arbitrary model
- Accepts events as .hepmc, .lhe; integration with Pythia and MadGraph
- based on Delphes for detector simulation
- using existing LHC searches calculates a limit on a given parameter point
- From SLHA file to the limit in one click
- one can easily constrain models that were not covered in the original ATLAS/CMS search
- Currently around 50 searches at 13 TeV coded, including 24 with full luminosity
- long-lived particles branch
- https://github.com/CheckMATE2/checkmate2

NN example arXiv: 2106.09609

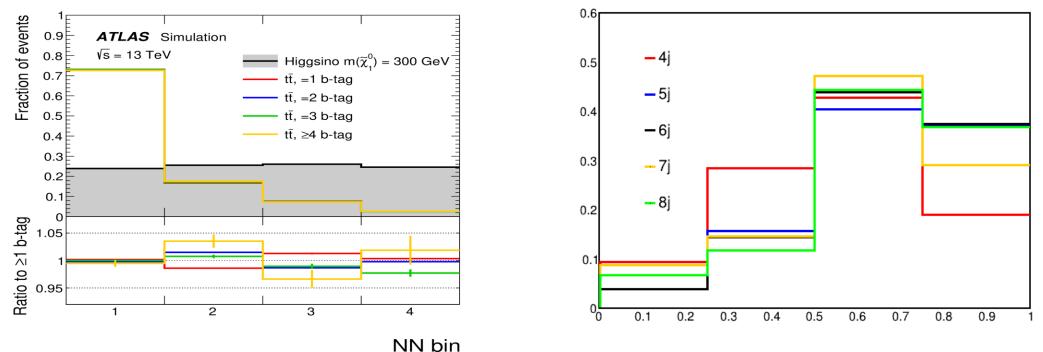
Arxiv:2106.09609

- Search for RPV-SUSY in final states with leptons and many jets (0 or 3 b-tagged)
- Signal regions count the number of jets with different pT thresholds; in general, 6-15 jets, at least 1 lepton
- Target: stops, gluino and EW higgsinos/winos
- EW signal: neutralino -> tbs; chargino -> bbs
- EW SR: 1 lepton, =6 jets, >=4 b-jets, NN discriminant
- NN released as ONNX files (in total 5, each for different jet multiplicity 4,5,6,7,8); unfortunately, very little information is provided

NN and CheckMATE implementation

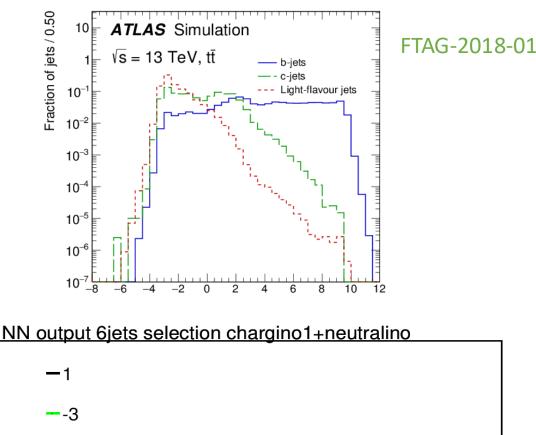
- Using ONNX Runtime, <u>https://onnxruntime.ai</u>
- C++ library, analysis is performed on the event-by-event basis

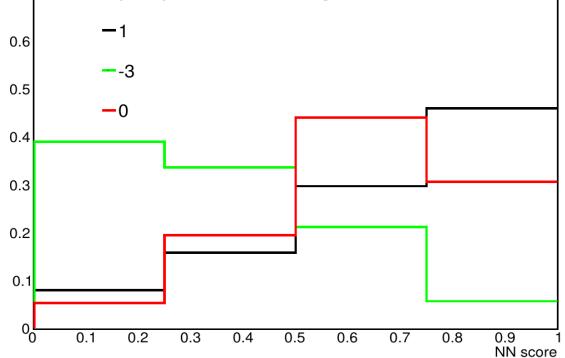
- NN has 65 inputs: jets energy, rapidity, azimuth; MET, b-jet multiplicity; distance between jets and leading lepton, etc; some highlevel combinations of jet momenta (as invariant masses);
- Problematic: b-tagging score for each jet based on DLR1 b-tagging algorithm (the pseudocode takes fixed values: 5 for b-jet; 1 for non-bjet)


Validation - cutflow

- Pretty much everything went wrong
- Clearly a problem with lepton id
- Too few events with high jet multiplicity
- After b-tagging things look better
- After NN inference the results are somewhat random (not surprising after looking at the histogram)
- Perhaps a general problem with signal modelling

