
1

ADL/CutLang  
developments

Documentation and references : cern.ch/adl

 Sezen Sekmen (Kyungpook Nat. U.)

for the ADL/CutLang team

Reinterpretation and OpenMAPP
mini-workshop

17-20 June 2024, LPSC Grenoble

Dec 2022

http://adl.web.cern.ch/index.html

Analysis Description Language (ADL) is a declarative domain specific language (DSL) that
describes the physics logic of a HEP analysis in a standard and unambiguous way.

• External DSL: Custom domain-specific syntax to express analysis-specific concepts. Reflects

conceptual reasoning of particle physicists. Focus on physics, not on programming.

• Declarative: Tells what to do but not how to do it.

• Easy to read: Clear, self-describing syntax; organized structure.

• Designed for everyone: experimentalists, phenomenologists, students, interested public…

ADL is framework-independent. Decouples physics information from software / framework details.  
—> Any framework recognizing ADL can perform tasks with it.

• Multi-purpose use: Can be automatically translated or incorporated into any language or

framework most suitable for a purpose, e.g. exp. analysis, (re)interpretation, queries, …

• Easy communication between groups: exp, pheno, referees, students, public.

• Easy preservation of analysis physics content.

Analysis Description Language

2

cern.ch/adl

http://adl.web.cern.ch/index.html

A very simple analysis example with ADL

#	OBJECTS

object	goodMuons

		take	muon

		select	pT(muon)	>	20

		select	abs(eta(muon))	<	2.4 
 
object	goodEles

		take	ele

		select	pT(ele)	>	20

		select	abs(eta(ele))	<	2.5 
 
object	goodLeps

		take	union(goodEles,	goodMuons) 
 
object	goodJets

		take	jet

		select	pT(jet)	>	30

		select	abs(eta(jet))	<	2.4

		reject	dR(jet,	goodLeps)	<	0.4

3

#	EVENT	VARIABLES

define	HT	=	sum(pT(goodJets))

define	MTl	=	Sqrt(2*pT(goodLeps[0])	*	MET*(1-cos(phi(METLV[0])	-	phi(goodLeps[0]))))

#	EVENT	SELECTION

region	baseline

		select	size(goodJets)	>=	2

		select	HT	>	200

		select	MET	/	HT	<=	1

region	signalregion

		baseline

		select	Size(goodLeps)	==	0

		select	dphi(METLV[0],	jets[0])	>	0.5

region	controlregion 
		baseline 
		select	size(goodLeps)	==	1

		select	MTl	<	120

ADL implementations of some LHC analyses: https://github.com/ADL4HEP/ADLLHCanalyses

#	EVENT	VARIABLES

define	HT	=	sum(pT(goodJets))

define	MTl	=	Sqrt(2*pT(goodLeps[0])	*	MET*(1-cos(phi(METLV[0])	-	phi(goodLeps[0]))))

#	EVENT	SELECTION

region	baseline

		select	size(goodJets)	>=	2

		select	HT	>	200

		select	MET	/	HT	<=	1

region	signalregion

		baseline

		select	Size(goodLeps)	==	0

		select	dphi(METLV[0],	jets[0])	>	0.5

region	controlregion 
		baseline 
		select	size(goodLeps)	==	1

		select	MTl	<	120

https://github.com/ADL4HEP/ADLLHCanalyses

The ADL construct

ADL consists of

• a plain text ADL file describing the analysis

algorithms using an easy-to-read DSL with
clear syntax rules.

• a library of self-contained functions
encapsulating variables that are non-trivial
to express with the ADL syntax (e.g. MT2,
ML algorithms). Internal or external (user)
functions.

blocktype	blockname

		keyword1	instruction1 
		keyword1	instruction2

		keyword3	instruction3	#	comment

• ADL file consists of blocks separating object,
variable and event selection definitions.
Blocks have a keyword-instruction structure.

• keywords specify analysis concepts and

operations.

4

ADL syntax rules with usage examples: link

LHADA (Les Houches Analysis Description Accord): Les Houches 2015 new physics WG report (arXiv:1605.02684, sec 17)

CutLang: Comput.Phys.Commun. 233 (2018) 215-236 (arXiv:1801.05727), Front. Big Data 4:659986, 2021  
 Several proceedings for ACAT and vCHEP

• Syntax includes mathematical and logical
operations, comparison and optimization
operators, reducers, 4-vector algebra and HEP-
specific functions (dφ, dR, …). See backup.

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/ADL
https://arxiv.org/abs/1605.02684
https://arxiv.org/abs/1801.05727

Running analyses with ADL

5

Multipurpose & framework-independent: Can be
translated / integrated into any GPL / framework.

