Plans for RootlO jl

Google Summer of Code, 2024

Yash Solankil! Philippe Gras?> Pere Mato Vila3

Lndian Institute of Technology, Delhi
2Université Paris-Saclay

3CERN, EP-SFT

Julia HEP WG meeting
20 June, 2024

1/9

-
COONOUHWNH

==
DU WN

Introduction

Currently, if you want to create a TTree in a root file, you have to write
everything manually, which is not always convenient for the users
using ROOT

printin(” Creating a ROOT file with a TTree filled with scalars.\n")
nevts = 10

f = ROOT. TFile!Open(” testl.root”, "RECREATE")
t = ROOT.TTree("tree”, "tree”)
a = fill (0)
Branch(t, "a”, a, 32000, 99)
for i in 1l:nevts
af] =i
println (" Writing value ", a[])
Fill (t)
end
Write(t)
Close(f)

2/9

Inputs using UnROOT ,jl

ONOUI A WN R

Reading back from the TTree is supported by UnROOT, which simplifies
taking input from TFiles. It is written entirely in Julia without any
dependence on C++ or Python.

using UnROOT
printin (" Reading back the file created with LazyTree of UnROOT. jl")

t = LazyTree("test2.root”, "tree”)
display (t)

3/9

https://github.com/JuliaHEP/UnROOT.jl

What about Output?

Through my Google Summer of Code project, | will create the RootlO.jl
module, which would simplify writing to the root files.

1

2 import ROOTIO, DataFrames

3 nrows = 10

4 df = DataFrame(x = rand(nrows), y = rand(nrows), z = rand(nrows), v = [rand(5)
for irow in l:nrows])

5 ROOTIO. Write (" data.root”, "mytree”, "mytreetitle”, df)

RootlO.jl will be created in 4 steps, with a deliverable at each step:
@ Baseline support
@ Validation using UnROOQOT to read back values
@ Implementation of extra features
@ Unit tests and documentation

A more detailed overview of the module can be found in the Julia-TFile
document.

4/9

https://github.com/JuliaHEP/RootIO.jl
https://cernbox.cern.ch/pdf-viewer/public/eBswMKlELhkqWt0/Julia_TFile-v2.pdf?contextRouteName=files-public-link&contextRouteParams.driveAliasAndItem=public/eBswMKlELhkqWt0

Extra features of RootlOjl

The RootlO.jl module will support the writing of:

@ Plain Vector fields of Julia in the data structs: stored as std::vector or
C-array or both

@ Nested structs: Fields of a struct, which are themselves structs will be
supported.

@ The Julia types Tuple (and NTuple)

@ Vector of structs and Vector of Vectors

@ Storing instances of classes that does not inherit from TObject

5/9

Timeline

Baseline package Feature Package 1 Feature Package 3 Project Deadline

‘ 10 July ‘ 25 July ‘ 4 August

10 August

11 August
Tests &
Documentation for

Baseline package

Feature Package 2 Tests &
Documentation

Figure: Timeline of GSoC project

Current status of RootlO.jl

The Pull Request baseline support for writing to T Tree has been opened.
The following types will be supported when the changes will be merged:

TTree type
Julia type C++ type® code Description
String charx C a character string.
Int8 Char_t B an 8 bit signed integer.
UInt8 UChar_t b an 8 bit unsigned integer
Int16 Short_t S a 16 bit signed integer
UInt16 UShort_t s a 16 bit unsigned integer
Int32 Int_t I a 32 bit signed integer
UInt32 UInt_t i a 32 bit unsigned integer
Float32 Float_t F a 32 bit floating point
Half32’ Float16_t £ 32 bits in memory, 16 bits on disk
Float64 Double_t D a 64 bit floating point
Double32°® Double32_t d 64 bits in memory, 32 on disk
Int64 Long64_t L a 64 bit signed integer
UInt64 ULong64_t 1 a 64 bit unsigned integer
Int64 Long_t G a long signed integer, stored as 64 bit
UInt64 ULong_t g a long unsigned integer, stored as 64 bit
Bool bool o? a boolean
StdVector{T} std::vector{T} N/A Vector of elements of any of the above
type.

Figure: Supported types in the baseline package

7/9

Examples

The following example demonstrates how we can create a custom struct
and write it to the TTree

1

2 import RootlO, ROOT

3 using DataFrames

4

5 mutable struct Event

6 x:: Float64

7 y::Float64

8 z:: Float64

9 v::Vector{Float64}

10 end

11

12 f = ROOT. TFile!Open(”data.root”, "RECREATE")
13 Event() = Event(0., 0., 0., Float64][])
14 tree = RootlO.TTree(f, "mytree”, "mytreetitle”, Event)
15 e = Event()

16 for i in 1:10

17 e.x, e.y, e.z = rand(3)

18 v = rand (5)

19 RootlO . Fill (tree, e)

20 end

21 RootlO . Write(tree)

22 ROOT. Close (f)

23

8/9

Conclusion

@ A new module called RootlO.jl will be created, which will streamline
the writing of data to TFiles

@ Support for the writing of all primitive types, structs, julia vectors,
tuples, nested structs and custom objects will be provided

@ Future goal- Add support for the experimental RNtuple that will
replace the TTree

@ Thanks to Pere and Philippe for help writing the module and
mentoring me for Google Summer of Code!

9/9

