Jet Substructure in Julia J

Sattwamo Ghosh

Department of Physical Sciences
Indian Institute of Science Education and Research, Kolkata

Supervised by Dr. Sanmay Ganguly

Asst. Professor, Indian Institute of Technology, Kanpur

June 20, 2024

Sattwamo Ghosh (IISER K) Julia HEP June 20, 2024 1/17

Initial Benchmarks

Comparing N2Plain Strategy: Julia and Python

In this strategy, every particle is compared with every other particle to determine the nearest
neighbors according to the chosen distance metric (e.g., k¢, anti-k:, or Cambridge/Aachen)

/’
§ 8000 |- /
3 6000 - ///
The adjoining plot shows E e
that, similar to C++, the E /‘
python bindings show poor T 4000 |-
scaling compared to Julia at % A~
higher particle density g o o
2 2000 | "_7',) -
i Pl "
0 -O#"""‘—I:— NS

100 200 300 400 500 600
<n> initial particles

Sattwamo Ghosh (IISER K) Julia HEP June 20, 2024 3/17

Comparing N2Tiled Strategy: Julia and Python

In this strategy, the space in which the particles are distributed (usually the rapidity-azimuth
plane) is divided into a grid of tiles. Each particle is assigned to a tile based on its coordinates.
Instead of comparing every particle with every other particle, the algorithm only compares
particles within the same tile and neighboring tiles. This reduces the number of distance
calculations significantly.

o
800 1 Julia N2Ti 4
E @ python N2Tiled)
Q ',4
% v
g el
= 600 | -
@ e
F P e It can be seen that like
c .
S a0l P C++, there is small
3 e advantage of Julia over
E . L
£ - - Python also.
4 200 - g
& [e e
o oV
2 -— o
@ o
100 200 300 400 500 600

<n> initial particles

Sattwamo Ghosh (IISER K) Julia HEP June 20, 2024 4/17

Initial Benchmarks

Overall comparison: Julia and Python

.
: JU}IO NZP\Ian
L Julia N2Tiles
8000 @ python NzPlain /
@ python N2Tiled
)

=
c
]
>
el -
3
@ 6000 [
E .
[o
- ;
2
T aoo0 | .
2 N
2 .
])
5 ad e
@ 2000 | e
4 PR— P
-)
9] o _—
ol o= oo—B—8 —8— 8 —°

100 200 300 400 500 600
initial particles

From this graph, we see that, in terms of efficiency we have:
N2 TiledJulia > N2 TiledPython > N2PlainJulia > N2PlainPython

With N2Tiled Julia being the most efficient, for higher particle density.
Julia HEP June 20, 2024 5/17

Jet Substructure Modules

Jet Filtering

The jet filtering algorithm was implemented in Julia, and the
corresponding result was compared with Python. In the adjoining plots,
the y-axis represents the groomed parameters as obtained from Julia, and
the x-axis represents the groomed parameters obtained from Python.

» : ‘ © Tmogedjer ‘ °
- .
% p .
S 20 . £
H E 00 -
% 15 g o
< g -25 °
2 o 2
g g
510 5
° k-1
%:? § -5.0
2 =
s
.
/. -7.5
.
5 10 15 20 25 -7.5 =5.0 =25 0.0 2.5
Filtered jet pT obtained from Python (GeV) Filtered jet eta obtained from Python
Figure: Comparing filtered pT Figure: Comparing filtered eta

Sattwamo Ghosh (IISER K) Julia HEP June 20, 2024 7/17

Jet Filtering: Efficiency

Avg time taken (s/event)
N
S
3

The adjoining plot compares the ? 8 A N N
efficiency of the jet filtering
algorithm implemented in Python

and Julia. .

100 200 300 400 500 600
<n> initial particles

Sattwamo Ghosh (IISER K) Julia HEP June 20, 2024 8/17

Jet Trimming

A similar analysis for the jet trimming algorithm was done, and the
following plots were obtained.

& oo 1o : o5l (o m e
% 20 e o
= 3
£ £ 0.0 .
£ = o
S5 3
B Kl .
5 S 25 °
£ . g
510 3
s . 3
E -
§ g 5.0
E =
E 5
.
-7.5
s o
5 10 15 20 -7.5 -5.0 -2.5 0.0 2.5
Trimmed jet pT obtained from Python (GeV) Trimmed jet eta obtained from Python
Figure: Comparing trimmed pT Figure: Comparing trimmed eta

Sattwamo Ghosh (IISER K) Julia HEP June 20, 2024 9/17

Jet Trimming: Efficiency

400

. The adjoining plot compares the

R T efficiency of the jet trimming
algorithm implemented in Python
and Julia. This follows a similar
trend to that of jet filtering.

100 200 300 400 500 600
<n> initial particles

Sattwamo Ghosh (IISER K) Julia HEP June 20, 2024 10/17

Jet Substructure Modules

Filtering & Trimming: Codes

+Filter() s/

{astotsForsFte (couble R
Seloctor selocr
doutle tho=0.0

) o=

ithe

Parameters
Rt th fitering racius

Defintion at e 124 of e Filterh.

