Tensions in cosmology - new physics vs. systematics Dhiraj Kumar Hazra, IMSc, Chennai, India

Standard model of cosmology

- 1. Einstein's theory of gravity
- 2. Metric: homogeneous and isotropic at large scales
- 3. Constituents: baryons, 'cold' dark matter (CDM), a dark energy described by cosmological constant (Λ)
- 4. Initial condition: 'complete slow roll' inflation with power law form of primordial power spectrum

BASELINE: Λ CDM + power law primordial spectrum

How do we determine the standard model parameters ?

Cosmological observations

High redshift: Cosmic Microwave Background

Low redshifts: Supernovae, galaxy clustering lensing ++

NASA/ESA

CERN

SDSS

Anomalies

Tensions

A DECEMBER OF THE PARTY OF THE

Planck data

Planck anomalies

CERN

Anomalies (lensing)

Solution

Acoustic peaks in the CMB appear smoother

Closed Universe: a spatial curvature

Planck 18, Di Valentino, 2019

Tensions

S8 tension

KiDS1000: Asgari 2020

Closed Universe aggravates tensions

Solutions to H0 tensions

- 1. Early dark energy Poulin+ 2018, +++
- 2. Emergent dark energy (late time solution) Li, Shafieloo, 2019, +++
- 3. Negative Λ Sen + 2021, ++
- 4. Scalar-tensor theory, Rossi + 2019, +++
- 5. Early modified gravity, Braglia + 2020, +++
- 6. Other extensions to standard model +++
- 7. Systematics in the H0 measurements +++
- 8. Systematics in the Planck CMB data +++

A common solution: let's explore the primordial physics

CFRN

Let us reconstruct the primordial power spectrum

- A spectrum that mimics lensing
- A spectrum that prefers flat Universe
- A spectrum that prefers higher H0 than baseline
- A spectrum that prefers lower S8 than baseline

Let's rewind (reconstruction: top down approach)

Reconstruction: primordial power spectrum from Planck

Given the transfer function, Modified Richardson Lucy can reconstruct the primordial power spectrum from angular power spectrum data iteratively

Let's rewind

Primordial features can mimic the lensing effects with oscillations at small scales

Hazra, Shafieloo, Souradeep JCAP 2014

Let's rewind

Can primordial features solve H0 and S8 tension ?

Hazra, Shafieloo, Souradeep JCAP 2019

Let's rewind: Planck 2018 paper V2

The following spectra was proposed as a solution to Alens problem:

$$\mathcal{P}_{\mathcal{R}}^{0}(k) \left[1 + \mathcal{A}_{\text{lin}} \exp(-(k - \mu_{\text{env}})^{2}/2\sigma_{\text{env}}^{2}) \cos\left(\omega_{\text{lin}}k/k_{*} + \varphi_{\text{lin}}\right) \right]$$

This is similar to our reconstruction (2014) demonstrating sinusoidal oscillations at small scales:

One Spectrum: the idea

Assume the excess lensing effect is actually a primordial signal

Treat the best fit baseline+Alens best fit to the Planck TT data as the input spectrum for reconstruction

Subtract the lensing effect corresponding to Alens=1

What remains is the residual excess smoothing corresponding to 10% excess lensing

A reconstruction is expected to capture the primordial features that can mimic the effect

One Spectrum

CERN

Mimics excess lensing

CERN

Prefers flat Universe

Brings back cosmic concordance

Di Valentino, 2019

Brings back cosmic concordance

Solves S8 problem

Age of the Universe

Hazra, Antony, Shafieloo, JCAP 2022

One Spectrum

Therefore, we find:

- **One Spectrum** mimics lensing
- **One Spectrum** prefers flat Universe
- **One Spectrum** prefers higher H0 than baseline

CERN

• **One Spectrum** prefers lower S8 than baseline

Can we parametrize such spectrum?

$$\mathcal{P}_{New}(k) = \mathcal{P}_{Power\ Law}(k) \left[1 + \frac{\alpha_1 \sin\left(\omega(k-k_0)\right)}{\left(1 - \alpha_2 \sin\left(\omega(k-k_0)\right)\right)\left(1 + \beta(k-k_0)^4\right)} \right]$$

