VBF roadmap for YR5

WG1 YR5 kick-off

J. Chen, G. Barone S. Ferrario Ravasio, M. Pellen

CERN, Geneva, Switzerland, 11th June 2024

Update on inclusive numbers for 13.6 TeV

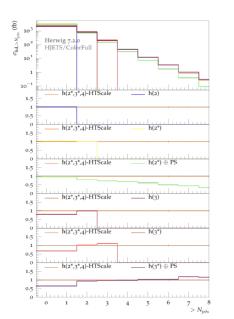
Motivation: provide reference numbers

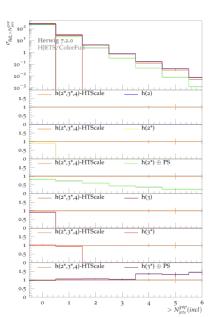
References:

- N3LO QCD from proVBF [Dreyer, Karlberg; 1811.07918]
- NLO EW from Hawk [Denner, Dittmaier, Kallweit, Mück; 1112.5142, 1412.5390]
- NNLO non-fact. corrections [Asteriadis, Brønnum-Hansen, Long, Melnikov, Quarroz; 2305.08016, 2305.12937]

WBF (N3LO QCD + NLO EW) + sub-eikonal non-factorisable NNLO-QCD MH Cross Uncertainty					D		
MH [GeV]	Cross Section [pb]	Scal		TU [%]	PDF+as	PDF [%]	αs [%]
120.00	4.267E+00	+0.1	-0.1	±0.6	±2.2	±2.1	±0.4
122.00	4.201E+00	+0.1	-0.1	±0.6	±2.2	±2.1	±0.4
124.00	4.136E+00	+0.1	-0.1	±0.6	±2.2	±2.1	±0.4
124.60	4.117E+00	+0.1	-0.1	±0.6	±2.2	±2.1	±0.4
124.80	4.110E+00	+0.1	-0.1	±0.6	±2.2	±2.1	±0.4
125.00	4.104E+00	+0.1	-0.1	±0.6	±2.2	±2.1	±0.4
125.09	4.101E+00	+0.1	-0.1	±0.6	±2.2	±2.1	±0.4
125.20	4.097E+00	+0.1	-0.1	±0.6	±2.2	±2.1	±0.4
125.30	4.094E+00	+0.1	-0.1	±0.6	±2.2	±2.1	±0.4
125.38	4.092E+00	+0.1	-0.1	±0.6	±2.2	±2.1	±0.4
125.60	4.084E+00	+0.1	-0.1	±0.6	±2.2	±2.1	±0.4
126.00	4.072E+00	+0.1	-0.1	±0.6	±2.2	±2.1	±0.4
128.00	4.010E+00	+0.1	-0.1	±0.6	±2.2	±2.1	±0.4
130.00	3.949E+00	+0.1	-0.1	±0.6	±2.2	±2.1	±0.4

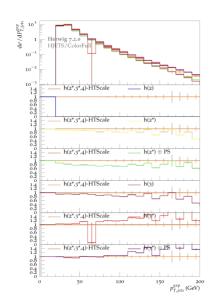
Big thanks to **Asteriadis**, **Brønnum-Hansen**, **Karlberg**, **Mück** who provided numbers! Updated on twiki page (<u>link</u>)

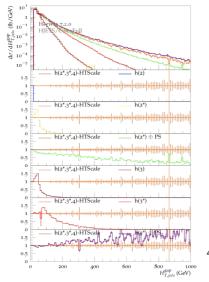

Recent theory developments (I)


Find more information to theory development in the <u>LHC WG workshop talk</u> 2023

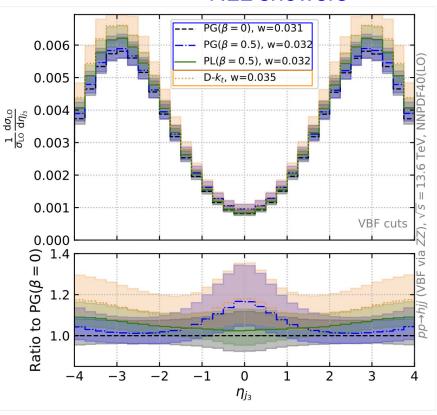
- On the non-factorizable corrections to Higgs boson production in weak boson fusion [Asteriadis, Brønnum-Hansen, Melnikov; 2305.08016]
 See also [Asteriadis, Brønnum-Hansen, Long, Melnikov, Quarroz; 2305.06292, 2309.06292]
 - Non-factorisable (NF) corrections at NNLO QCD smaller than factorisable ones but same order than N3LO QCD ones
 - Non-factorizable corrections dominated by two-loop virtual
 - Further understanding of fixed-order corrections
- Electroweak corrections and shower effects to Higgs production in association with two jets at the LHC [Jäger, Scheller; 2208.00013]
 - Implementation in Powheg
 - Both VH with hadronic decay and VBF
 - NLO QCD or NLO EW implemented ...
 - and matched to QCD or QED PS
 (not both together)

