

PineAPPL Grids of Open Heavy-Flavor Production in the GM-VFNS

CTEQ 2024 Spring Meeting

Introduction

▶ Process: Open heavy-quark hadroproduction

in collinear factorization:

$$\mathrm{d}\sigma = f_{i/A} \, \otimes \, f_{j/B} \, \otimes \, \mathrm{d}\hat{\sigma}_{i\,j\,\rightarrow\,k} \, \otimes \, d_{C/k}$$

 \to heavy on the absolute QCD scale: $m_Q\gg \Lambda_{\rm QCD}$ so that the process is calculable perturbatively, i.e. $\alpha_{\rm s}(m_{\rm Q})\ll 1$

- Importance of heavy-quark production: data goes to small momentum-fraction $x \approx \frac{p_T}{\sqrt{s}} e^y \sim 10^{-5}$ \rightarrow e.g. constrain gluon PDF in low-x region
- Mass effects non-negligible for $p_T \sim m_Q$
- ▶ Theory predictions for this process: GM-VFNS (NLO)

Jan Wissmann 1 / 23

Outline

Part 1: General-mass variable-flavor-number schemes (GM-VFNS)

Part 2: Gridding with PineAPPL

Part 3: Results

Jan Wissmann 2 / 23

Part 1: General-Mass Variable-Flavor-Number Schemes (GM-VFNS)

Jan Wissmann 3 / 23

Flavor-number schemes

ightharpoonup In all processes with heavy quarks: new scale m_Q

 $\begin{array}{ccc} & & \text{threshold region} & & \text{asymptotic region} \\ \hline & & & & \\ p_{\text{T}} \lesssim m_{\text{Q}} & & & p_{\text{T}} \gg m_{\text{Q}} \end{array} \hspace{-0.5cm} \nearrow p$

FFNS

Fixed flavor-number scheme

- ► Heavy quark treated as massive particle, lighter quarks as massless partons
- ► Fixed number of light flavors
- Heavy-quark mass acts as a regulator

ZM-VFNS

Zero-mass variable-flavor-number scheme

- ► Heavy quarks treated as massless partons
- Number of light flavors is scale-dependent: Contributions from new flavors activate dynamically at their respective mass thresholds
- Collinear singularities due to massless quarks renormalized in the usual MS

Jan Wissmann 4 / 23

The General-Mass Variable-Flavor-Number Scheme

Expectation:

$$d\sigma_{\text{FFNS}} \xrightarrow{p_{\text{T}} \gg m_{\text{Q}}} d\sigma_{\text{ZM-VFNS}}$$
 ?

 $\rightarrow p_T \gg m_Q$ (i.e. $m_Q \rightarrow 0$) limit and subtraction of collinear singularities are not exchangeable

Solution: GM-VFNS:

$$d\sigma_{\text{FFNS}} \xleftarrow{m_{\text{Q}} \leftarrow p_{\text{T}}} d\sigma_{\text{GM-VFNS}} \xrightarrow{p_{\text{T}} \gg m_{\text{Q}}} d\sigma_{\text{ZM-VFNS}}$$

For intermediate p_T , the GM-VFNS interpolates between the ZM-VFNS and the FFNS.

Jan Wissmann 5 / 23

Part 2: Gridding with PineAPPL

Gridding with PineAPPL

For theoretical predictions obtained with a Monte Carlo (MC) generator:

Problem:

- A-posteriori variation of α_s , scales and PDFs requires running the MC generator again each time (usually multiple hours per run)
- ▶ Same calculation of the hard-scattering matrix elements is performed every time

Solution:

- Pre-calculate the MC weights and store them in an interpolation "grid" independent of the PDFs, α_s and possibly scales
- → Done by libraries such as
 - FastNLO [hep-ph/0609285]
 - ► APPLgrid [0911.2985]
 - PineAPPL [2009.03987]

[2009.03987]

Jan Wissmann 7 / 23

Gridding with PineAPPL

QCD factorization (conceptually):

$$d\sigma = \int dx \, f(x) \, d\hat{\sigma}(x)$$

Gridding libraries store the MC weights of fixed-order calculations by interpolating the PDFs:

$$f(x) = \sum_{i} f_{i} L_{i}(x) \Rightarrow d\sigma = \sum_{i} f_{i} \int dx L_{i}(x) d\hat{\sigma}(x) =: \sum_{i} f_{i} d\sigma_{i}$$

$$\text{Lagrange basis functions}$$

$$\text{can be precomputed and stored}$$

(analogous for α_s and scales)

Using a Monte-Carlo integrator:

$$d\sigma_i = \int dx L_i(x) d\hat{\sigma}(x) \stackrel{\text{MC}}{=} \frac{1}{N} \sum_{i=1}^N L_i(x^{(j)}) d\hat{\sigma}(x^{(j)})$$

Jan Wissmann 8 / 23

Gridding with PineAPPL

1. Gridding Stage

Build grid by integrating over the basis functions:

$$d\sigma_i = \int dx L_i(x) \, d\hat{\sigma}(x)$$

- ► In practice: Fill the grid with the MC weights, obtain grid file
- → Takes multiple CPU hours, but only done once

2. Convolution Stage

▶ Obtain predictions by performing the convolution with the PDF:

$$d\sigma = \sum_{i} f_{i} d\sigma_{i}$$

→ ~Instantaneous, can be done multiple times for different PDFs and scales

Jan Wissmann 9/2

Gridding GM-VFNS heavy-quark hadroproduction

- The NLO GM-VFNS calculation in heavy-quark hadroproduction exists as Fortran code by B. A. Kniehl, G. Kramer, I. Schienbein, H. Spiesberger [hep-ph/0410289] [hep-ph/0502194] [hep-ph/0508129]
- Our work: Extending the existing code to produce PineAPPL grids and writing a Python interface to the code to make it publication-ready

NEW: produced NLO GM-VFNS predictions as PineAPPL grids

One grid, corresponding to one experimental dataset, includes cross-sections...