Models/Data	P18TT	P18TT + HST		
New spectrum	-1.14 ± 0.53	2.67 ± 0.53		
Restricted spectrum	-0.58 ± 0.52	3.4 ± 0.53		

$$\mathcal{P}_{Restricted}(k) = \mathcal{P}_{Power\ Law}(k) \left[1 + \frac{\alpha_1 \sin\left(\omega(k-k_0)\right)}{1+\beta(k-k_0)^4} \right]$$

k in Mpc^{-1}

Hazra, Antony, Shafieloo, JCAP 2022

 10^{-1}

Positive correlations of solutions

Best fit and evidence

τU

Data	ln[Bayes factor]	C.L.
P18TP	-0.01 ± 0.54	95%
P18TP + HST	1.46 ± 0.55	99.5%
P18TT + ACT + DES + HST	2.28 ± 0.65	99.6%
P18TP + ACT + DES + HST	1.94 ± 0.66	98.7%
P18TP + DES + HST	2.32 ± 0.64	99.5%
P18TP + ACT + DES	-0.34 ± 0.66	08 5%
+ BAO $+$ SN $+$ HST	-0.54 ± 0.00	90.070
P18TP + ACT + DES	-0.85 ± 0.66	99.5%

k in Mpc^{-1}

 $\mathbf{T}\mathbf{O}$

Implications for the large scale structure

Hazra, Antony, Shafieloo, JCAP 2022

Theoretical explanation: An inflationary trajectory

An intermediate fast roll phase in the scalar field dynamics. We parametrize the Hubble flow function

$$\epsilon_H(N) = \epsilon_H^{baseline}(N) \left(1 + \frac{\alpha \cos\left[\omega(N - N_0)\right]}{1 + \beta(N - N_0)^2} \right)$$

Antony, Finelli, Hazra, Shafieloo, PRL 2023

Why Hubble flow functions and not potential ?

Usually potential parameters restricts the prior space of spectral tilt. Exploration of this degeneracy demands a wide prior on the spectral tilt

$$\epsilon_{H}^{baseline}(N) = \epsilon_{1} \exp\left[\epsilon_{2}(N - N_{*})\right]$$

The baseline parametrization of the Hubble flow function allows us to have wide priors on scalar spectral amplitude, tilt, and tensor-to-scalar ratio

This one parametrization allows us to marginalize over all minimal slow roll potentials The free parameters are H_i^2/ϵ_1 , ϵ_1 and ϵ_2

Why Hubble flow functions and not potential ?

Here:
$$n_s=1-2\epsilon_1-\epsilon_2$$

 $r = 16\epsilon_1$

The spectral amplitude is proportional to

$$H_i^2$$

 ϵ_1

Given these parameters, we solve the Hubble flow function numerically to obtain the evolution of the Hubble radius during inflation

Using Bunch-Davies vacuum initial condition, we solve the Mukhanov-Sasaki equations to get the primordial scalar and tensor power spectra

NOTE: No assumption on the potential goes in here. We work with canonical Antony, Finelli, Hazra, Shafieloo, PRL 2023

Datasets

We consider the temperature data separately (P18TT) and including polarization (P18TP) and lensing (P18TPL). Also P18TTEE was considered.

- 1. P18TT + BK18
- 2. P18TT + BK18 + S21
- 3. P18TEEE + BK18
- 4. P18TEEE + BK18 + S21
- 5. P18TP + BK18
- 6. P18TP + BK18 + S21
- 7. P18TPL + BK18
- 8. P18TPL + BK18 + S21

Reasons for including SH0ES21 (S21)

When two datasets are in tension w.r.t. a model, an analysis combining the datasets would provide an unrealistic posterior on parameters. In such a case the drag on the parameters from both data degrades the fit to both datasets.

Here, on the other hand compared to the baseline parametrization, without using S21, we find posteriors on H0 shifts to higher value (1 σ shift) with 8-11 improvements in χ^2

When S21 is used – the best fit to the joint data provides ~20 improvement in fit. Breakdown in χ^2 shows χ^2_{CMB} for the best fit to the joint dataset is nearly 3 χ^2 better than the baseline best fit to CMB only data.

