Tuesday 11 Jun 2024, 15:00 → 18:00 Europe/Zurich

Large Avalanches and Space Charge an introduction

P.Fonte

Disclaimer: this is not a review talk. It's just a fast introduction + some ideas

P.Fonte

80

0

20 40 60 80 100 120 140 160 1⁷

Time (ns)

GEM lateral (ring) avalanche

hole: 60 µm gap: 100 µm N₀=100 e⁻ V=1250V

GEM lateral (ring) avalanche

hole: 60 μm gap: 100 μm N₀=100 e⁻ V=1250V

Similar simulations of various MPGDs can be viewed here.

https://indico.cern.ch/event/ 709670/contributions/3008591/

Plasma as a fluid (Chalkboard) -

Plasma as a gas (Computer Required)

[Wiki1]

S

city D m

It seems that the two-fluid approach will be faster than the others.

а

Some simplification from symmetry

The minimum model: "1.5D" (discs) Much better: "2D" (rings=axial symmetry)

Started by Davies et al. in the 60's

Unfortunately, still artificial for many detectors.

Numerical strategies for hydrodynamic approach

Method of "characteristics"

Integrate the equations along "characteristic lines" that correspond to the path of the charges = electric field lines.

Equations become a set of uncoupled ordinary differential equations and analytical solutions exist for non-space charge regime.

For space-charge regime: small time steps and recalculate the field at each step.

Lateral diffusion difficult to incorporate.

Technical difficulties with curvilinear frames of reference + interpolation between characteristics and 3D space.

Faster than FEM?

Are there other methods? In plasma physics there are very sophisticated approaches

Finite elements method (FEM)

Solve the differential equations on the vertices of a mesh.

Another approach: particle-in-cell

- A "mesoscopic" MonteCarlo where mini-avalanches are propagated from cell-to-cell in a mesh.
 - Symmetries can be also applied.
 - Incorporates naturally avalanche statistics.

1.5D approximation 0.3mm timing RPC, 3kV electrons, positive ions Space-charge only no cathode streamer

P.Fonte

electrons, positive ions, negative ions, field

Also quite formidable: enormous number of cells. 3D prohibitive

P.Fonte

Particle-in-cell

https://en.wikipedia.org/wiki/Particle-in-cell

For many types of problems, the classical PIC method invented by Buneman, Dawson, Hockney, Birdsall, Morse and others is relatively intuitive and straightforward to implement. <u>This probably</u> accounts for much of its success, particularly for plasma simulation, for which the method typically includes the following procedures:

- Integration of the equations of motion.
- Interpolation of charge and current source terms to the field mesh.
- Computation of the fields on mesh points.
- Interpolation of the fields from the mesh to the particle locations.

• • •

Modern geometric PIC algorithms are based on a very different theoretical framework. These algorithms use tools of discrete manifold, interpolating differential forms, and canonical or noncanonical symplectic integrators to guarantee gauge invariant and conservation of charge, energymomentum, and more importantly the infinitely dimensional symplectic structure of the particle-field system. ^{[4] [5]} These desired features are attributed to the fact that geometric PIC algorithms are built on the more fundamental field-theoretical framework and are directly linked to the perfect form, i.e., the variational principle of physics.

These people seem to have a sophisticated view of the subject (and probably harder problems to solve).

Particle-in-cell

https://en.wikipedia.org/wiki/Particle-in-cell

Electromagnetic particle-in-cell computational applications [edit]

Computational application	Web site	License	Availability	Canonical Reference
SHARP	[17]	Proprietary		doi:10.3847/1538-4357/aa6d13
ALaDyn	[18]	GPLv3+	Open Repo: ^[19]	doi:10.5281/zenodo.49553
EPOCH	[20]	GPLv3	Open Repo: ^[21]	doi:10.1088/0741-3335/57/11/113001
FBPIC	[22]	3-Clause-BSD- LBNL	Open Repo: ^[23]	doi:10.1016/j.cpc.2016.02.007 ₽
LSP	[24]	Proprietary	Available from ATK	doi:10.1016/S0168-9002(01)00024-9 년
MAGIC	[25]	Proprietary	Available from ATK	doi:10.1016/0010-4655(95)00010-D 🖉
OSIRIS	[26]	GNU AGPL	Open Repo ^[27]	doi:10.1007/3-540-47789-6_36⊉
PICCANTE	[28]	GPLv3+	Open Repo: ^[29]	doi:10.5281/zenodo.48703
PICLas	[30]	GPLv3+	Open Repo: ^[31]	doi:10.1016/j.crme.2014.07.005
				doi:10.1063/1.5097638 년
PIConGPU	[32]	GPLv3+	Open Repo: ^[33]	doi:10.1145/2503210.2504564 🖉
SMILEI	[34]	CeCILL-B	Open Repo: ^[35]	doi:10.1016/j.cpc.2017.09.024 🖉
iPIC3D	[36]	Apache License 2.0	Open Repo: ^[37]	doi:10.1016/j.matcom.2009.08.038 년
The Virtual Laser Plasma Lab (VLPL)	[38]	Proprietary	Unknown	doi:10.1017/S0022377899007515 &
Tristan v2	[39]	3-Clause-BSD	Open source, ^[40] but also has a private version with QED/radiative ^[41] modules	doi:10.5281/zenodo.7566725 t⊉ ^[42]
VizGrain	[43]	Proprietary	Commercially available from Esgee Technologies Inc.	
VPIC	[44]	3-Clause-BSD	Open Repo: ^[45]	doi:10.1063/1.2840133 🖉
VSim (Vorpal)	[46]	Proprietary	Available from Tech-X Corporation	doi:10.1016/j.jcp.2003.11.004 🖉
Warp	[47]	3-Clause-BSD- LBNL	Open Repo: ^[48]	doi:10.1063/1.860024
WarpX	[49]	3-Clause-BSD- LBNL	Open Repo: ^[50]	doi:10.1016/j.nima.2018.01.035 🖉
ZPIC	[51]	AGPLv3+	Open Repo: ^[52]	
ultraPICA		Proprietary	Commercially available from Plasma Taiwan Innovation Corporation.	

Wonder if there is not something here that could be useful to us?

P.Fonte

References

- [DAV73] Davies, A J ; Evans, C J., Yellow report CERN-73-10
- [FON96] P. Fonte, IEEE Nucl. Sci. 43 n.3 (1996) 21
- [GEO00] G.E. Georghiou et al., J. Phys. D: Appl. Phys. 33 (2000) 27.
- [LIP04] C. Lippmann, W.Riegler, Nucl. Instrum. and Meth. A 533 (2004) 11
- [Wiki1] By WikiHelper2134 File:A_Comparison_Chart_For_Modeling_Plasma2.png, CC BY-SA 4.0, <u>https://commons.wikimedia.org/w/index.php?curid=126786772</u> in <u>https://en.wikipedia.org/wiki/Plasma_modeling</u>