$\tilde{\chi}_{1,2} \to tbs$	ATLAS	CheckMATE
All	14491	14491
Lead lep $p_T > 27 \text{ GeV}$	5413	3304
==4 jets	681	549
== 5 jets	1101	766
== 6 jets	1188	734
$==7~{ m jets}$	840	466
$== 8 ext{ jets}$	420	186
$== 4 \text{ jets}, \ge 4 \text{b}$	7	5.4
$== 5 \text{ jets}, \ge 4 \mathrm{b}$	29	33
$== 6 \text{ jets}, \ge 4 b$	57	43
$==7$ jets, $\geq 4b$	61	41
$== 8 \text{ jets}, \ge 4 \mathrm{b}$	39	21
NN_{4j} bin 4	2.9	0.7
NN_{5j} bin 4	8.7	6
NN_{6j} bin 4	17.4	11
NN_{7j} bin 4	18.9	19
NN_{8j} bin 4	14.5	10


Validation


- Cutflows do not seem very useful; compare figures of NN output (unclear definitions of "bins" though)
- ATLAS distribution flat for signal
- Should be insensitive to b-tag, but it's not apparent in recast (e.g. large variation when using different ad-hoc b-tag scores)

Comparison for light jets

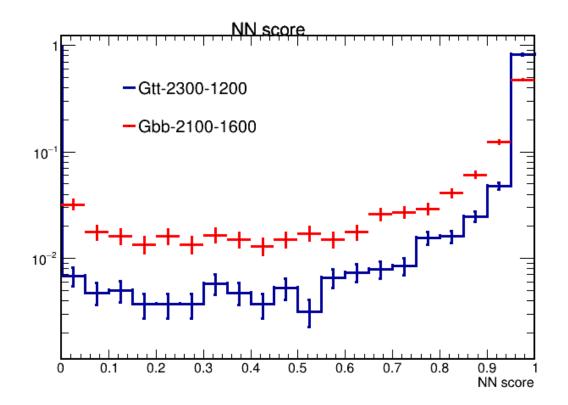
- Jets are assigned a score using a BDT tagger
- In recast we take ad-hoc values following SimpleAnalysis snippet
- The result seems to be very sensitive for reasonable choices of tagging score
- -1 seems to reproduce ATLAS better than 0 from SimpleAnalysis



Another NN example arXiv: 2211.08028

arXiv: 2211.08028

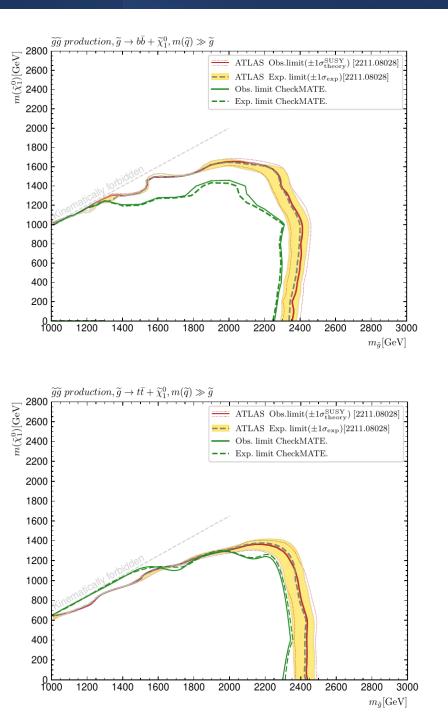
- Search for gluinos decaying to 3rd generation quarks
- Final state: at least 4 jets, at least 3 b-tagged jets, MET, 0-1 leptons (more allowed in NN analysis)
- 8 NN signal regions: 4 for gluino decaying to top pair and 4 for gluino decaying to bottom pair (still it is one net)
- The choice of the desired SR is via the last three inputs (I.e. decay type, and target masses)
- The NN has 87 input parameters: jet (small and large R) momenta, lepton momenta, MET and b-tag category (binary)
- The output gives separate background and signal probabilities


Validation

- Reasonable agreement across all channels
- The efficiency somewhat lower but similar and consistent effect also seen for cut-andcount analysis
- This is still a preprint so not too much material for comparison and testing was rather quick (nothing changed actually)