Antony, Finelli, Hazra, Shafieloo, PRL 2023

Shifts in parameters

Data	$\Delta \chi^2$		CI	$1 - 2\epsilon_1 - \epsilon_2$	$16\epsilon_1$	H	S	0	
Data	Total	CMB	SH0ES	U.L.	$(\simeq n_s)$	$(\simeq r)$	Π_0	58	52m
P18TT_BK18	-83	-83		82.7	$0.963{\pm}0.005$	< 0.036	$66.86 {\pm} 0.86$	0.840 ± 0.022	0.321 ± 0.012
	-0.0	-0.0		02.1	$0.971 {\pm} 0.007$	< 0.040	68.06 ± 1.14	$0.814{\pm}0.027$	$0.306 {\pm} 0.015$
D19TEFE DK19	27	_2 7		< 68	$0.969 {\pm} 0.009$	< 0.041	$67.91 {\pm} 0.77$	$0.814{\pm}0.020$	$0.308 {\pm} 0.010$
	-2.1	-2.1	-		$0.968 {\pm} 0.009$	< 0.041	$67.63 {\pm} 0.86$	$0.819 {\pm} 0.022$	0.311 ± 0.012
P18TP+BK18	-10.7	-10.7	-	72.5	$0.965{\pm}0.004$	< 0.036	$67.26 {\pm} 0.59$	$0.835{\pm}0.015$	$0.317 {\pm} 0.008$
					$0.969 {\pm} 0.005$	< 0.037	$67.71 {\pm} 0.66$	$0.826 {\pm} 0.017$	$0.311 {\pm} 0.009$
P18TPL+BK18	-8.4	-8.4	-	70	$0.965{\pm}0.004$	< 0.035	$67.35 {\pm} 0.53$	$0.832{\pm}0.012$	$0.315 {\pm} 0.007$
					$0.968 {\pm} 0.004$	< 0.037	$67.63 {\pm} 0.57$	$0.829 {\pm} 0.013$	$0.312 {\pm} 0.008$
D19TT DK19 S91	_10.5	10.0	86	< 00 0	$0.976{\pm}0.005$	< 0.040	$69.41 {\pm} 0.68$	$0.781{\pm}0.017$	$0.287 {\pm} 0.008$
1 101 1 + DK10+521	-19.0	-10.5	-0.0	/ 33.3	$0.986{\pm}0.007$	< 0.047	$70.85 {\pm} 0.78$	$0.754{\pm}0.018$	$0.273 {\pm} 0.008$
P18TEEE+BK18+S21	-1.2 -	1.0	-0.2	< 68	$0.981{\pm}0.008$	< 0.046	$69.76 {\pm} 0.63$	$0.772 {\pm} 0.016$	$0.284{\pm}0.007$
		-1.0			$0.979 {\pm} 0.009$	< 0.040	$69.77 {\pm} 0.67$	$0.771 {\pm} 0.017$	$0.284{\pm}0.008$
P18TP+BK18+S21	-19.3 -	07	-9.6	98.6	$0.973 {\pm} 0.004$	< 0.039	$68.71 {\pm} 0.53$	0.802 ± 0.014	$0.297 {\pm} 0.007$
		-9.1			$0.978 {\pm} 0.004$	< 0.041	$69.27{\pm}0.58$	$0.791{\pm}0.014$	$0.291{\pm}0.007$
D18TDI BK18 C01	11 5	10.4	11	02.1	$0.972{\pm}0.004$	< 0.038	$68.56 {\pm} 0.48$	$0.808 {\pm} 0.011$	$0.299 {\pm} 0.006$
	-11.0	-10.4	-1.1	32.1	$0.975 {\pm} 0.004$	< 0.041	$68.90 {\pm} 0.51$	0.804 ± 0.011	0.296 ± 0.006

Best fit spectra

HILL THE PARTY OF MATTERNATION SHOW

Reverse engineering to find the potential

The potential can be obtained with reverse engineering:

$$V(\phi[N]) = 3M_{\rm Pl}^2 H[N]^2 (1 - \epsilon_H[N]/3)$$

The reconstructed potential can be expressed with the following template:

$$\frac{\Delta V(\phi)}{V_{\text{baseline}}(\phi)} = \frac{\alpha \cos[\omega(\phi - \phi_0)]}{1 + \beta(\phi - \phi_0)^2}$$

Antony, Finelli, Hazra, Shafieloo, PRL 2023

New physics of scalar field evolution

Strong support for an intermediate fast roll for 0.5 e-folds during inflation

Small Scale CMB data

Antony, Finelli, Hazra, Paoletti, Shafieloo 2024

In summary

- 1. Anomalies and tensions within and between cosmological observations are correlated
- 2. **One Spectrum** provides a common solution
- 3. We find statistically significant preference for an intermediate fast roll during inflation as a candidate for new physics
- 4. The candidate has strong signatures in CMB polarization and large scale structures at particular scales, that can be tested soon with upcoming data

Certain supports arise from small scale CMB data and the bispectrum too

When tension can be systematics ?

