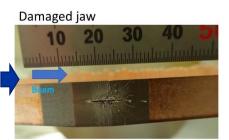


# Beam losses and damage potential of the FCC-ee beams

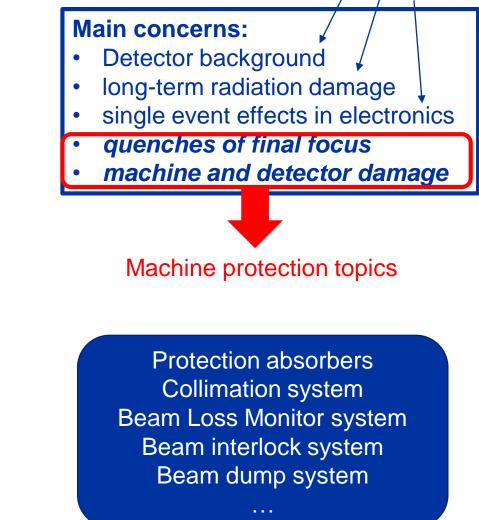
Anton Lechner (SY/STI)

30/05/2024

### Introduction


- Beam losses can be of different origin (some are regular, some are accidental)
  - Beam-beam (e.g. radiative Bhabha, Beamstrahlung, ...)
  - Beam-gas scattering
  - Touschek scattering, intra-beam scattering, ...
  - Hardware failures, timing errors (e.g. beam transfer&extraction failures, cavity failures ...)
  - Matter entering the beam (dust) or aperture restrictions (obstacles)
  - Instabilities

. . . .


Accelerator Systems

SY

Superfast losses in SuperKEKB (origin still under investigation)



Not to forget synchrotron radiation, which can be more important for these effects than beam losses (depends on location)



### System design requirements – many open questions

#### Beam loss monitor system

- Time resolution? response time? spatial resolution? pattern recognition?  $\rightarrow$  which kind of beam loss scenarios?
- Operating conditions how to detect beam losses on top of synchrotron-induced radiation fields? Cross-talk between booster and collider?

#### Beam abort system



• Required reaction time? All gaps in filling scheme as abort gaps? Do we need multiple beam dump systems (per beam) at different locations? (this was a recurring question ...)

#### Passive protection systems

• How to cope with the small beam emittance (material robustness)? Local vs global protection (aka protection absorbers vs collimation system), protection absorbers upstream of experiments?

#### Active mitigation systems

Mitigation of beam instabilities?

Understanding and modelling of beam loss mechanisms (including time scales), likelihood of failure scenarios



Definition of design vs "beyond design" loss scenarios

Can start from high-level considerations: How destructive are the FCC-ee beams?



SY



### **FCC-ee beam parameters\***

|                                                                                                                                  | FCC             | ee collider parame | ters as of July 30, 202 | 3.                             |       |  |
|----------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------|-------------------------|--------------------------------|-------|--|
| Beam energy                                                                                                                      | [GeV]           | 45.6               | 80                      | 120                            | 182.5 |  |
| Layout                                                                                                                           |                 | PA31-3.0           |                         |                                |       |  |
| # of IPs                                                                                                                         |                 | 4                  |                         |                                |       |  |
| Circumference                                                                                                                    | $[\mathrm{km}]$ | 90.658816          |                         |                                |       |  |
| Bend. radius of arc dipole                                                                                                       | $[\mathrm{km}]$ | 10.021             |                         |                                |       |  |
| Energy loss / turn                                                                                                               | [GeV]           | 0.0391             | 0.374                   | 1.88                           | 10.29 |  |
| SR power / beam                                                                                                                  | [MW]            |                    | 50                      |                                |       |  |
| Beam current                                                                                                                     | [mA]            | 1279               | 137                     | 26.7                           | 4.9   |  |
| Colliding bunches / beam                                                                                                         | (               | 11200              | 1780                    | 380                            | 56    |  |
| Colliding bunch population                                                                                                       | $[10^{11}]$     | 2.14               | 1.45                    | 1.32                           | 1.64  |  |
| Hor. emittance at collision $\varepsilon_x$                                                                                      | [nm]            | 0.71               | 2.17                    | 0.67                           | 1.57  |  |
| Ver. emittance at collision $\varepsilon_y$                                                                                      | [pm] (          | 1.9                | 2.2                     | 1.0                            | 1.6   |  |
| Lattice ver. emittance $\varepsilon_{y,\text{lattice}}$                                                                          | [pm]            | 0.85               | 1.25                    | 0.65                           | 1.1   |  |
| Beware: table not up to date,<br>changed again yesterday ( <i>tra</i><br><i>number of bunches and bunc</i><br><i>ZH, ttbar</i> ) | deoff between   |                    | By design 📕             | Intensity limit<br>by SR power | ed    |  |