Filter

reclustermethod
filterRadius: :Float6s
nusHardestlets: :Int

fon apply_trin(jet: :Pseudodet, clusterseq:iClustersequence, trins:Trin)
rad = trim. trimRadius;
ntd = trin. reclusterhethod

erSequence, filter::Filter)
fracz = tris.trinFraction

t::Pseudodet, clusty
rad = filter. filterRadius
new_clusterseq
new_clusterseq

~ (jet, clusterseq, rad,
reclustered new_

rseq))
reclustered) <= filter.numardestlets 7 (reclustered) : filter.numHardestlets

hard = reclustered(1:n]

filtered (hard)

filtered
nd; trinmed

Sattwamo Ghosh (IISER K) Julia HEP June 20, 2024 11/17

Mass Drop Tagger

The MassDrop Tagging algorithm was similarly implemented in Julia and
compared with the corresponding Python bindings, for the same set of
data. The obtained results were concurrent with each other (shown in the
plots below).

Groomed jet pT obtained from Julia (GeV)
@
Groomed jet mass obtained from Julia (GeV)

2 4 6 8 10 12 14 2 3 4 5 6 7 8
Groomed jet pT obtained from Python (GeV) Groomed jet mass obtained from Python (GeV)

Figure: Comparing groomed pT Figure: Comparing groomed mass

Sattwamo Ghosh (IISER K) Julia HEP June 20, 2024 12/17

Mass Drop Tagger: Efficiency

40

Avg time taken (s/event)

As can be seen from the SN
adjoining plot, the implemented W00 e 0
Julia MassDrop Tagger is much
more efficient compared to the
corresponding Python bindings.

Ratio of time taken (Python:julia)

100 200 300 400 500 600
<n> initial particles

Sattwamo Ghosh (IISER K) Julia HEP June 20, 2024 13 /17

Mass Drop Tagger: Codes

Pigudoles Nossbraplagger::resuld{const Peudodet & Jet) constl
sebdodet) = Jets

17 sse sarnog
e yercen 1
i HESERAN 0 -
bl Sanca e RS SR g Shout 1 o o LEion S e » Cantrsdge/chen clsterioss

he jet is not obtained through a C/A

atliets = clustersea
1, g2
() ,!m.ls hist - clusterseq.ni
7 st ask that we can “valk" in the cluster seque e
/ Spotopriste errors will be thrown sutossticatly 1 this is not nitetrue
/7 Wcsee e Wad_parents, g1, p2 = has_parents(jet, hist)
a4 parents = j s,
.m0 " 1 .
—redagive sass varning war ad_paren
Wa3sDropTagger: parent (sub)et has mass"2<-8; returning null fet” parentl = slUets hist(p1] . jetp_index
) parent2 = allets (hist 2. etp_
/ make parent1. the sare massive fet

OB <2 e

an(11,52); B —
o the sass arop ang s degree of
v cre ke dist/ms \6

rething interesting, so exit the

(CB1.520 < _sue_mue.220) 66 (1.ke_distance(j2) > yeutej.n20))

S ((m2(parent1) < £2(jet tag.nu

eturn an espty Pseudolet
o

result_local

i » Structure(result_local);
om0 s 1m0 /.80
S e ts213
result_local. « turesases(s));
resutt_tocal;
)

Sattwamo Ghosh (IISER K) Julia HEP June 20, 2024 14 /17

Soft Drop Tagger

The SoftDrop Tagging algorithm was also implemented in Julia, but this
time we compared it with the C++ FastJet Bindings, for the same set of
data. The obtained results were concurrent with each other (shown in the
plots below).

25 [* * ® Tosedi ‘ °

o _ 8

€20 =7

E : .

2 2

g H

315 g

5

E . 2

g :

5 i,

5 10 £

3 3 .

£ 23

g 3 .

. ¢ .

o ’ ° 2 o :
& o
5 10 15 20 25 2 3 4 5 6 7 8
Groomed jet pT obtained from C++ (GeV) Groomed jet mass obtained from C++ (GeV)
Figure: Comparing groomed pT Figure: Comparing groomed mass

Sattwamo Ghosh (IISER K) Julia HEP June 20, 2024 15 /17

Plans Moving Forward

What More To Do

Optimise and improve the built modules

°
@ Add the remaining modules
@ Build an analysis module

°

Contribute to the already existing code base

| have added all the codes | have developed till now in this GitHub repository:
Qjulia-JetSubstructure (https://github.com/sattwamo/julia-JetSubstructure)

Sattwamo Ghosh (IISER K) Julia HEP June 20, 2024

17 /17

https://github.com/sattwamo/julia-JetSubstructure
https://github.com/sattwamo/julia-JetSubstructure

	Initial Benchmarks
	Jet Substructure Modules
	Plans Moving Forward