Planck PR3 and ACT DR4

Planck PR3

ACT DR4

Exploring the discrepancy between Planck PR3 and ACT DR4

Parametric test:

Instead of power law:

$$\mathcal{P}_S(k) = A_s (k/k_0)^{n_s - 1}$$

We use a simple extension with a transition in tilt:

$$\mathcal{P}_{S}^{\text{broken}}(k) = A_{s}(k = k_{\text{break}}) \times \begin{cases} (k/k_{\text{break}})^{n_{s1}-1}, & \text{if } k \leq k_{\text{break}} \\ (k/k_{\text{break}})^{n_{s2}-1}, & \text{if } k \geq k_{\text{break}} \end{cases}$$

Difference in tilt will be the parameter of interest.

Datasets	$\Delta\chi^2_{ m eff}$	$\ln B$
$P18+ACT$ ($\ell > 1800$)	-2.4	-0.3
P18lowE+ACT	-6.8	0.7
P18-100GHz ($\ell < 650$)+ACT	-8.1	0.3
P18 ($\ell < 650$)+ACT	-7.1	1.2
P18-143-217GHz+ACT ($\ell > 1800$)	-0.7	-1.1
P18EE+ACT	-9.7	1.8
P18TEEE+ACT	-6	0.9

Non-parametric approach: Reconstruction

Non-parametric approach: Reconstruction

CERN

In summary

- 1. The discrepancy is there within ACT data itself at 2σ
- 2. Preference for a break in power increases if truncated Planck data is used jointly with ACT
- 3. The blue tilt from ACT is preferred at k ~ 0.08 0.16/Mpc (ℓ ~ 1100 2200)
- 4. When data are combined respecting the signal to noise ratios, the significance of the transition goes away

In such cases, the tension seems to not arising from any new physics

New physics or systematics

Hubble tension, S8 tension and lensing anomalies seem to be correlated. Therefore it is possible for new physics to emerge from there

Tensions between Planck and ACT seem to be coming from systematics. Statistical significance to the new physics candidates are originating from data selection effect in the joint analysis

Reconstruction of localized features

Angular power spectrum (Planck)

 $G_{\ell k}$ is the radiative transport kernel

Hazra, Shafieloo, Souradeep JCAP 2014

CERN

Reconstruction of localized features

Transport kernel for temperature anisotropy computed using CAMB 0.8 0.5 0.6 0.4 0 1e-05 0.001 0.05 20 30 49 40 0.2 0 0.1 0.15 0.2 0.25 0.3 0.35 0.05 0.4 k in Mpc⁻¹ 500 1000 1500 2000 2500 3000

The transport kernel depends on background cosmology

Using a baseline cosmology we attempt to reconstruct the primordial power spectrum from the CMB angular power spectrum data

Hazra, Shafieloo, Souradeep JCAP 2014

Reconstruction (Richardson-Lucy algorithm)

Richardson (1972) and Lucy (1974)

$$P_k^{(i+1)} - P_k^{(i)} = P_k^{(i)} \times \left[\sum_{\ell} \widetilde{G}_{\ell k} \left(\frac{C_{\ell}^{\mathrm{D}} - C_{\ell}^{\mathrm{T}(i)}}{C_{\ell}^{\mathrm{T}(i)}} \right) \right]$$

Angular power spectra (in different Planck frequencies)

- 5 different spectra for parameter estimation, calculated from combinations of maps in different frequency channels
- Foreground and calibration effects
- Substantial lensing

Reconstruction (Modified Richardson-Lucy)

MRL reconstructs the free-form primordial power spectrum from different combinations of frequency channels CERN

Helps to identify features present in all frequencies

Also helps to check consistencies between frequencies

Features that seem '*important*'

Hazra, Shafieloo, Souradeep JCAP 2014