Recent work on Bèzier PDF parametrizations in xFitter and L_2 sensitivities

Lucas Kotz – Southern Methodist University with Aurore Courtoy, Pavel Nadolsky, Fred Olness, Maximiliano Ponce-Chavez

> CTEQ Spring meeting 06/04/2024

Bèzier Pion PDF Parameterizations in xFitter

arXiv:2311.08447, PhysRevD.109.074027

- Pions arise as a pseudo-Goldstone boson due to spontaneous chiral symmetry breaking.
- A knowledge of the pion could lead to a better understanding of non-perturbative QCD.

Bèzier Curve

$$\mathcal{B}^{(N_m)}(y) = \sum_{l=0}^{N_m} C_l B_{N_m,l}(y)$$

$$B_{N_m,l}(y) \equiv \binom{N_m}{l} y^l (1-y)^{N_m-l}$$

$$\Rightarrow \mathcal{B} = \mathbf{T} \cdot \mathbf{M} \cdot \mathbf{C}$$

or $\boldsymbol{C} = \boldsymbol{M}^{-1} \cdot \boldsymbol{T}^{-1} \cdot \boldsymbol{P}$

G. Farin (2001)

Kamermans, Mike Pomax: https://pomax.github.io/bezierinfo the

- $\mathcal{B}^{(N_m)}(y)$: Bézier function of N_m^{th} -degree.
- $C: N_m + 1$ vector containing Bézier coefficients.
- $B_{N_m,l}(y)$: Bernstein basis polynomial.
- *M*: A fixed $N_m + 1 \times N_m + 1$ matrix containing binomial coefficients. Determined by N_m .
- **T**: A fixed $N_m + 1 \times N_m + 1$ matrix. Determined by the positions of control points.
- $P: N_m + 1$ vector containing the values at the control points.

06/04/2024

Datapoints used in fits

- NA10 & E615: Covers the main kinematic region of x > 0.2and $Q^2 > 10 \text{ GeV}^2$. Constrains valence very well.
- WA70: Provides some sensitivity to the gluon PDFs that the DY data could not provide.
- HERAF₂^{π}: Constrains the Sea and gluon PDFs at low-x. Uses the HERA prescription.

Performing Fits with a metamorph

Pseudodata The functional form of the 0.4 Truth Fantômas4QCD Carrier parameterization is 0.3 $x^{1.5} f_{\pi}(x)$ $xf(x, Q_0^2) = f_{\text{Carrier}}(x) * f_{\text{Modulator}}(x^{\alpha_x})$ where $f_{\text{Carrier}}(x) \equiv A_f x^{B_f} (1-x)^{C_f}.$ 0.1 • The Carrier specifies asymptotic limits of $xf(x, Q_0^2)$ at $x \to 0$ or 1. 0.0 0.2 0.4 0.6 8.0 0.0

Х

Performing Fits with a metamorph

 The functional form of the Fantômas4QCD parameterization is

 $xf(x, Q_0^2) = f_{\text{Carrier}}(x) * f_{\text{Modulator}}(x^{\alpha_x})$

where we choose

 $f_{\text{Modulator}}(x^{\alpha_x}) = \mathcal{B}^{(N_m)}(x^{\alpha_x}).$

• The Modulator modifies $xf(x, Q_0^2)$ at 0 < x < 1. α_x is an x-stretching power between 0 and 1.

NLO Fantomas PDFs for π^+

- Various fits were performed using a wide variety of setting combinations.
- Five fits with $\chi^2 < 450$ were chosen to combine.
- The chosen fits are combined using mcgen.
- Compared FantoPDF to xFitter and JAM21 pion fits

xg (x,Q) at Q=1.4 GeV, 68% c.l. (band)

$\langle xf \rangle$ distribution

FantoPDF momentum fractions at Q=1.4 GeV

Name	$Q \; [{ m GeV}]$	$\langle xV \rangle$	$\langle xS \rangle$	$\langle xg \rangle$
FantoPDF (DY+ γ +LN)	$\sqrt{1.9}$	0.49(8)	0.34(19)	0.18(12)
xFitter [9] (DY+ γ)	$\sqrt{1.9}$	0.55(6)	0.26(15)	0.19(16)
xFitter w/o scale variation	$\sqrt{1.9}$	0.55(2)	0.26(9)	0.19(9)
JAM'18 [8] (DY)	1.27	0.60(1)	0.30(5)	0.10(5)
JAM'18 [8] (DY+LN)	1.27	0.54(1)	0.16(2)	0.30(2)
JAM'21 [11] (DY+LN)	1.27	0.53(2)	0.14(4)	0.34(6)
JAM'21 [11] (DY+LN) +NLL double Mellin	1.27	0.46(3)	0.15(7)	0.40(5)
CT18 NLO (proton)	$\sqrt{1.9}$	0.443(6)	0.160(10)	0.396(10)
CT18 NNLO (proton)	$\sqrt{1.9}$	0.451(5)	0.157(10)	0.390(10)

 Separation of the Sea and gluon PDFs is highlighted in the momentum distributions

L_2 sensitivities of various experiments for CT and MSHT PDFs

arXiv:2401.11350

- Examining L_2 sensitivities can help determine the potential impact of a dataset on a given PDF set.
- Using xFitter allows for the possibility to examine the potential impact without having to include the dataset into the global analysis first.