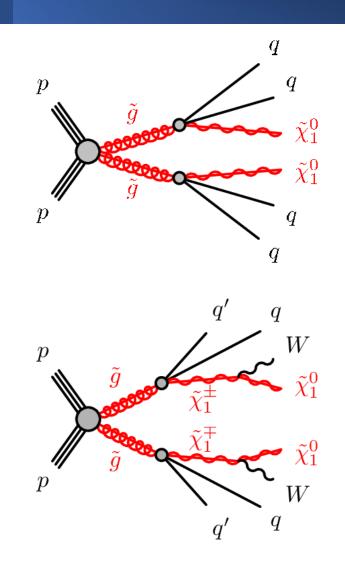
	ATLAS	CheckMATE			
Gtt selection					
Common rquirem.	7.66	7.30			
SR-Gtt-2100-1	2.63	1.94			
SR-Gtt-1800-1	2.80	2.11			
SR-Gtt-2300-1200	2.95	2.62			
SR-Gtt-1900-1400	0.19	0.27			
Gbb selection					
Common rquirem.	80	65			
SR-Gbb-2800-1400	22	14			
SR-Gbb-2300-1000	21	14			
SR-Gbb-2100-1600	6.20	6.80			
SR-Gbb-2000-1800	0.19	0.58			

NN output comparison


- True signal is Gtt $m_{gluino} = 2400$, $m_{neut} = 1000$
- Target signal for Gtt-2300-1200
- Less compatible with Gbb as it should be
- The last bin pronounced for Gbb but the cutoff is at 0.9993 so the acceptance is actually very low
- No figures from ATLAS for comparison

Validation

- Reasonable agreement (within 30%) for bsquarks
- Disagreement mainly due to b-tagging efficiency (not specifically tuned)


Better yet for t-squarks (note a complicated final state)

Boosted Decision Tree example

arXiv: 2010.14293

- Search for squarks and gluinos
- Final state: 2-6 jets + MET
- Principal variables: m_{eff} , leading jet pT and MET
- Multi-bin signal regions
- 8 boosted decision tree SRs, targeting gluino production with direct and indirect decays
- BDT weights released as .xml files for using with ROOT Toolkit for Multivariate Data Analysis -- TMVA

Validation

- Generally excellent agreement
- Here example for modelindependent discovery channels
- See Iñaki's talk for details of multi-bin fits and validation
- Full note:

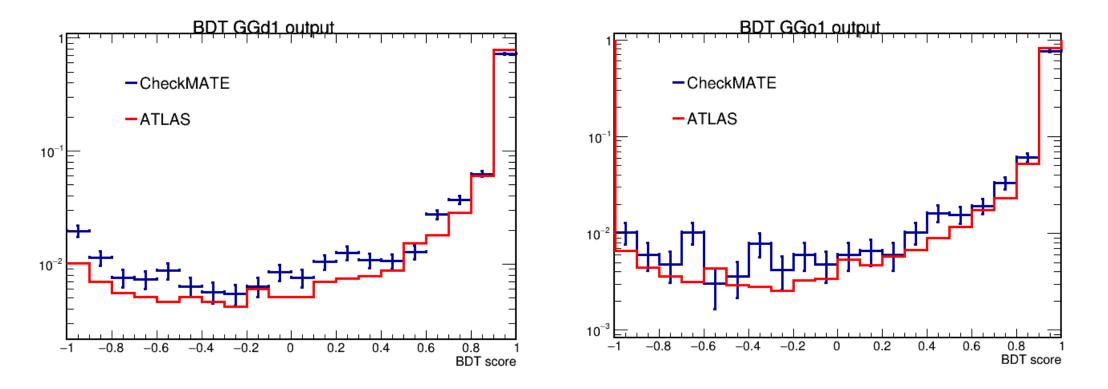
checkmate.hepforge.org

	Selection	$\begin{array}{l} m_{\tilde{q}} = 1200 \ \text{GeV} \\ m_{\tilde{\chi}_1^0} = 600 \ \text{GeV} \end{array}$		$m_{\tilde{q}} = 1400 \text{ GeV}$ $m_{\tilde{\chi}_1^0} = 600 \text{ GeV}$		$m_{\tilde{q}} = 1600 \text{ GeV}$ $m_{\tilde{\chi}_1^0} = 400 \text{ GeV}$	
		ATLAS	СМ	ATLAS	\mathcal{CM}	ATLAS	CM
Generated MC	events	10000	10000	6000	10000	6000	1000
Common	Preselection, $E_{\rm T}^{\rm miss} > 300 {\rm GeV},$						
Requirements	$p_T(j_1) > 200 \text{ GeV}, m_{\text{eff}} > 800 \text{ GeV}$	1763	1780	541	546	174	176
	jet multiplicity ≥ 2	1763	1780	541	546	174	176
	Cleaning cuts	1746	-	535	—	173	–
SR-2j-1600	$\Delta \phi(j_{1,2,(3)}, E_{\rm T}^{\rm miss}) > 0.8$	1433	1434	431	433	136	139
	$\Delta\phi(j_{i>3}, E_{\rm T}^{\rm miss}) > 0.4$	1377	1353	411	410	129	130
	$p_T(j_2) > 250 \text{ GeV}$	853	850	311	310	111	112
	$ \eta(j_{1,2}) < 2.0$	836	832	306	305	109	110
	$E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{H_T} > 16 \ \mathrm{GeV}^{1/2}$	568	554	228	227	86.4	87.
	$m_{\rm eff}({\rm incl.}) > 1600 {\rm ~GeV}$	366	362	202	195	83.5	84.
SR-2j-2200	$\begin{array}{l} \Delta\phi(j_{1,2,(3)}, E_{\rm T}^{\rm miss}) > 0.4 \\ \Delta\phi(j_{i>3}, E_{\rm T}^{\rm miss}) > 0.2 \end{array}$	1603	1619	483	492	156	158
	$\Delta\phi(j_{i>3}, E_{\rm T}^{\rm miss}) > 0.2$	1567	1566	470	476	151	15
	$p_T(j_1) > 600 \text{ GeV}$	509	514	269	259	120	121
	$E_{\rm T}^{\rm miss} / \sqrt{H_T} > 16 \ {\rm GeV}^{1/2}$	337	339	201	188	94.6	95.
	$m_{\rm eff}({\rm incl.}) > 2200 { m ~GeV}$	101	96	108	101	76.1	76.4
SR-2j-2800	$\Delta \phi(j_{1,2,(3)}, E_{\mathrm{T}}^{\mathrm{miss}}) > 0.8$	1433	1434	431	433	136	138
	$\Delta \phi(j_{i>3}, E_{\rm T}^{\rm miss}) > 0.4$	1377	1352	411	410	129	130
	$p_T(j_2) > 250 \text{ GeV}$	853	850	311	311	111	112
	$ \eta(j_{1,2}) < 1.2$	655	653	235	239	82.3	84.
	$E_{\rm T}^{\rm miss} / \sqrt{H_T} > 16 \ {\rm GeV}^{1/2}$	439	433	173	178	64.6	66.
	$m_{\rm eff}({\rm incl.}) > 2800 {\rm ~GeV}$	15.6	10.5	18.8	15.1	29.1	27.

BDT input

Input variables	GGd1	GGd2	GGd3	GGd4	
$E_{\rm T}^{\rm miss}$ [GeV]	•	•			
$p_{\mathrm{T}}(j)$ [GeV]	$p_{\mathrm{T}}(j_1), p_{\mathrm{T}}(j_2), p_{\mathrm{T}}(j_3), p_{\mathrm{T}}(j_4)$				
$\eta(j)$	$\eta(j_1),\eta(j_2),\eta(j_3),\eta(j_4)$				
Aplanarity	• –			—	
$m_{\rm eff}$ [GeV]	•				
Total number of input variables	11	10	11	10	

Input variables	GG01	GGo2	GGo3	GGo4	
$E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]		_		•	
$p_{\mathrm{T}}(j)$ [GeV]	$p_{\mathrm{T}}(j_1), p_{\mathrm{T}}(j_2), p_{\mathrm{T}}(j_3),$	$p_{\mathrm{T}}(j_1), p_{\mathrm{T}}(j_2),$	$p_{\mathrm{T}}(j_1), p_{\mathrm{T}}(j_2), p_{\mathrm{T}}(j_3),$	$p_{\mathrm{T}}(j_1), p_{\mathrm{T}}(j_2),$	
	$p_{ m T}(j_4), p_{ m T}(j_5)$	$p_{ m T}(j_3), p_{ m T}(j_4)$	$p_{\rm T}(j_5), p_{\rm T}(j_6)$	$p_{\rm T}(j_3), p_{\rm T}(j_4)$	
$\eta(j)$	$\eta(j_1), \eta(j_2), \eta(j_3),$	$\eta(j_1),\eta(j_2),$	$\eta(j_1),\eta(j_2),\eta(j_3),$	$\eta(j_1),\eta(j_2),$	
	$\eta(j_4),\eta(j_5)$	$\eta(j_3),\eta(j_4)$	$\eta(j_5),\eta(j_6)$	$\eta(j_3),\eta(j_4)$	
Aplanarity	• –				
$m_{\rm eff}$ [GeV]					
Total number of input variables	12	10	12	10	