Recent theory developments (II)


- **CENTRAL Jet Veto Studies for Electroweak Higgs Boson production** [Tinghua Chen, Terrance M. Figy, Simon Plätzer <u>Eur. Phys. J. C, 82 8 (2022) 704</u>]
 - Using HT(jets) for the scale.
 - central jet veto necessary to remove VH background
 - Beyond 2 jets you need NLO 3 jet.



- Gap Jets are quite soft.
- Again, you need NLO for more than 2 jets



Recent theory developments (III)

- Electroweak corrections and shower effects to Higgs production in association with two jets at the LHC [Jäger, Scheller; 2208.00013]
 - Implementation in Powheg
 - Both VH with hadronic decay and VBF
 - NLO QCD or NLO EW implemented ...
 - ... and matched to QCD or QED PS

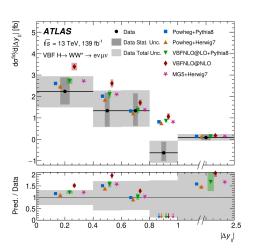
- Next-to-leading-logarithmic PanScales showers for Deep Inelastic Scattering and Vector Boson Fusion [van Beekveld, Ferrario Ravasio; 2305.08645]
 - NNL PS for DIS-like processes (w/o non factorisable corr): VBF VBS...
 - Discrepancies between standard LL PS and NLL of the order of for third jet observables, but similar to scale variations
 - NLO+PS will be required

NLL showers

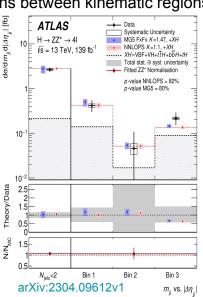
Recent experimental developments

Dedicated measurements of VBF H entering the "precision" era.

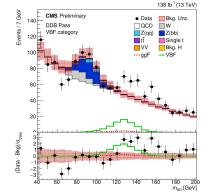
Possible in rich variety of decay channels, with differing phase spaces $(p_T(H), m_{ii}, ...)$

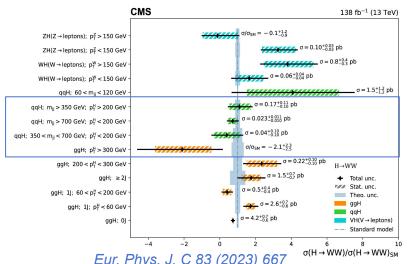

Most recent results in:

Fiducial measurements in: H→WW, H→ZZ [ATLAS], STXS H→WW [CMS]


Boosted H→bb [CMS]

Small signal/background → extensive use of Multivariate Techniques


Modelling uncertainties in extrapolations between kinematic regions become evermore relevant



CMS-PAS-HIG-21-020, See J. Dickinson talk

Typical VBF uncertainties in exp. measurements

Theory uncertainty relative sizes in **typical** VBF measurements

Primary theory uncertainties impacting experimental measurements

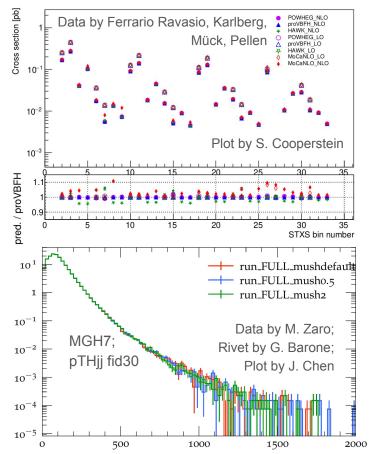
- PS (leading)
- ggH contribution in VBF-enriched regions

	VBF H	ggH (in VBF-enriched region)
PDF	<1%	<3%
QCD scale	<1%	2-20%
UE	<1.5%	<2-3%
Parton shower	5-15%	4-10%

Systematic study at differential level

Method: differential study in fiducial volume at 13.6 TeV

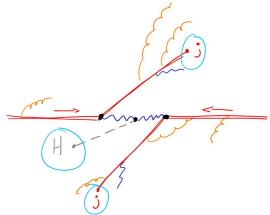
Event selections: mixture of ATLAS and CMS Rivet routine + run cards (for reproducibility) Beyond 1D distributions (2D, 3D) and also in STXS bins State-of-the-art numbers for fixed order


