
HSF Julia WG meeting, June 20, 2024

WrapIt! and ROOT.jl

Philippe Gras
IRFU, CEA, Université Paris-Saclay, France

June 20, 2024

Introduction

• WrapIt! � is a tool that automates generation of Julia-binding for C++ libraries together with
CxxWrap � .

• Was presented at Erlangen’s JuliaHEP workshop � .

• ROOT � has been used as a testbench for WrapIt! from its early development.
• Cxx.jl � -based ROOT.jl � was replaced by a WrapIt!/CxxWrap-based implementation two

weeks ago (version 0.3.0).

2 / 15

https://github.com/grasph/wrapit
https://github.com/JuliaInterop/CxxWrap.jl
https://indico.cern.ch/event/1292759/contributions/5618593/
https://root.cern
https://github.com/JuliaInterop/Cxx.jl
https://github.com/JuliaHEP/ROOT.jl

Reminder of WrapIt! goals

• Transparent for the Julia user:
say_hello("World") to call void say_hello(const char*)
a = A() to instantiate class A

@ccall "./libHello.so".say_hello("World"::Cstring)::Cvoid
@cxx cxx_say_hello(pointer("World"))

• Support for large libraries with 1000+ classes and methods.
• Minimal effort to add the bindings to an existing C++ library and update them when the library code evolves.

⇒ Automatic discovery of the types and methods to bind.
⇒ Requiring a compilation step is not a problem.

3 / 15

ROOT.jl history

Clang.jl
generated
C-wrapper

Cxx.jl
dynamic binding

WrapIt ! &
CxxWrap

2014 2016 2024

2020

Cxx.jl not
working with

new Julia
releases

2022

start of wrapit
development

2016

First CxxWrap
release

First Cxx.jl
release 2021

HSF Julia-HEP
miniwokshop

 --

Stanitzki &
Strube’s publication1

2023

Potential of
Julia for

HEP
publication2

R
O

O
T.

jl

Original developer: Joseep Pata; Oliver Schulz joined in 2017; Philippe Gras developed CxxWrap version. Recent PRs from Pere Mato.

Few other developers contributed along the ROOT.jl history.

1 doi:10.1007/s41781-021-00053-3 �
2 doi:10.1007/s41781-023-00104-x �

4 / 15

https://doi.org/10.1007/s41781-021-00053-3
https://doi.org/10.1007/s41781-023-00104-x

The v0.3.0 revolution

• Second ROOT.jl revolution: first was the migration to Cxx.jl and dynamic binding (ala cppyy).
• No more limited to Julia 1.3.x !
• Static binding

→ Limited to ROOT classes included in the build.
→ But can be relatively easily extended to more classes.

• C++ ROOT libraries are installed automatically.
• Can also use an already existing installation, with constraints on the ROOT version.

• Package in the General Julia registry
→ Easy installation: julia>]add ROOT

5 / 15

Currently supported classes

Number of Julia bindings
82 ROOT classes/types with their methods

Main included classes
TSystem, TROOT, TInterpreter, → System classes
TH1x, TGraph, TAxis,TCanvas, TPad, → Histogram, graph and plotting
TF1, TF1Parameters, TFormula, TFitResults, → Functions and fitting
TRandom, → Random number generation
TFile, TDirectoryFile, TTree, TBranch, → ROOT I/O including TTrees
TTreeReader, TTreeReaderValue, TTreeReaderArray, → Reading TTrees
TObject, TClass, TNamed, TVectorD, TVectorF, TSeqCollection, TList → Base and collection classes

6 / 15

Supporting more ROOT classes

Adding new classes is relatively easy
• For the easiest cases: adding the name of the class header file in the configuration file of the code

generator will be enough.
• For less-easy cases, some method or types, causing issue but unneeded, will need to be added in the

veto configuration file.
• For worst cases, extra development of WrapIt! needed.

Templates
• Most difficult cases are templated class, which have limited support in WrapIt! (linked to libclang

limitations)

Contributing
The best way to contribute to ROOT.jl is to add ROOT classes you miss.

→ Check out JuliaHEP/ROOT.jl-generator � , which is the code that generates ROOT.jl code and
start by adding your Class.h in the ROOT.wit.in file and run julia --project=. generate.jl.

7 / 15

https://github.com/JuliaHEP/ROOT.jl-generator

Examples and tests (1/2)

Examples
Provided with examples: see https://github.com/JuliaHEP/ROOT.jl/tree/master/examples �

• Histogramming, plotting, writting histogram to disk
• Fitting Histograms and Graphs
• Reading and writing TTrees

Tests
We have only the examples as tests (run in the github CI1)

• Given the extent of ROOT features, difficult to add unit tests for each of them.
• Could be handled by porting ROOT tutorials. Nevertheless, tutorials are difficult to test beyond

testing they don’t crash.
• Could define some use cases and develop unit tests for them, but difficult to be exhaustive

1Continuous integration system
8 / 15

https://github.com/JuliaHEP/ROOT.jl/tree/master/examples

Examples and tests (2/2)

Contribution opportunity

Port a ROOT tutorial � .

9 / 15

https://root.cern/doc/master/group__Tutorials.html

Example (1/2)

using ROOT

Create a ROOT histogram, fill it with random events, and fit it.
h = ROOT.TH1D("h", "Normal distribution", 100, -5., 5.)
FillRandom(h, "gaus")

#Draw the histogram on screen
c = ROOT.TCanvas()
Draw(h)

#Fit the histogram wih a normal distribution
Fit(h, "gaus")

#Save the Canvas in an image file
SaveAs(c, "demo_ROOT.png")

#Save the histogram and the graphic canvas in the demo_ROOT_out.root file.
f = ROOT.TFile!Open("demo_ROOT_out.root", "RECREATE")
Write(h)
Write(c)
Close(f)

10 / 15

Example (2/2)

11 / 15

ROOT I/O

• Reading/Writing histograms is easy.
• Reading TTree is easy thanks to TTreeReader
• Writing TTree is difficult because of ”SetAddress” mechanism of ROOT.

The RootIO.jl package built on top of ROOT.jl will provide a higher-level interface.
See next talk from Yash Solanki.

12 / 15

Missing features

• Documentation: need to consult ROOT reference manual.
• In addition, in method prototype, only argument type are transferred to Julia. Can be fixed thanks to a

new CxxWrap feature.

• Support of more ROOT classes.
• Installation of ROOT libraries currently done with Conda.jl. Needs to move to _jll:

cross-compilation compilation requirement is the show stopped.

13 / 15

How to contribute

From the project GitHub repository README
14 / 15

Summary

• WrapIt! which was developed as a proof-of-concept is now real tool.
• Was also used to bring Geant4 to Julia

• ROOT.jl reimplemented with WrapIt! and CxxWrap to support nowadays Julia releases.
• Several places to contribute to the project.

15 / 15

