Learning PDFs through Interpretable Representations in Mellin Space Brandon Kriesten • 4 June 2024 • CTEQ Spring Meeting

Motivation

- Neural network representations of PDFs?
 - reformatting a phenomenological PDF fit as an *inverse problem*
 - physics constraints (lattice QCD inputs)
 - possible many solutions
- A jumble of questions with neural networks
 - How do we quantify uncertainties? Aleatoric / epistemic (/distributional OOD) separation?
 - Can we interpret the 'black-box'? etc ...
- <u>Outline</u>:

BK, T.J. Hobbs arXiv: 2312.02278 (submitted to PRD)

- reconstruct PDFs from their Mellin moments
- explore interpretability techniques
- uncertainty quantification studies

in progress works

z

 $\mathcal{N}(0,1)$

 \hat{m}

Decoder

x'

Variational Autoencoder Inverse Mapper

 $\begin{array}{c|c} x & \mathsf{Encoder} & \sigma \\ & e_{\theta} & m \end{array}$

We utilize variational autoencoders as a powerful tool to dissect inverse problems! M. Almaeen, Y. Alanazi, N. Sato, W. Melnitchouk, M.P. Kuchera, Y. Li IJCNN (2021)

 μ

Information Flow and Reconstruction

 μ

m

The observable output is constrained toder look like the expected observable.

-2

Constrained output through the observable

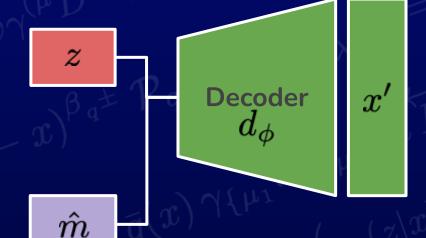
Unconstrained output through the latent space

 $\mathcal{N}(0,1)$

 \hat{m}

The latent space catches the information which is thrown away in the constrained forward mapping!

Variational Autoencoder Inverse Mapper



The goal is to train a decoder model to accept latent information and an observable to generate a never before seen input!

Generative algorithms provide access to new technologies beyond neural network interpolation.

M. Almaeen, Y. Alanazi, N. Sato, W. Melnitchouk, M.P. Kuchera, Y. Li IJCNN (2021)

Parton Distribution Functions from latent space Mellin moments

If we have an infinite amount of information, we can construct the PDF exactly from classical methods

 $q(x) + (-1)^{n+1}\overline{q}(x) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} dn x^{-n-1} \langle x^n \rangle_q$

We don't have an infinite amount of information, typically we have just a few of these moments from the lattice.

Parton Distribution Functions from latent space Mellin moments

Question: Can we determine the full x-dependence of PDFs from a set number of Mellin moments?

x

<u>Model Inputs</u>

Randomly generated PDFs with 5 parameters.

 $q(x) \pm \overline{q}(x) = \mathcal{N}_{q^{\pm}} x^{\alpha_{q^{\pm}}} (1-x)^{\beta_{q^{\pm}}} \mathcal{P}_{q^{\pm}}(x)$ $\mathcal{P}_{q^{\pm}}(x) = 1 + \gamma_{q^{\pm}} \sqrt{x} + \delta_{q^{\pm}} x$

Latent Observable

 e_{θ}

Organized and interpretable as a series of moments

m

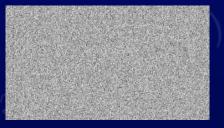
$$\langle 1
angle_{q^-}, \langle x
angle_{q^+}, \langle x^2
angle_{q^-}, \langle x^3
angle_{q^+}, \ldots
angle$$

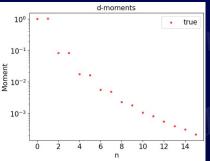
 \hat{m}

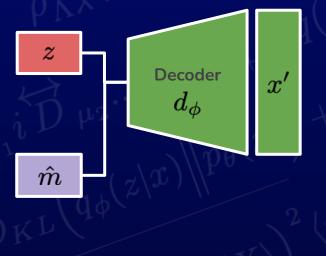
 d_{ϕ}

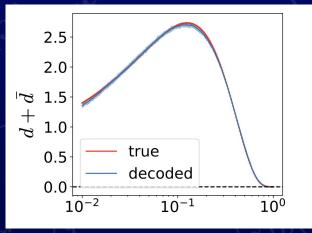
Parton Distribution Functions from latent space Mellin moments

Making predictions from a trained decoder model.