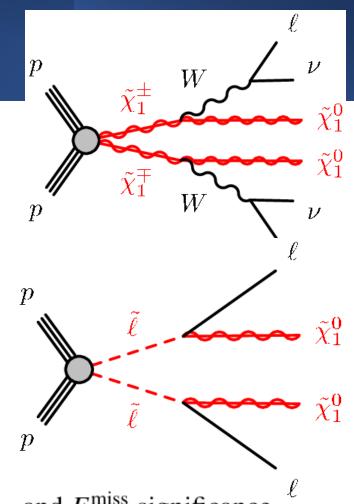

BDT validation

- Each SR targets direct gluino decays for specific range in $\Delta m = m_g m_{neut}$
- GGd1: Δm = 1600-1900 GeV
- GGd2: Δm = 1000-1400 GeV
- GGd3: ∆m = 600-1000 GeV
- GGd4: ∆m = 200-600 GeV
- Overall, very good agreement
- No specific exclusion contour to compare with

$m_{ ilde{g}} \ m_{ ilde{\chi}_1^0}$		00)0		00 00		00 00		00 00
	A	C	A	С	A	C	A	C
GGd1	14.1	12.5	7.04	5.5	5.5	4.2	3.0	3.0
GGd2	14.3	13.4	11.4	10.1	19.4	14.3	8.8	9.9
GGd3	14.4	14.1	14.4	13.8	71.7	62.0	49.1	43.7
GGd3	2.9	3.4	6.0	6.1	60.5	54.0	89.6	85.8

A = ATLAS; C = CheckMATE

BDT output comparison – preferred for validation

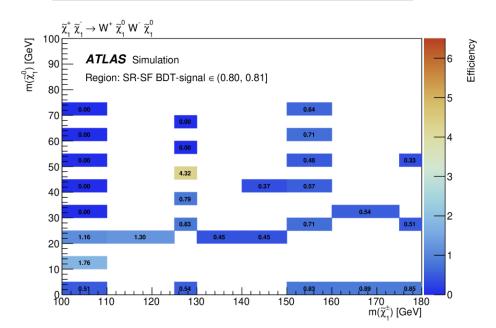


- Both signal regions show good agreement
- GGd1 = direct decay; GGo1 = one step decay

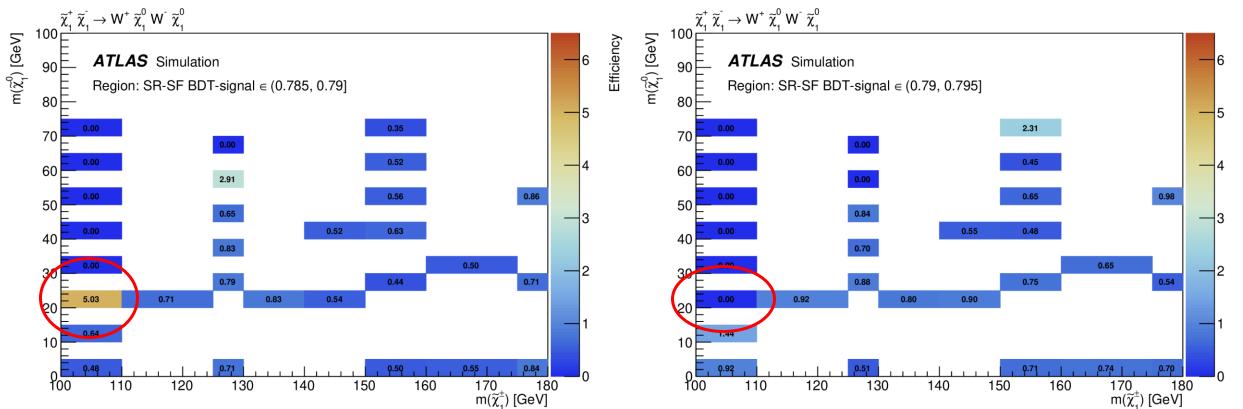
BDT example 2 <u>arXiv:2209.13935</u>

arXiv: 2209.13935

- Search for sleptons and charginos
- Final state: 2 leptons+MET, up to 1 jet
- BDTs for chargino signal (OJ SF/DF)
- Also multibin with BDT output but no likelihood :(
- And yet a new way of implementation and providing trees: this time using MVAUtils
- Variables for BDT: $m_{\ell\ell}$, $\Delta\phi_{\text{boost}}$, $\Delta\phi_{p_{\text{T}}^{\text{miss}},\ell_1}$, $\Delta\phi_{p_{\text{T}}^{\text{miss}},\ell_2}$, $\cos\theta_{\ell\ell}^*$, and $E_{\text{T}}^{\text{miss}}$ significance. $p_{\text{T}}^{\ell_1}, p_{\text{T}}^{\ell_2}, E_{\text{T}}^{\text{miss}}, m_{\text{T}2}^0$,