\*K. Oide, FCCIS WP2 Workshop 2023, Rome, https://indico.cern.ch/event/1326738/



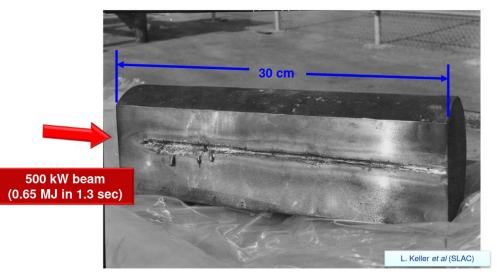
(STI)

### Energy density of stored beam: FCC-ee vs HL

Collider beam parameters:

|                                                     | FCC-ee (Z)                                                     | FCC-ee (W)                                                    | FCC-ee (ZH)                                                | FCC-ee (ttbar)                                              | HL                        | -LHC*                                              |
|-----------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|---------------------------|----------------------------------------------------|
| Beam particles                                      | e-/e+                                                          |                                                               |                                                            | р                                                           |                           |                                                    |
| Energy E                                            | 45.6 GeV                                                       | 80 GeV                                                        | 120 GeV                                                    | 182.5 GeV                                                   | 450 GeV                   | 7000 GeV                                           |
| Beam intensity I                                    | 11200b x<br>2.14x10 <sup>11</sup> ppb<br>=2.4x10 <sup>15</sup> | 1780b x<br>1.45x10 <sup>11</sup> ppb<br>=2.6x10 <sup>14</sup> | 380b x<br>1.32x10 <sup>11</sup><br>ppb =5x10 <sup>13</sup> | 56b x<br>1.64x10 <sup>11</sup> ppb<br>=0.9x10 <sup>13</sup> | 2.2x1                     | 60b x<br>0 <sup>11</sup> ppb<br>1x10 <sup>14</sup> |
| Stored energy $E_s$                                 | 17.5 MJ                                                        | 3.3 MJ                                                        | 1.0 MJ                                                     | 0.3 MJ                                                      | 44 MJ                     | 681 MJ                                             |
| $\sigma_x$ (for $\beta_x=100$ m)**                  | <b>27</b> 0 μm                                                 | 470 μm                                                        | <b>260 μ</b> m                                             | 400 µm                                                      | <b>650</b> μm             | <b>16</b> 0 μm                                     |
| $\sigma_y$ (for $\beta_y=100$ m)**                  | 14 μm                                                          | 15 μm                                                         | 10 µm                                                      | 13 μm                                                       | 650 μm                    | <b>16</b> 0 μm                                     |
| $E_s/(\sigma_x \sigma_y)$ (for $\beta_{x/y}=100m$ ) | 4600 MJ/mm <sup>2</sup>                                        | 470 MJ/mm <sup>2</sup>                                        | 380 MJ/mm <sup>2</sup>                                     | 60 MJ/mm <sup>2</sup>                                       | 100<br>MJ/mm <sup>2</sup> | 27000<br>MJ/mm <sup>2</sup>                        |

\*Assuming a normalized emittance of 2  $\mu$ m rad (neglecting for simplicity emittance growth and intensity loss in the ramp)


