

VH inputs: YR5 Kick-off Meeting

Suman Chatterjee [1], Valerio Dao [2], Giancarlo Ferrera [3], Matthew Lim [4]

[1] HEPHY Vienna[2] Stony Brook University[3] University of Milan[4] University of Sussex

11/06/2024

Setting the stage: from experiment

Impressive experimental progress on VH during LHC Run 2

- Cross section measurements in more bins for VH(bb)
- Boosted regime for $H \rightarrow bb$: Targeting both leptonic and hadronic decay modes of V
- More decay modes reaching good precision (important for low V pT): $H \rightarrow \gamma \gamma$, $\tau \tau$, WW
- Leading source of information for direct $H \rightarrow cc$ determination

Setting the stage: from theory

Yellow Report 4 contains a nice set of predictions

LO

- NLO, NNLO in QCD, NLO electroweak
- Impact of higher-order corrections shown for H, decay products of V, correlation between V&H systems
- NLO+PS (POWHEG/MG5_aMC + PYTHIA6/PYTHIA8/HERWIG7), NNLOPS predictions included
- LO ggZH predictions

Pt,H [GeV]

Predictions at sqrt(s) = 13 TeV in fiducial phase space

Yellow Report 4

Ad interim predictions at sqrt(s) = 13.6 TeV

Table 3: WH cross sections at the LHC at 13.6 TeV and corresponding scale and PDF+ α_s uncertainties computed according to the PDF4LHC recommendation.

$pp \rightarrow WH$ (NNLO QCD + NLO EW)												
m_H [GeV]	σ [pb]	+Scale %	-Scale %	$\pm (PDF + \alpha_s)\%$	±PDF%	$\pm \alpha_{\rm s}\%$	W^+H [pb]	W^-H [pb]				
125	1.457	+0.4	-0.7	±1.8	± 1.6	± 0.9	0.8889	0.5677				
125.09	1.453	+0.4	-0.7	± 1.8	± 1.6	± 0.9	0.8870	0.5664				
125.38	1.442	+0.4	-0.7	± 1.8	± 1.6	± 0.9	0.8801	0.5620				

Table 4: ZH cross sections at the LHC at 13.6 TeV and corresponding scale and PDF+ α_s uncertainties computed according to the PDF4LHC recommendation.

pp ightarrow ZH (NNLO QCD + NLO EW)											
$m_H \; [{ m GeV}]$	$\sigma ~[{ m pb}]$	+Scale $\%$	-Scale $\%$	$\pm (PDF + \alpha_s)\%$	$\pm PDF\%$	$\pm lpha_{ m s}\%$	$\sigma(gg \to ZH) \text{ [pb]}$				
125	9.439E-01	+3.7	-3.2	± 1.6	± 1.3	± 0.9	1.360E-01				
125.09	9.422E-01	+3.8	-3.2	± 1.6	± 1.3	± 0.9	1.359E-01				
125.38	9.361E-01	+3.8	-3.2	± 1.6	± 1.3	± 0.9	1.347E-01				

Still missing w.r.t. Run 2:

- ggZH unc. : we do have numbers available from theorists
- Differential higher-order corrections (e.g., NLO EWK) [at least as a function of V p_{T}]

LHCHWG-2024-001

Differential NLO prediction for ggZH

- Large uncertainty due to scale variation at LO

ATL-PHYS-PUB-2022-055

 Differential NLO prediction: natural progression w.r.t. YR4

- NLO/LO k-factor can be large

LO [fb]

 $52.42^{+25.5\%}_{-19.3\%}$

 $58.06^{+25.1\%}_{-19.0\%}$

 $61.96^{+24.9\%}_{-18.9\%}$

9 0000

 \sqrt{s}

13 TeV

14 TeV

13.6 TeV

Relative small reduction in systematic uncertainty

Vitti, Gröber et al. (2022)

Differential NLO prediction for ggZH (2)

- NLO/LO k-factor depends on
- variable of choice

-

- selection conditions on kinematics
- Cross-check planned between <u>Heinrich, Jones et al. (2022)</u> and <u>Vitti, Gröber et al. (2022)</u>
- Minimum update expected: Single- or double-differential k-factor
- Optimistic scenario:
 Calculation available for full event generation (e.g. in POWHEG)

Details in M. Vitti's <u>talk</u> @ LHCHXS WG meeting

Comparing different generators and uncertainties

- Comparison of NLO predictions from POWHEG, Sherpa, MC@NLO
 → relative comparison on fraction of events with negative weights (MC@NLO and Sherpa are less popular in experiment due to negative weight issues)
- Comparison with different parton showers in NLO+PS predictions: PYTHIA8 vs HERWIG7
 - POWHEG+PYTHIA8 vs POWHEG+HERWIG7 YR4 has POWHEG+PYTHIA6, MG5_aMC+PYTHIA8/HERWIG7 predictions
- Parton shower variation in NNLOPS predictions. Try NLL PS Panscales?
 - Inclusion of parton shower uncertainty on predictions from generators
- Check the impact of underlying event tune on predictions

STXS 1.3 predictions

- Include predictions in STXS 1.3 bins in YR5: cross section + uncertainty
- Could serve as a standard reference for future

Proposal for STXS 1.3

- Three high p_⊤ bins: [250, 400), [400, 600), >= 600 GeV
- At a later stage, adding additional variables: $\Delta \phi_{II}$, m_T^{total}

Expansion of existing predictions

- Extend the H p_{T} range of prediction: YR4 has up to 500 GeV
- Predictions in terms of additional jet activity: different jet sizes

- Double differential predictions: YR4 has H p_{T} for different V p_{T} ,
 - aim for 2-D predictions of H $p_{_{\rm T}}$ vs V $p_{_{\rm T}}$
 - try combination of other variables
- Studies on angular variables: effects of kinematic selections

- Final obvious update for fiducial cross sections: $sqrt(s) = 13 \rightarrow 14 \text{ TeV}$

What about backgrounds?

- V+b/c jets is a key background in VHbb analysis: very different predictions and models used by ATLAS and CMS (very expensive MC, multileg@NLO+extra legs@LO)
 - \rightarrow Make a common choice to be suggested in YR5?
 - \rightarrow [possibly lowering the precision to ease production and tests?]

Excellent initiative in the ttH group towards consensus over common tt+HF sys models and samples