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Initial Benchmarks




Comparing N2Plain Strategy: Julia and Python

In this strategy, every particle is compared with every other particle to determine the nearest
neighbors according to the chosen distance metric (e.g., k¢, anti-k:, or Cambridge/Aachen)
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Comparing N2Tiled Strategy: Julia and Python

In this strategy, the space in which the particles are distributed (usually the rapidity-azimuth
plane) is divided into a grid of tiles. Each particle is assigned to a tile based on its coordinates.
Instead of comparing every particle with every other particle, the algorithm only compares
particles within the same tile and neighboring tiles. This reduces the number of distance
calculations significantly.
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Initial Benchmarks

Overall comparison: Julia and Python
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From this graph, we see that, in terms of efficiency we have:
N2 TiledJulia > N2 TiledPython > N2PlainJulia > N2PlainPython

With N2Tiled Julia being the most efficient, for higher particle density.
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Jet Substructure Modules




Jet Filtering

The jet filtering algorithm was implemented in Julia, and the
corresponding result was compared with Python. In the adjoining plots,
the y-axis represents the groomed parameters as obtained from Julia, and
the x-axis represents the groomed parameters obtained from Python.
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Jet Filtering: Efficiency

Avg time taken (s/event)
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Jet Trimming

A similar analysis for the jet trimming algorithm was done, and the
following plots were obtained.
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Jet Trimming: Efficiency

400

. The adjoining plot compares the

R T efficiency of the jet trimming
algorithm implemented in Python
and Julia. This follows a similar
trend to that of jet filtering.
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Jet Substructure Modules

Filtering & Trimming: Codes
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Mass Drop Tagger

The MassDrop Tagging algorithm was similarly implemented in Julia and
compared with the corresponding Python bindings, for the same set of
data. The obtained results were concurrent with each other (shown in the
plots below).
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Mass Drop Tagger: Efficiency
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Julia MassDrop Tagger is much
more efficient compared to the
corresponding Python bindings.

Ratio of time taken (Python:julia)

100 200 300 400 500 600
<n> initial particles

Sattwamo Ghosh (IISER K) Julia HEP June 20, 2024 13 /17



Mass Drop Tagger: Codes
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Soft Drop Tagger

The SoftDrop Tagging algorithm was also implemented in Julia, but this
time we compared it with the C++ FastJet Bindings, for the same set of
data. The obtained results were concurrent with each other (shown in the
plots below).
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Plans Moving Forward




What More To Do

Optimise and improve the built modules

°
@ Add the remaining modules
@ Build an analysis module

°

Contribute to the already existing code base

| have added all the codes | have developed till now in this GitHub repository:
Qjulia-JetSubstructure (https://github.com/sattwamo/julia-JetSubstructure)
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