<sup>\*\*</sup> Dispersion contribution neglected



Stored beam energy only 0.05-2.5% of HL-LHC beams, but energy density of FCC-ee beams is between **0.2-17% of HL beams (7 TeV)** 

### **Destructive potential of FCC-ee beams**

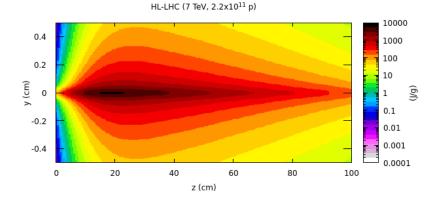
- FCC-ee beams: high intensity (at Z) and small emittance → significant destructive potential in case of accidental beam losses
- The risk of damage strongly depends on the actual loss scenario (i.e. particle loss distribution and loss duration)
- Nevertheless, can get a first feeling about the damage potential by studying a generic impact scenario (one bunch on a block of copper)
- Note: the energy density of the beam itself does not give the full picture → when comparing to HL beams need to consider also the different shower development of EM and hadronic showers (at largely different particle energies)



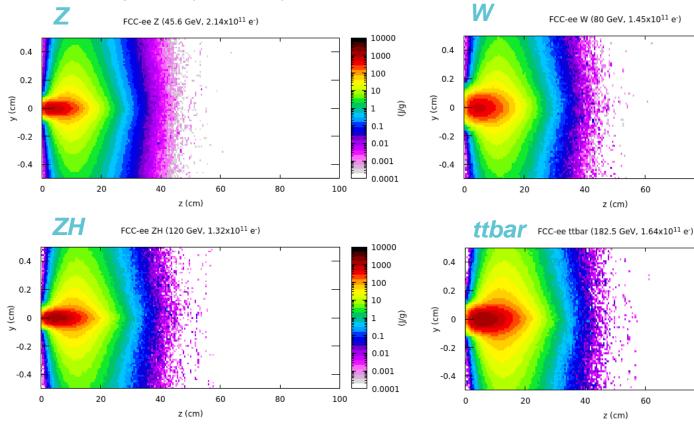
Damage of a copper block in a 18 GeV electron beam test at SLAC (1971).

This was a slow beam loss (0.65 MJ in 1.3 s) with a large beam spot size (2mm).

For comparison: stored beam energy in FCCee (*Z*) is 17.5 MJ, with a MUCH smaller spot size (=higher energy density)







### Energy deposition: FCC-ee vs HL (one bunch)

One bunch on a block of copper, assuming ß-functions of 100m in both planes (dispersion contribution neglected)

#### Horizontal plane (HL-LHC):



#### Horizontal plane (FCC-ee):



#### Lateral shower width for EM showers:

Well described by Moliere radius:

$$m{R}_{M}=rac{m{E}_{s}^{\dagger}}{m{E}_{c}}m{X}_{0}=rac{21\ MeV}{m{E}_{c}}m{X}_{0}$$

 $\dagger E_{s} = \sqrt{4\pi/\alpha} m_{\theta} c^{2}$ , where  $\alpha$  is the fine structure constant

= average lateral deflection of electrons with  $E=E_c$  after traversing one  $X_0$ (90% of energy deposition within ~1  $R_M$ )