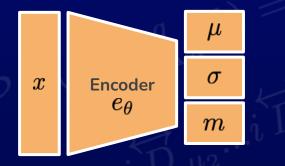




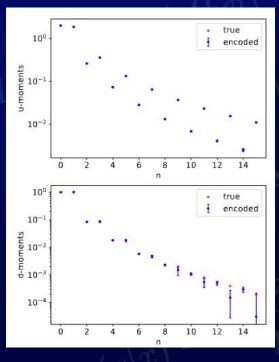




Parton Distribution Functions from latent space Mellin moments



We can also look at the trained encoder model to see how well we reconstruct the observable.

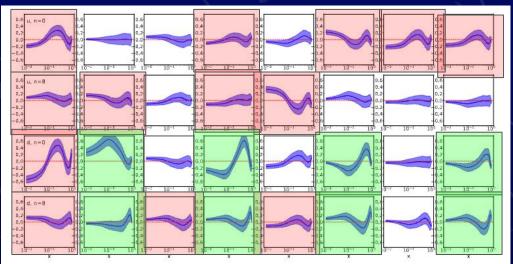


Parton Distribution Functions from latent space Mellin moments

We utilize the Pearson correlation between the learned moments from the encoder and the decoded PDF (d⁺) as an explainability technique. One can see **spurious correlated effects** as well as **consistent correlations**.

 $\operatorname{Corr}(X,Y) = rac{\langle XY
angle - \langle X
angle \langle Y
angle}{\Delta X \Delta Y}$

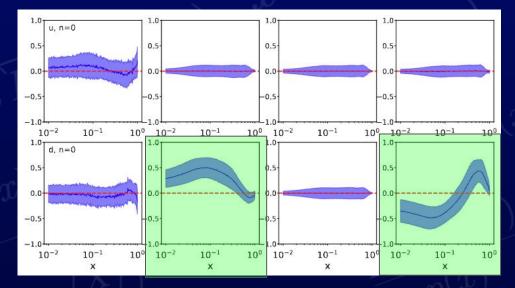
 $\operatorname{Corr}[d^+(x), \langle x^n \rangle_{u^{\pm}, d^{\pm}}]$



Parton Distribution Functions from latent space Mellin moments

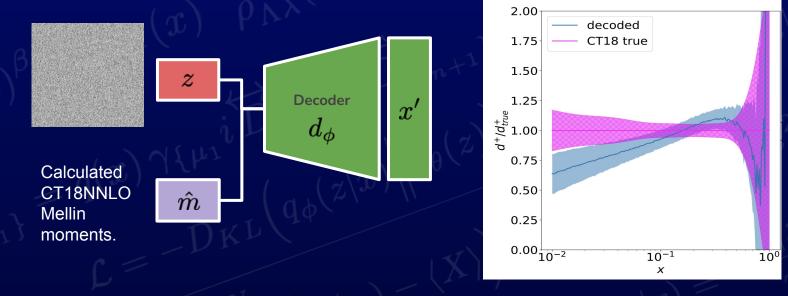
 $\operatorname{Corr}[d^+(x), \langle x^n \rangle_{u^{\pm}, d^{\pm}}]$

With a more dramatically undercomplete autoencoder architecture, the correlations are statistically consistent with 0 everywhere except for the d⁺ moments. Obvious spurious correlations seem to disappear.