- \triangleright double-differential in (p_T, y) corresponding to the bins of the experimental data
- \blacktriangleright at LO (α_s^2) and NLO (α_s^3)
- with the FF baked-in (Since PineAPPL allows up to two different convolutions at the moment)
- \rightarrow both PDFs and α_s can be varied a-posteriori, e.g. for PDF uncertainties or fits

PLANNED:

- ▶ Using these grids for nCTEQ PDF analyses in the future
- ▶ Publication of the grids and this version of the GM-VFNS code

Jan Wissmann 10 / 23

Data taken into account so far - ALICE

Predictions and grids already produced for:

Experiment	arXiv	Initial State	Meson
ALICE	1111.1553	p + p	D^0
	1405.3452	p + Pb	D_0
			D^+
	1605.07569	p + p	D_0
		p + Pb	D^+
	1702.00766	p + Pb	D_0
	1901.07979	p + p	D_0
	1906.03425	p + Pb	D^+
			D^+_s
			D*+
	2106.08278	p + p	D ⁰

Fragmentation functions:

D⁰, D⁺, D^{*+}: KKKS08 [0712.0481] D_s⁺: BKK06_D [hep-ph/0607306] B⁺: BKK06_B [0705.4392]

Jan Wissmann 11/23

Data taken into account so far - LHCb & CMS

Predictions and grids already produced for:

Experiment	arXiv	Initial State	Meson
CMS	1508.06678	p + Pb	B ⁺
LHCb	1302.2864	p + p	D^0
	1510.01707	p + p	D^0
	1610.02230	p + p	D^0
	1707.02750	p + Pb	D^0
	2205.03936	p + Pb	D ⁰

Fragmentation functions:

D ⁰ , D ⁺ , D ^{*+} :	KKKS08	[0712.0481]
D _s ⁺ :	BKK06_D	[hep-ph/0607306]
B ⁺ :	BKK06_B	[0705.4392]

Jan Wissmann 12 / 23

Part 3: Results

Results I - Prediction vs. Grid

- ► Sub-permille agreement
- Shown here: Statistical (MC) errors
- Grid precision independent of run settings and phase space region

Jan Wissmann 14 / 23

► Next slides: Some examples of the predictions

- ▶ 7-point (ξ_r, ξ_f) scale-variation where $\mu_i = \xi_i \sqrt{p_T^2 + 4m_Q^2}$ and $\xi_i \in \{0.5, 1, 2\}$
- Previous work:

 Scale choice improves
 agreement and enables
 meaningful predictions at
 lower p_T [1907.12456]

Jan Wissmann $16 \ / \ 23$

- ▶ 7-point (ξ_r, ξ_f) scale-variation where $\mu_i = \xi_i \sqrt{p_T^2 + 4m_Q^2}$ and $\xi_i \in \{0.5, 1, 2\}$
- Previous work:

 Scale choice improves
 agreement and enables
 meaningful predictions at
 lower p_T [1907.12456]

Jan Wissmann 17 / 23

- ▶ 7-point (ξ_r, ξ_f) scale-variation where $\mu_i = \xi_i \sqrt{p_T^2 + 4m_Q^2}$ and $\xi_i \in \{0.5, 1, 2\}$
- Previous work:
 Scale choice improves
 agreement and enables
 meaningful predictions at
 lower p_T [1907.12456]

Jan Wissmann 18 / 23

Results III - PDF Uncertainties

- Total number of PDF members: 347
- Here: Gridding reduces execution time by factor 347
 → impossible without gridding

Jan Wissmann 19 / 23

Results IV – Fragmentation Scale

$$d\sigma = f_{i/A}(\mu_f) \otimes f_{i/B}(\mu_f) \otimes d\hat{\sigma}_{ij \to k}(\mu_r) \otimes d_{C/k}(\mu_{ff})$$

- ▶ 7-point (ξ_r, ξ_f) scale-variation where $\mu_i = \xi_i \sqrt{p_T^2 + 4m_Q^2}$ and $\xi_i \in \{0.5, 1, 2\}$
- Previous work:
 Scale choice improves
 agreement and enables
 meaningful predictions at
 lower p_T [1907.12456]

Jan Wissmann p_T [GeV] 20 / 23

Conclusion

- ➤ The GM-VFNS gives the heavy-quark production prediction for a bigger kinematic range
- Gridding libraries like PineAPPL allow varying the PDFs and scales a-posteriori in a very efficient way
- ► The GM-VFNS prediction and the produced grids agree by less than one per-mille
- ► This version of the GM-VFNS code and the PineAPPL grids will be published

Jan Wissmann **21** / 23

Backup

22 / 23

Results III - PDF Uncertainties

- Total number of PDF members: 342
- ► Here: Gridding reduces execution time by factor 342
 → impossible without gridding