EM shower length increases with log(E) and is proportional to  $X_0$ 





10000

1000

100

10

0.1

0.01

0.001

0.0001

1000

100

10

0.1

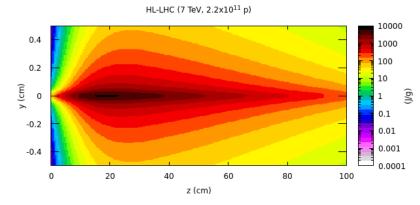
0.01

0.001

0.0001

100

100

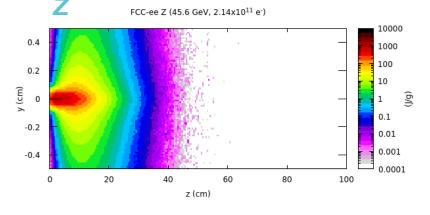

80

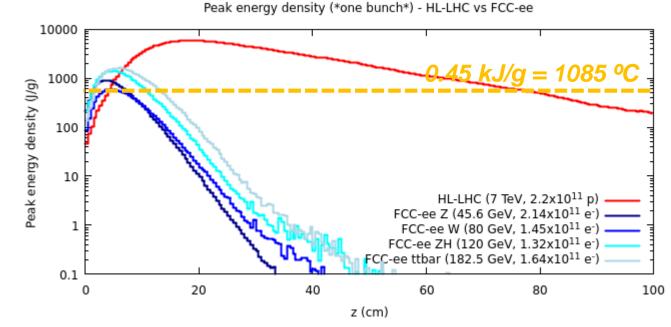
80

### Energy deposition: FCC-ee vs HL (one bunch)

<u>One bunch on a block of copper</u>, assuming ß-functions of 100m in both planes (dispersion contribution neglected)

#### Horizontal plane (HL-LHC):





#### Horizontal plane (FCC-ee):

SY

Accelerator Systems

CÉRN





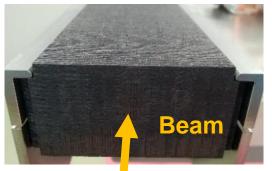
Max energy density by one bunch in Cu for the assumed optics function:

| HL-LHC   | FCC-ee (Z) | FCC-ee (W) | FCC-ee (ZH) | FCC-ee (ttbar) |
|----------|------------|------------|-------------|----------------|
| 5.8 kJ/g | 0.9 kJ/g   | 0.6 kJ/g   | 1.4 kJ/g    | 1.6 kJ/g       |

The energy deposition density by one FCC-ee bunch in copper is 4-10 times lower than for one HL-LHC bunch, but <u>one can nevertheless reach the melting</u> <u>point</u>

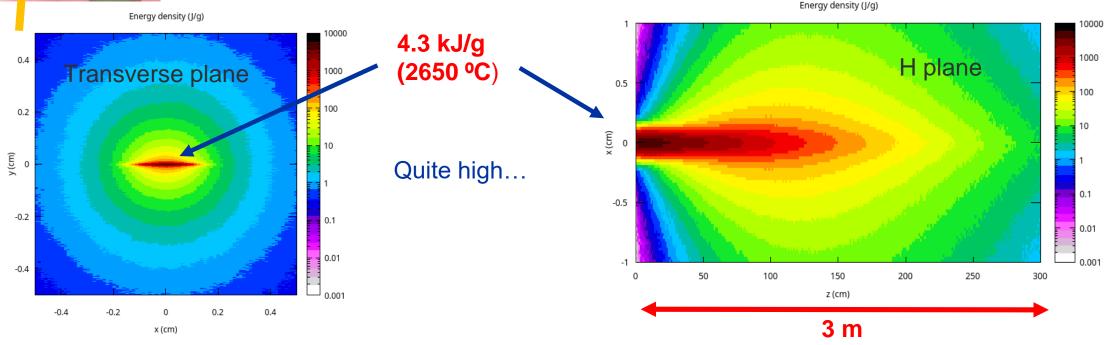
### **Considerations for HEB-to-FCC-ee transfer**

- FCC-ee beams@Z have the potential to damage protection absorbers
  - Need large transverse spot size at absorber locations, i.e. large ß-functions
  - Larger emittances can also help if affordable by the injection process
  - In addition, we limited the intensity for the booster-to-collider beam transfer at Z mode from 10% to 1% of the collider intensity
  - Nevertheless the FCC-ee injection trains have a higher energy density than HL-LHC injection trains


|                               | Energy   | Assumed train intensity                                    | Stored energy | Geom. emittances                              |
|-------------------------------|----------|------------------------------------------------------------|---------------|-----------------------------------------------|
| SPS to<br>HL-LHC              | 450 GeV  | 6.6×10 <sup>13</sup> p<br>(288b, 2.3×10 <sup>11</sup> ppb) | 4.78 MJ       | 4.4 nm                                        |
| HEB to FCC-ee<br>( <b>Z</b> ) | 45.6 GeV | 2.4×10 <sup>13</sup> e+/e-                                 | 0.175 MJ      | 0.26 nm /<br>0.53 pm (booster<br>emittances*) |