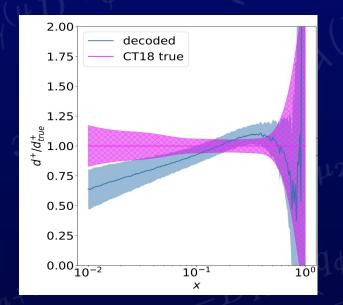


Parton Distribution Functions from latent space Mellin moments

<u>**Question**</u>: With a fully trained decoder network from the toy problem, can we construct completely unknown PDF from a full phenomenological fit from its moments?



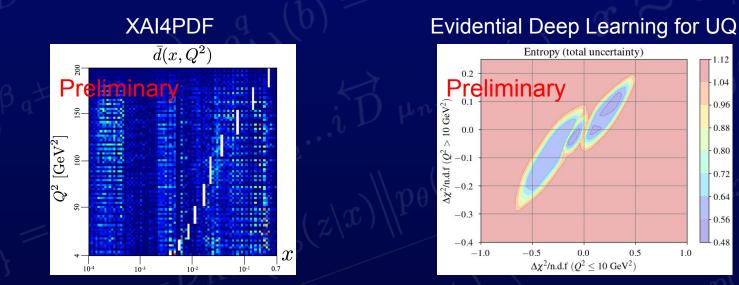
Parton Distribution Functions from latent space Mellin moments



Is CT18NNLO within the parameter space of this toy model somewhere? Or is this just coincidence? Opens a lot of questions regarding parameterization dependence.

<u>Highlights the need for UQ and</u> <u>explainability techniques to fully</u> <u>understand.</u>

Exploring Next Gen ML techniques



BK, J. Gomprecht, T.J. Hobbs (in progress)

BK, T.J. Hobbs (in progress)

0.5

-1.04

- 0.96

-0.88

-0.80

-0.72

-0.64

-0.56

-0.48

1.0

XAI: Guided Backpropagation

$$\frac{\partial f^{\text{out}}}{\partial f_i^{\ell}} = \left(f_i^{\ell} > 0\right) \cdot \left(\frac{\partial f^{\text{out}}}{\partial f_i^{\ell+1}} > 0\right) \cdot \frac{\partial f^{\text{out}}}{\partial f_i^{\ell+1}}$$

Guided backprop is a technique in which the gradients of a neural network layer are masked during backpropagation holding the weights fixed to determine which input features positively affect the classification outcome the most.

Guided Backprop

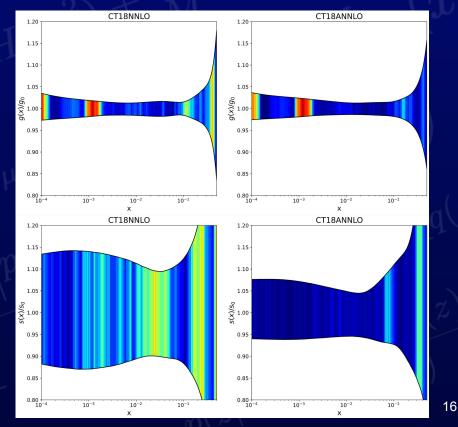
XAI4PDF: Explainability across fitted PDFs

PDF fits	Factorization scale in DIS	ATLAS 7 TeV W/Z data included?	$\begin{array}{c} \textbf{CDHSW} \ F_2^{p,d} \\ \textbf{data included?} \end{array}$	Pole charm mass, GeV
CT18	$\mu_{F,DIS}^2 = Q^2$	No	Yes	1.3
CT18A	$\mu_{F,DIS}^2 = Q^2$	Yes	Yes	1.3
CT18X μ	$Q_{F,DIS}^2 = 0.8^2 \left(Q^2 + \frac{0.3 \text{ GeV}^2}{x_B^{0.3}} \right)$	No	Yes	1.3
CT18Z μ	$Q_{F,DIS}^2 = 0.8^2 \left(Q^2 + rac{0.3 \ { m GeV}^2}{x_B^{0.3}} ight)$	Yes	No	1.4

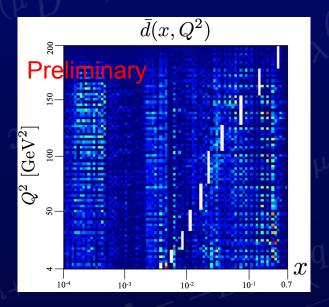
We classify different PDF fits with various theory assumptions.