L_2 sensitivity

• The L_2 sensitivity method visually displays the potential influence of an experiment on a PDF set given x and Q.

•
$$S_{f,L_2}^H(E) = \frac{(\vec{\nabla}\chi_E^2 \cdot \vec{\nabla}f)}{\delta_H f} = \delta_H \chi_E^2 \times C_H(f,\chi_E^2)$$
 arXiv: 1904.00022

•
$$C_H(f,\chi_E^2) = \frac{1}{4\delta_H f \delta_H \chi_E^2} \sum_{i=1}^D (f_{+i} - f_{-i})(\chi_{E,+i}^2 - \chi_{E,-i}^2)$$

- $\delta_H \chi_E^2$: 1 σ uncertainty for χ^2 for experiment *E* at the 68% C.L.
- $\delta_H f$: 1 σ uncertainty for the PDF f at the 68% C.L.
- $f_{\pm i}$: $f_0 \pm \delta f$ for the *i*-th experiment.
- $\chi^2_{E,\pm i}$: $\chi^2_{E,0} \pm \delta_H \chi^2_E$ for the *i*-th experiment.
- Positive correlation/ $S_{f,L_2}^H(E)$ indicates experiment E favors a smaller PDF to minimize χ_E^2 .
- Negative correlation/ $S_{f,L_2}^H(E)$ indicates experiment E favors a larger PDF to minimize χ_E^2 .

L₂ calculation process using **xFitter** and **L2LHAExplorer**

Approximate {x,Q} for all experiments

Experiments Studied

	CT18	CT18As	MSHT20	
ATLAS direct γ production - 8 and 13 TeV	×	×	×	
ATLAS DY - 7 TeV	×	×	\checkmark	
ATLAS inc. jet - 2.76 TeV	×	×	\checkmark	5
CMS inc. jet - 13 TeV	×	×	×	ð Ö
CMS $W + c$ - 7 TeV	×	×	×	0
H1+ZEUS <i>c</i> and <i>b</i> production	×	×	\checkmark	
H1 jet				
HERA I+II DIS	\checkmark	\checkmark	\checkmark	
LHCb c and b – 7 TeV	×	×	×	
ZEUS jet				

HERA I+II combined inclusive DIS [in CT18 and MSHT20]

Left column: differences in χ^2 definition and heavy-quark scheme. Same PDFs and m_Q .

Right column: differences in χ^2 definition only. Same PDFs and m_0 .

LHCb c and b @7 TeV; $p_T^{\text{meson}} \ge 2 \text{ GeV}$ [Not in CT18 or MSHT20]

CMS inclusive jets $\sqrt{s} = 13$ TeV (CT18/CT18As)

- Expect to see the position of the L_2 peak to shift a factor of $\frac{\sqrt{s}}{13 \text{ TeV}}$.
- The position of the peak for 13 TeV follows the expected shift with $\sqrt{s} = 8$ TeV. However, not for 7 TeV.
- CMS 13 TeV jet data may be more compatible with the 8 TeV data than the 7 TeV data for CT18.

CMS inclusive jets $\sqrt{s} = 13$ TeV (MSHT20)

• Expect to see the position of the L_2 peak to shift a factor of $\frac{\sqrt{s}}{13 \text{ TeV}}$.

- The position of the peak for 13 TeV follows the expected shift with $\sqrt{s} = 8$ TeV. However, not for 7 TeV.
- CMS 13 TeV jet data may be more compatible with the 8 TeV data than the 7 TeV data for MSHT20. However, it is inconclusive as the $\sqrt{s} = 7$ TeV plot is not available.

No CMS 7 TeV on hepforge available

Conclusion

- Despite having similar momentum fractions, Fantômas π^+ PDFs have overall larger uncertainties than other studies found.
- FantoPDF demonstrates the versatility of the Fantômas parameterization and future projects using this parameterization are currently underway.
- Examining L₂ sensitivities reveal that xFitter may treat theoretical calculations differently than CT and MSHT groups.
- CMS 13 TeV jet sensitivities indicates that it may not be compatible with 8 TeV data for CT18, CT18As, and MSHT20 PDF sets.
- Inclusion of LHCb *c* and *b* production data may lead to smaller gluon in CT PDFs and a larger gluon in MSHT20.

Extra Slides

Comparison with lattice results

L. Kotz

Example of Fantômas fitting

$$xf(x) = A_f x^{B_f} (1-x)^{C_f} \times f_{mod}(x)$$

$N_m = 0 \ (\mathrm{DY} + \gamma)$	$\chi^{2} \left[d.o.f = 379 - 5 ight]$	$\langle xV \rangle$	$\langle xS \rangle$	$\langle xg \rangle$
$B_{S} = 0.07$	445.70	0.556	0.268	0.177
$B_S = 0.27$	445.38	0.557	0.239	0.204
$B_S = 0.47$	445.29	0.558	0.217	0.225
$B_{S} = 0.67$	445.36	0.559	0.199	0.243
$B_S = 0.87$	445.52	0.559	0.184	0.257
$B_S = 1.27$	445.76	0.559	0.172	0.269