CutLang: C++ runtime interpreter for ADL.

• Formal grammar parsing by Lex & Yacc.

• Based on ROOT. Reads TTree-like

formats. NanoAOD, Delphes, open
data, etc. Semi-automated integration of
new formats.

• Many external functions, including ML
model interface via ONNX.

• Runs in linux, macOS. Available in
Docker, Conda. Jupyter kernel exists
(binder or conda).

• Outputs cutflows, histograms, events,
analysis description, i.e. provenance.

CutLang Github repository: https://github.com/unelg/CutLang 
Comput.Phys.Commun. 233 (2018) 215-236 (arXiv:1801.05727),
Front. Big Data 4:659986, 2021 (arXiv:2101.09031),  
Several proceedings for ACAT and vCHEP

Physics information fully contained in ADL.

Current compiler infrastructures can be
easily replaced by future tools /
languages / frameworks.

https://github.com/unelg/CutLang
https://arxiv.org/abs/1801.05727
https://arxiv.org/abs/2101.09031

ML models in ADL/CL

6

ADL/CutLang can execute ML models in .onnx format via ONNX Model Executor:

Example from ATLAS-SUSY-2018-30 (multi-b + MET): 

#	define	the	list	of	inputs

define	inputlist1	=	{var1	var2	var3	……	varN}

#	define	the	ML	output

define	myMLvar	=	OME(my/directory/myfunc.onnx,	inputlist1,	inputlist2,	inputvar1,	….)

#	define	the	list	of	inputs

define	NNSRGtt21001Var	=	{

		pT(jets[0])											eta(jets[0])								phi(jets[0])							m(jets[0])		bTag(jets[0])

		pT(jets[1])											eta(jets[1])								phi(jets[1])							m(jets[1])		bTag(jets[1])	……(rest	of	the	vars)……..}

define	NNmeans	=	{

		348.82672119140625		0.001224843435920775		0.011215382255613804		35.01051712036133		0.4123765528202057		……(rest	of	the	vars)…….….	}

define	NNsigmas	=	{

		260.26678466796875		1.043735384941101		1.8061413764953613		31.465930938720703		………(rest	of	the	vars)….….	}

#	define	the	ML	output

define	NN1Cut	=	OME("ANA-SUSY-2018-30_model.onnx"	,	NNSRGtt21001Var,	NNmeans,	NNsigmas,	0)

#	Use	in	the	selection

region	SRGtt21001

		(….	other	selection	criteria)

		select	NN1Cut	>=	0.9997

All	information	
transparently	written	
in	the	ADL	file

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2018-30/

ADL allows practical exchange of experimental analysis information with the pheno community.

• Clear description of the complete analysis logic.

• Enables straightforward adaptation from experiments to public input event formats.

• Repurpose ADL files: swap experimental object definition blocks with simplified object blocks
based on numerical object ID / tagging efficiencies.

• Event selections stay almost the same: can swap trigger selections with trigger efficiencies

• Efficiencies can be implemented via hit-and-miss function (see backup slides).

• Generic syntax available for expressing analysis output in the ADL file: (see backup slides)  
Data counts, BG estimates, signal predictions —> counts, uncertainties, cutflows.

• Running CutLang puts preexisting results in histograms with the same format as the run output.
—> Direct comparison of cutflows, limit calculations.

• Could facilitate communicating information to/from HEPDATA or similar platforms.

 Syntax features in backup.

ADL/CL for reinterpretation

7

Validation for reinterpretation: Efficiency Map Creator - I

8

We launched a large scale analysis implementation and validation effort with ADL/CutLang.

• Main focus still SUSY, but also extending to EXO.

Use SModelS Efficiency Map Creator for validation:

• Developed by Wolfgang W. to produce selection

efficiency maps on SMSs for input to SModelS.

• can be used to validate analyses by comparing

to experimental results.

• Configurable user interface: can specify which

models and mass points to produce, which
steps to run, which output to save.

• EM-creator was adapted to work with ADL/
CutLang by Wolfgang W. and Jan Mrozek.

• Final step: Efficiency maps.

• Limit calculation currently within SModelS.

Infrastructure set up in KNU T3, and more
adapted for use recently CERN lxplus.

Validation for reinterpretation: Efficiency Map Creator - II

9

CMS-SUS-21-009: “photons +
multijets + MET”.

Working to validate several recently published ATLAS and CMS analyses.