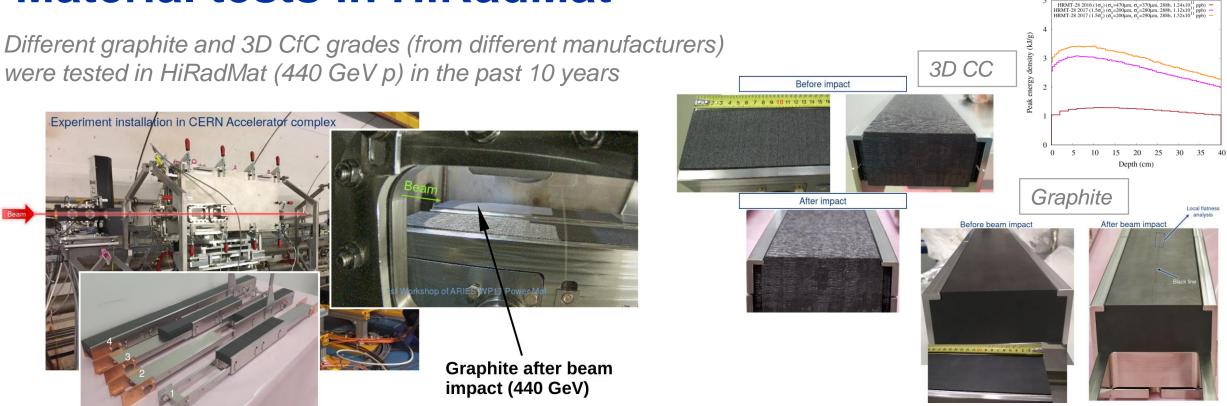
For the same ß-functions, the FCC-ee train <u>energy</u> <u>density</u> (MJ/mm<sup>2</sup>) is >10 times higher than HL-LHC (will depend on emittance)

\*Emittances from Antoine's talk at the FCCIS WP2 workshop in Rome (Nov 2023); vertical emittance was calculated assuming a coupling of 0.001. BUT: these emittances are still changing!




## Energy deposition by FCC-ee injection train in graphite/CfC absorber block




#### Example (Z pole, 45.6 GeV):

- Injection train with 0.5% of collider intensity (1.2×10<sup>13</sup> e-)
- All bunches impact on same spot on graphite/CfC absorber (1.8 g/cm<sup>3</sup>)
- Geometric emittances of 0.26 nm/0.53 pm
- Local beta functions of **1km** in both planes





### Material tests in HiRadMat



In HRMT-28, a peak energy density of almost **3.5 kJ/g (2300 °C)** was achieved in Graphite (1.83 g/cm<sup>3</sup>) without visible damage

Can take this as a tentative material limit (note: this is only a very rough criterion  $\rightarrow$  for a more precise answer, stresses need to be assessed on a case-by-case basis, in particular for the flat FCC-ee beams)





Pictures show HRMT-28 (F.X. Nuiry et al.)