State-of-the-art number for NLO+PS

- 1. Provide state-of-the-art predictions at the differential level at fixed order
 - NNLO QCD + NLO EW
 - Evaluation of various approximations (full vs. vbf approx.)
 - Non-factorizable corrections
 - Irreducible background and interferences

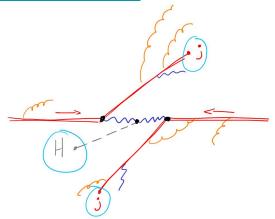
Tuned comparison of various fixed-order codes

- with different approximations
- Data produced at LO and NLO QCD
- 2. PS predictions and uncertainties in VBF
 - Alline with set-up of fixed-order study
 - Agreement on what combinations to run
 - Comparison of different parton shower (different physics)
 - Provide recommendations for PS uncertainty
- 3. Interpretation of physical result
 - Provide refined estimate of uncertainties
 - EW corrections, VBF approximation, ...
 - Understand differences and make recommendations


Well on track for a first **Physics Community Reports** form **SciPost** that can be part of the YR5.

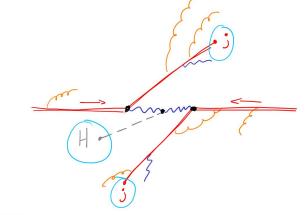
Beyond the these studies: A Roadmap for more YR5 studies (time ordered)

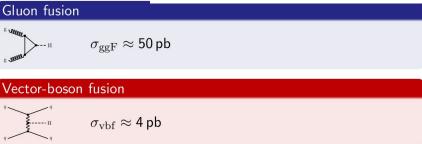
- 1. State-of-the-art predictions (multi differential)
 - For fixed order and with parton-shower corrections for 13.6 TeV (on-going)
 - To be submitted to SciPost community report
- 2. Harmonising fiducial definitions:
 - of cross sections across experiments and theory for VBF/VBS/multi boson predictions.
 - [2406.00708] for first proposal, work within EWWG/Les Houches workshop (on-going)
- ggF contribution in VBF phase-space, and impact of hadronisation/MPI (on-going LHE study)
- 4. VBF Interference with V(H->jj) (at the very least dedicated V(H->jj) (N)NLOPS generator)
- 5. Best predictions and recommendations for VBF+photon
- 6. Your ideas.


NB: All ideas are not feasible at once.

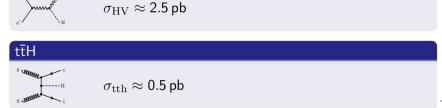
Conclusions

- If you want to contribute/have ideas, please contact us!
- e-group: Ihc-higgs-vbf, just subscribe!
- A twiki page is available summarising the main activities (<u>link</u>)
- Planning for a second iteration of the VBF workshop in Fall.
 - Good occasion for harmonizing the strategies for YR5.
- Email us at lhc-higgs-vbf-convener@cernNOSPAMPLEASE.ch


THANK YOU.



BACK UP


VBF at the LHC

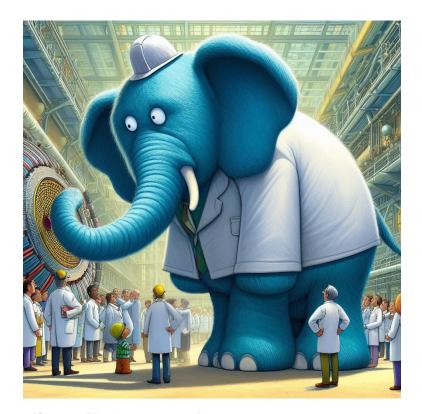
- Second largest production mechanism
- Coupling to weak boson (like Higgs Strahlung)
- Very special topology
 - Signature: 2 jets + H
 - Jets intrinsically separated due to special topology
 - Exclusive cuts to access the process
 - Typically: large invariant mass of the two jets and large rapidity separation

Only fiducial definition is physical!

Higgs Strahlung

Numbers @ 13 TeV from [de Florian et al.; 1610.07922]

The elephant in the room...


- PS agree on the perturbative side... [Buckley et al.; 2105.11399] (theory finding)
- Larger disagreement observed on experimental side ...