• Working with a group of ATLAS and CMS students and partially with CMS analysis teams.

https://cms-results.web.cern.ch/cms-results/public-results/publications/SUS-21-009/index.html

Analyses we are recently validating

10

• CMS-SUS-20-003 : Chargino-neutralino production in final states with H-> bb and W boson in
lepton + jets + MET

• CMS-SUS-18-004 : 2/3 soft leptons + MET

• ATLAS-SUSY-2018-22 : Search for squarks and gluinos in final states with jets + MET

• ATLAS-SUSY-2019-22 : Search for direct production of winos and higgsinos in events with two

same-charge leptons or three leptons.

• ATLAS-SUSY-2018-10 : Search for squarks and gluinos in final states with one isolated lepton,

jets + MET

• ATLAS-SUSY-2018-11 : Photons + jets + MET

ADL/CL, LHC Open Data, reinterpretation

11

ADL/CL can be used to run analyses with ATLAS (educational) and CMS (research) open data.

• Use related to reinterpretation: Provide capability to re-optimize and re-run recasted analyses from
ADL database to maximize sensitivity to new models.

• A first example / tutorial for “reinterpretation with open data” was prepared using ADL/CL for the
2023 CMS Open Data Workshop in June 2023.

• Study exact and “optimized” reinterpretation of a ttbar analysis for vector-like T quark signal.

• Focus on reoptimizing the analysis to enhance sensitivity to VLT (Complete tutorial link.)

• Runs on a full set of relevant open data & MC events.

• Runs on a docker container hosting CutLang, ROOT, xrootd access to open data, and VNC. 

• Earlier complete tutorial for 2022 CMS Open Data Workshop — reimplement CMS Run 1 vector-
like quark analysis with boosted W and Higgs bosons, CMS-B2G-16-024 (Complete tutorial link).

• Next target is to study cases using the newly-released CMS 2016 data in NanoAOD format.

https://indico.fnal.gov/event/58914/timetable/
https://cms-opendata-workshop.github.io/workshop2022-lesson-run2-adlcl/
https://indico.cern.ch/event/1139022/
https://cms-results.web.cern.ch/cms-results/public-results/publications/B2G-16-024/index.html
https://cms-opendata-workshop.github.io/workshop2022-lesson-run2-adlcl/

ADL/CL and LHC Open Data - II

12

Cutflow histograms automatically
generated by CutLang.

Data, BG and 2 VLT
signals vs. top candidate
mass for the ttbar analysis
selection.

Top candidate mass pT
and ST after reoptimizing

the ttbar selection by
adding several new cuts.  

(B2G-16-024 uses ST)

Recent infrastructure developments

13Daniel Riley, Grigory Fedyukovich (Florida State U.), Gokhan Unel (UC Irvine)

Various developments in the CutLang core infrastructure:

• Automated interface with physics data types and tools: Can read different input data formats and
matching with representation in ADL.

• Decoupled the grammar implementation from input data attributes, external functions, … :

• Particle and function names are no longer needed to be hardcoded in the ADL parser.

• After initial parsing, function and particle names are matched to those within an external library .

 => Portability of different data types, attributes, functions.

• Abstract syntax tree (AST) can now be automatically generated.

• Visualization tool adl2flowchart deployed: Auto-converts analyses to graphs / flowcharts via AST.

• Infrastructure in place and partially deployed. Tests ongoing.

https://github.com/danielmriley/adl2flowchart/blob/main/examples/CMS-SUS-21-006_TreeMaker2result.adl

ADL for automated visualization - I

14CMS-SUS-21-002: Search for EWK SUSY in WW, WZ and WH hadronic final states

Analysis flowcharts can now be automatically generated from the ADL file via the abstract syntax tree
using the graphviz-based setup adl2flowchart.

Electron

vetoelectrons

vetoleptons

FatJet

ak8jets

Hcands Wcands baseline

ak8jetsm50

ak8jetsmV

Hnotags Htags

CRbtagHWantitag CRbtagHantitag CRbtagWantitag SRbtagH SRbtagHW SRbtagW

Jet

ak4jets

bjets

Muon

vetomuonsPhoton

vetophotons

Track

isolatedtracks

Vs

CRbveto0tag CRbveto1tag SRbveto

Wnotags Wtags Wsbtag bveto

https://cms-results.web.cern.ch/cms-results/public-results/publications/SUS-21-002/index.html
https://github.com/ADL4HEP/ADLAnalysisDrafts/blob/main/CMS-SUS-21-002/CMS-SUS-21-002_NanoAOD.adl
https://github.com/danielmriley/adl2flowchart/blob/main/examples/CMS-SUS-21-006_TreeMaker2result.adl