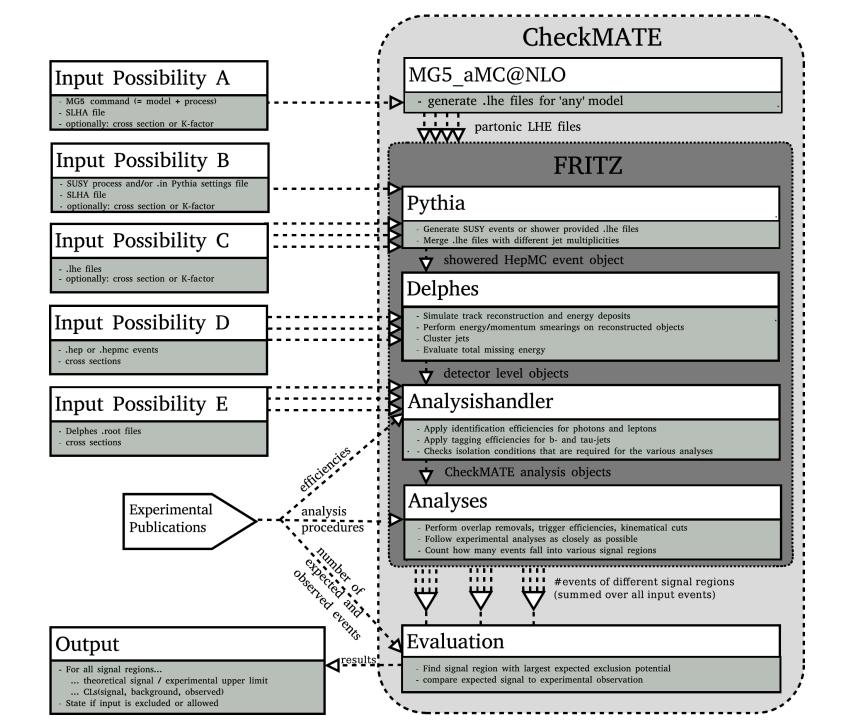

Validation pending

 Just one cutflow provided CM efficiency for BDT seems to be similar, but I suspect large sensitivity to MC details


- Efficiency maps for chargino signal bin-by-bin in BDT score distribution (moderately useful)
- Again, BDT distribution for benchmark models is not provided

To be continued...

$m\left(\tilde{\chi}_{1}^{\pm},\right) = (125,25) \ GeV$	Number of events
Total events	75711.3
Events with only 2 leptons, with $p_{\rm T} > 9 \; GeV$	16790.0
Events passing cleaning cuts	16788.8
Trigger & $p_{\rm T}^{\ell_1} > 27 \ GeV$	15053.2
$n_{ m jet} < 2$	12072.1
$m_{\ell\ell} > 11 \; GeV$	12020.2
Events with Opposite Sign leptons	11959.7
$E_{\rm T}^{\rm miss}$ significance > 8	2101.0
$m_{ m T2}^0 > 50 { m GeV}$	1564.2
$n_{\rm jet} = 0$	1026.5
Events with Same Flavour leptons	521.1
$m_{\ell\ell} < 76~GeV$ or $m_{\ell\ell} > 106~GeV$	427.8
BDT-signal ¿ 0.77	58.4
BDT-other ; 0.01	35.5
Events with Different Flavour leptons	505.4
BDT-signal ¿ 0.81	100.1


Some features in validations plots are difficult to understand

Efficiency

Conclusions

- Mixed experience with NN: one search is generally problematic the other one was pretty straightforward
- Analysis pseudocodes are invaluable for understanding details of inference
- Comparison with SimpleAnalysis would be super useful
- BDT implementation without problems, good agreement even at the detailed comparison for multijets
- Generally, histograms of BDT/NN scores for benchmark models would be strongly preferred for reasonable validation
- At the technical level we now have three different implementations...
- Will future searches be MVAUtils compatible?
- Outlook soon: reinterpretation studies of non-SUSY models MUED for start