Potential solutions:

- Related to uncertainty prescription?
- Related to extrapolation procedure?
- Related to inclusion of non-perturbative effects (UE, hadronisation) in PS?
- Could there be a problem with the tunning of exp. samples with wrong PS recoil scheme? (one line summary of idea discussed at Les Houches)

[Ballestrero et al.;1803.07943], [Jäger, Karlberg, Plätzer, Scheller, Zaro; 2003.12435], [Bittrich, Kirchgaeßer, Papaefstathiou, Plätzer, Todt; 2110.01623], [Höche, Mrenna, Payne, Preuss, Skands; 2106.10987]

Worth to be investigated!

[Source: Bing image creator]

Given the status what is relevant to do within the WG ...

- Summarise state of the art on th. and exp.
 - Th. findings are not always well propagated to exp.

 Important for theorists to get credits through proper citations
- **Differential** study in fiducial volume at 13.6 TeV
 - Event selections: mixture of ATLAS and CMS
 - Rivet routine + run cards (for reproducibility)
 - Beyond 1D distributions (2D, 3D) and also in STXS bins
- State-of-the-art numbers for fixed order
 - Inclusion of everything available (typically in different places and/or in different set-ups)
- State-of-the-art number for NLO+PS
 - Only perturbative part (no UE and hadronisation)
 - Make recommendations for uncertainties

The leading culprit: PS uncertainties

Leading uncertainties, CMS VBF H→bb

See J. Dickinson talk

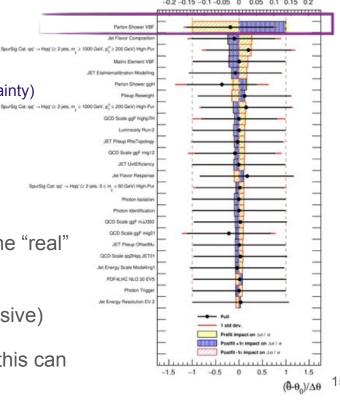
Leading uncertainties, ATLAS VBF H→γγ *JHEP 07 (2023) 088*

		ATLA
		AILA

VBF Δσ / σ

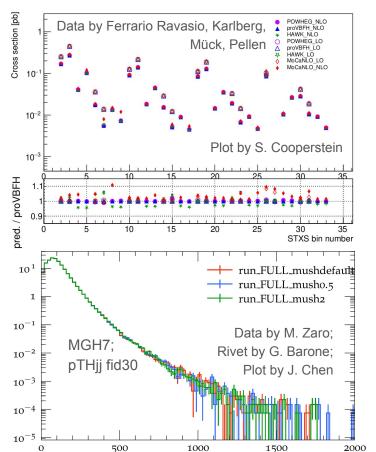
Source of systematic uncertainty	Impact on signal strength [%]	
VBF parton shower	13.0	
Jet energy scale	7.7	
Trigger efficiency	6.7	Dantan alances
Parton shower (final-state radiation)	5.6	Parton shower
b jet regression smearing	3.3	(leading syste
b tagging efficiency	3.0	(1001011119 0) 010
Pileup modeling	2.3	
b jet regression scale	2.0	
Jet energy resolution	1.5	

er uncertainty ematic uncertainty)


Current experimental prescription: symmetrized two-point

Pythia dipole recoil vs. Herwig7

Rather ad-hoc, not clear whether this properly captures the "real" uncertainty


Uncertainty can approach ~15% of measured signal rate (inclusive)

With Run-2 measurements already at 20-30% precision, this can become a limitation already at Run-3

Follow up, systematic study at differential level (Fixed order)

- Provide state-of-the-art predictions at the differential level at fixed order
 - NNLO QCD + NLO EW
 - Evaluation of various approximations (full vs. vbf approx.)
 - Non-factorisable corrections
 - Irreducible background and interferences
- 2. Tuned comparison of various fixed-order codes (with different approximations)
 - Data produced at LO and NLO QCD
- 3. Interpretation of physical result
 - provided refined estimate of uncertainties (EW corrections, VBF approximation, ...)
 - understand differences and make recommendations

Follow up, systematic study at differential level (PS)

PS predictions and uncertainties in VBF

- Same set-up as for fixed order
- Use Powheg/Sherpa/MG_aMC@NLO with different parton showers
- Alline with set-up of fixed-order study
- Agreement on what combinations to run
- Comparison of different parton shower (different physics)
- Provide recommendations for PS uncertainty

List of predictions:

- POWHEG BOX + Pythia8 (dipole and Vincia) and Herwig7 (AO and dipole)
- Madgraph5_MC@NLO + Herwgi7 AO
- Herwig7 standalone, dipole shower with MC@NLO, for VBF and full EW Hjj
- Sherpa standalone, dipole shower with MC@NLO, for VBF and full EW Hjj