Strange and gluon PDFs stand out while discerning between different theory fits!

BK, J. Gomprecht, T.J. Hobbs (in progress)



XAI4PDF: Explainable AI for PDFs



Explainability within a fitted phenomenological framework to investigate how the χ^2 on the CDHSW data (neutrino-lead scattering) traces back to regions in the phase space of the fitted PDF. The aim is to identify regions in x-Q² space that most impact the χ^2 .

This is a novel approach to dissect ML-based PDF analyses and understand their internal behavior.

BK, J. Gomprecht, T.J. Hobbs (in progress)

Uncertainty in High Energy Theory

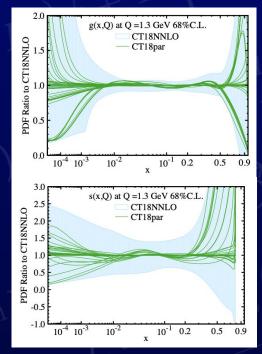


Image credit: PhysRevD.103.014013

Obtaining stable PDF uncertainties is a significant area of research with a substantial history.

Perhaps ML can offer additional perspective.

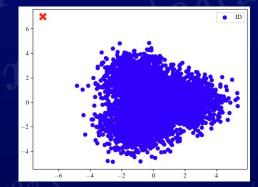
Problem: ML models often are overconfident about predictions in regions it's never trained on.

<u>**Question</u>**: How do we teach an ML model what it does and doesn't know?</u>

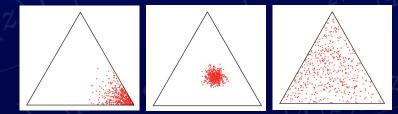
Evidence-based learning!

Evidential Deep Learning

Prior Networks - making the implicit explicit $p(w_c|x^*, \mathcal{D}) = \int \int p(w_c|\mu) p(\mu|x^*, \theta) p(\theta|\mathcal{D}) d\theta d\mu$ Aleatoric Distributional Epistemic



By factorizing the predictive posterior distribution, we can explicitly model the dependence on the prior of the ensemble. In a single forward pass, we can describe **aleatoric**, **epistemic**, and **distributional** uncertainties.

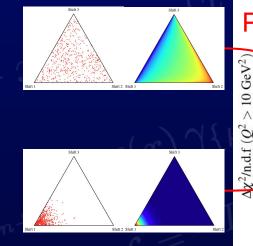


ID ID low error high error

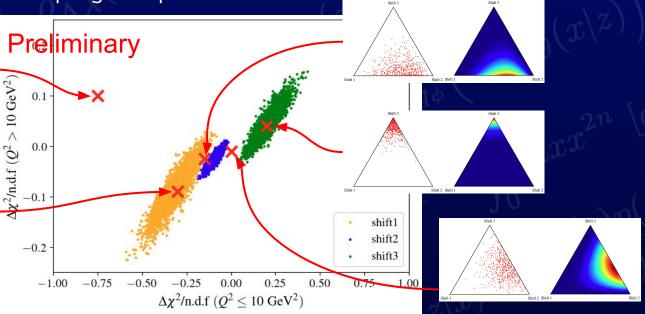
OOD

Evidential Deep Learning for GNIs

Consider a BSM scenario in which, due to the presence of non-standard interactions in a weak effective field theory Lagrangian, the values of the CKM matrix elements can appear shifted from their fitted standard values resulting in a shift of the χ^2 against a dataset. How to quantify uncertainty of sampling this space?



BK, T.J. Hobbs (in progress)



20

Conclusions

ML in HEP and NP is nascent, not to mention theory applications, but is expected to grow substantially.

The research I have discussed here - solving large scale inverse problems for robust insights into hadron structure - is the nucleus of a wide-reaching program.

The activity fills an urgent need for more direct collaboration between theorists, data scientists, and computational experts.

Thank you for your attention!