15

CMS-SUS-21-006: SUSY disappearing track analysis

DTCRfake

CRsFake2DTk CRsFakeEle CRsFakeHad CRsFakeMu

DTCRfakelg

MRLowHardMETplusDTCRfakelg

DTCRfakesh

MRLowHardMETplusDTCRfakesh

DTCRreal

CRsRealsw2DT CRsRealswEle CRsRealswHad CRsRealswMu

DTCRreallg

MREleplusDTCRreallg

DTCRrealsh

DTSR

SRs2DT SRsEle SRsHad SRsMu

DTSRlg

MREleplusDTSRlg

MRLowHardMETplusDTSRlgMRMuplusDTSRlg

DTSRsh

MRLowHardMETplusDTSRsh

DTpresel

DTpresellg DTpreselsh

DTpreselMuIsolg

DTproxylg

DTpreselMuIsosh

CRsRealmu2DT CRsRealmuEle CRsRealmuHad CRsRealmuMu

HardMETLV

baselineEle

MHT

TAPPionTracks

pions

ak4jet

jets jets4DTiso

baselineHad baselineMu bjets

electron

electrons electronsTransferfactor

leptons

muon

muons

muonsTransferfactor

track

DTCRfake

CRsFake2DTk
CRsFakeEle

CRsFakeHad

CRsFakeMu

DTCRfakelg

MRLowHardMETplusDTCRfakelg

DTCRfakesh

MRLowHardMETplusDTCRfakesh

DTCRreal

CRsRealsw2DT

CRsRealswEle

CRsRealswHad

CRsRealswMu

DTCRreallg

MREleplusDTCRreallg

DTCRrealsh

DTSR
SRs2DT

SRsEle
SRsHad

SRsMu

DTSRlg
MREleplusDTSRlg

MRLowHardMETplusDTSRlg

MRMuplusDTSRlg

DTSRsh

MRLowHardMETplusDTSRsh

DTpresel

DTpresellg
DTpreselshDTpreselMuIsolg

DTproxylg

DTpreselMuIsosh

CRsRealmu2DT

CRsRealmuEle

CRsRealmuHad

CRsRealmuMu

HardMETLV

baselineEle

MHT

TAPPionTracks

pions

ak4jet

jets
jets4DTiso

baselineHad
baselineMu

bjets

electron

electrons
electronsTransferfactor

leptons

muon

muons

muonsTransferfactor

track

analysis ADL file

ADL for automated visualization - II

https://cms-results.web.cern.ch/cms-results/public-results/publications/SUS-21-006/index.html
https://github.com/LongLivedSusy/preservation/blob/main/adls/CMS-SUS-21-006_TreeMaker2result.adl

16

• ADL and CutLang present a multipurpose and practical analysis approach.

• ADL/CutLang highly suitable for reinterpretation studies.

• Analysis reimplementation / validation effort ongoing via SModelS EM-creator.

• As usual, the main issue is the correct generation / simulation of the input samples.

• 2 complete CMS Open Data tutorials available, one featuring reinterpretation via optimization.

• AST-based analysis visualization tool adl2flowchart now available.

• Current and near-future focus areas:

• Several full CMS analysis implementations for object and analysis preservation ongoing.

• CMS 2016 analysis implementations for the newly-published 2016 NanoAOD open data planned

targeting further examples for reinterpretation via optimization.

• Further formal compiler / infrastructure developments ongoing.

• First ADL/CL-related developments targeted within OpenMAPP: HEPData interface, a more
generic and robust interface to MC tools.

To conclude

17

Extra slides

Documentation and references : cern.ch/adl

Dec 2022

http://adl.web.cern.ch/index.html

ADL syntax: main blocks, keywords, operators

18

Block purpose Block keyword
object definition blocks object
event selection blocks region
analysis or ADL information info
tabular information table

Keyword purpose Keyword
define variables, constants define
select object or event select
reject object or event reject
define the mother object take
apply weights weight
bin events in regions bin, bins
sort objects sort
define histograms histo
save variables for events save

Operation Operator

Comparison operators > < => =< == !=

 [] (include)][(exclude)

Mathematical operators + - * / ^
Logical operators and or not

Ternary operator condition ? truecase :
falsecase

Optimization operators ~= (closest to) 
~! (furthest from)

Lorentz vector addition LV1 + LV2

LV1 LV2

ADL syntax rules with usage examples: https://twiki.cern.ch/twiki/bin/view/LHCPhysics/ADL

Syntax also available to write existing analysis results
(e.g. counts, errors, cutflows…).

 
Syntax develops further as we implement
more and more analyses.

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/ADL

ADL syntax: functions

19

Standard/internal functions: Sufficiently
generic math and HEP operations could be
a part of the language and any tool that
interprets it.