Peak energy density (1.8 g/cm<sup>3</sup>),  $1\sigma$  impact paramete

### Conclusions

- The small-emittance beams in FCC-ee pose a challenge for machine protection, in particular in combination with a high beam-intensity as in Z operation
- The overall destructive potential is less than for HL-LHC beams, but nevertheless even a single bunch can induce temperatures higher than the melting point of copper
- Beam transfer from the HEB to the collider is delicate for machine protection (at Z, the injection trains have a higher energy density than HL injection trains → challenging for absorber materials)
- It will be crucial to compile a list of failure scenarios, in order to derive specifications for systems





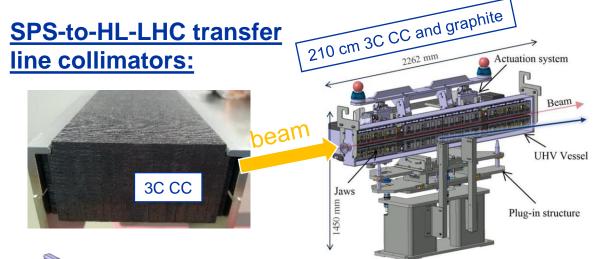
home.cern

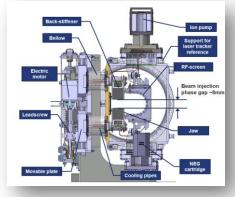
### **Protection absorbers for SPS-to-LHC beam transfer**

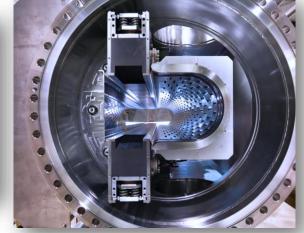
Absorber materials  $\rightarrow$  must resist to high energy densities (kJ/g/pulse)

#### Typical materials used at CERN:

- Isotropic graphite
- 2D reinforced Carbon/Carbon composites
- More recently 3D Carbon/Carbon composites Often complemented downstream by metals (e.g. TiGr5, CuCr1Zr) for better absorption


~157 cm graphite


#### HL-LHC injection protection absorber:


(installed in LS2 - 2019-2021)

SY

Accelerator Systems

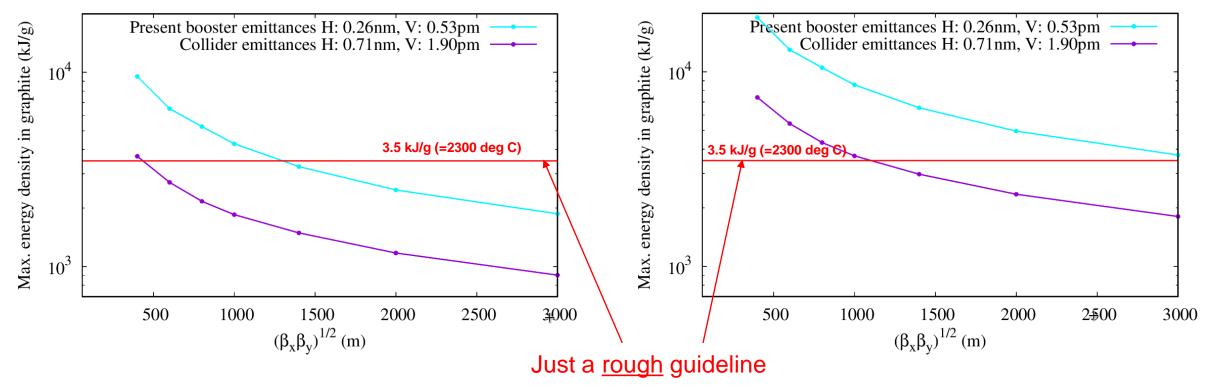






There are also other important requirements for the devices: Electrical conductivity (impedance), flatness, etc.

~97 cm TiGr5 + 60 cm CuCr1Zr


~157 cm graphite

### Max. energy density in graphite/CfC (1.8 g/cm<sup>3</sup>)

FCC-ee injection train (Z-pole): maximum energy density in block <u>vs</u> local beta-function at absorber location comparing present <u>booster emittances</u> (0.26nm, 0.53 pm) with <u>collider emittances</u> (0.71nm, 1.9pm):

#### **0.5%** of collider intensity $(1.2 \times 10^{13} \text{ e-})$ :

#### **1.0%** of collider intensity $(2.4 \times 10^{13} \text{ e-})$ :