•Math functions: abs(), sqrt(), sin(), cos(),

tan(), log(), …

•Collection reducers: size(), sum(), min(),

max(), any(), all(),…

•HEP-specific functions: dR(), dphi(), deta(),

m(), ….

•Object and collection handling: union(),

comb()…

External/user functions: Variables that cannot
be expressed using the available operators or
standard functions would be encapsulated in
self-contained functions that would be
addressed from the ADL file and accessible by
compilers via a database.

•Variables with non-trivial algorithms: MT2,

aplanarity, razor variables, …

•Non-analytic variables: Object/trigger

efficiencies, variables/efficiencies computed
with ML, …

ADL syntax rules with usage examples: https://twiki.cern.ch/twiki/bin/view/LHCPhysics/ADL

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/ADL

Histogramming and plotting tools

20

ADL/CL have extensive histogramming capabilities:

• 1D and 2D fixed bin and variable bin histograms defined with single line syntax.

• Histogram lists can be defined and reused in different regions and cut levels.

• Cutflow histograms and analysis bin histograms automatically drawn.

CutLang is enhanced with various easily configurable plotting tools based on standalone PyROOT or
PyROOT in Jupyter notebooks (link).

• Shape comparisons between different processes.

• Weighted comparison between two processes (e.g. signal and background)

• Weighted full plotting including data, different backgrounds (stacked) and multiple signals (e.g. as
in the previous page).

https://github.com/unelg/CutLang/tree/master/binder

• Analysis design (experimental or pheno):

• Quick prototyping.

• Simultaneous test of numerous selection options in a self-documenting way.

• Easy comparison with existing analyses: “Was my phase space already covered?”

• Objects handling:

• Easy reuse in new analyses.

• Compare object definitions within or between analyses.

• Compare definitions in different input data types.

• Analysis visualization:

• Build analysis flow graphs and tables from analyses using static program analysis tools.

• Communication:

• Between analysis team members (easy synchronization); with reviewers; between teams;

between experiments or exp. and pheno.

Versatile uses of ADL - I

21

• Analysis preservation: Queryable databases for analysis logic and objects.

• Queries in analysis or object databases: Use static analysis tools to answer questions such as

• “Which analyses require MET > at least 300?”; “Which use b-jets tagged with criterion X? ”,

“Which muons use isolation?”

• Analysis comparisons / combinations:

• Determine analysis overlaps, identify disjoint analyses or search regions;

• Automate finding the combinations with maximal sensitivity; phase space fragmentation.

• Education:

• Provide a learning database for students (and everyone).

• Easy entry to running analyses (several schools & trainings organized).

• Reinterpretation: Next page.

• … … and how would YOU use it?

Versatile uses of ADL - II

22

Enables straightforward adaptation from experiments to public input event formats.

ADL/CL for reinterpretation: Portable objects

23

#	b-tagged	jets	-	medium

object	MediumBTag

		take	Jet

		select	btagDeepB(Jet)	>=	0.2783

#	b-tagged	jets	-	medium

object	MediumBTag

		take	Jet

		select	applyHM(btagdeepBmediumeff(pt(Jet),	abs(eta(Jet)))		==	1)			

Efficiencies provided by CMS. 
ADL table blocks can host
numerical efficiencies.

A generic function reading
efficiencies, object attributes
and applying the hit & miss
method.

b-tagging for UL NanoAODv9 b-tagging for public use, e.g. with Delphes

table	btagdeepCSVmedium

		tabletype	efficiency

		nvars	1

		errors	true

		#	eff								err-										err+										pTmin					pTmax

		0.5790				0.0016				0.0016					-10.4							30.0

		0.6314				0.0013				0.0013					30.0							35.0

		0.6442				0.0011				0.0011					35.0							40.0 
		…

• Repurpose ADL files: swap
experimental object definition
blocks with simplified object
blocks based on numerical object
ID / tagging efficiencies.

• Event selections stay almost the
same: can swap trigger selections
with trigger efficiencies

24

• Object efficiencies versus (multiple)
attributes and their uncertainties
provided by the experiments can be
recorded in the ADL file via tables.

• CutLang can apply these efficiencies
to input objects via the hit-and-miss
method, for selecting objects with the
efficiency probability.

• both at object selection and  

event selection level.

ADL/CL for reinterpretation: Object efficiencies

25

• Record cutflow values from the experiment.

• Run CL on local sample and obtain cutflow. 

(same histogram format)

• Compare with  

experiment.

• Record data and BG estimates from the exp.

• Run CL and obtain signal predictions. 

(same histogram format)

• Compute limits.

ADL/CL for reinterpretation: Counts and cutflows

