

Przyspieszacze, detektory i radioaktywność w medycynie

Sparks! Prezentacja o przyszłości detekcji i obrazowania

Magdalena Kowalska CERN i Uniwersytet Genewski

Zastosowania badań postawowych w CERN

- CERN = największe laboratorium badań podstawowych na świecie
- Zrozumienie z czego się składa i jak powstał Wszechświat, wymaga:

Przyspieszaczy

Detektorów

Promieniowania

(i technik informatycznych)

Te techniki mogą zostac ,przetłumaczone' w różne przydatne technologie:

Transfer wiedzy z CERN

BETTER

CERN Knowledge Transfer: https://kt.cern/

Zastosowania w medycynie

Użycie narzędzi CERN do polepszenia diagnozy i leczenia różnych chorób:

Przyspieszaczy

Detektorów

Promieniowania

- Silne strony:
 - Czuła detekcja promieniowania w celach diagnostycznych
 - Precyzyjne leczenie cząsteczkami i promieniowaniem

Promieniowanie jonizujące

Cząstki :

- Beta (e- i e+)
- Protony, neutrony, cząstki alfa
- 'cieżkie jony' (12C, 16O, w przyszłości może nawet niestabilny 11C)

Przyspieszacze

Leczenie (raka) z wiązkami zewnętrznymi

Depozycja energii przez promieniowanie w materii:

- Metoda:
 - > Napromienianie z kilku stron, aby zmaksymalizować dawkę w objętości, która ma zostać wyleczona
 - Protony i "ciężkie jony" są najbardziej selektywne: największa dawka na końcu ścieżki cząstki

Diagnostyka i leczenie z przyspieszaczami

Przyspieszacze cząstek (z CERN):

- Produkcja izotopów PET i SPECT (cyklotrony przyszpitalne) do diagnostyki w madycynie nuklearnej
- Już używane do terapii hadronowej:
 - Leczenie raka i problemów z sercem z użyciem energetycznych wiązek protonów, jader deuteru, a nawet węgla
 - Energia depozytowana cm wgłab ciała, na końcu ,trasy' cząstki

Połowa przyspieszaczy na świecie jest używana do zastosowań w medycynie

Tera foundation (U. Amaldi), CERN spin-off: ADAM

Diagnostyna i leczenie z przyspieszaczami

Kompaktowy przyspieszacz elektronów:

- W oparciu o R&D technologii CLIC (compact linear collider) w CERN
- FLASH: radioterapia w któtkimi pulsami
- Gotowy do zbudowania w Lozannie

Video: https://videos.cern.ch/record/2295068

Detektory

Diagnoza z detektorami zliczającymi kwanty promieniowania Roentgenowskiego

- Kolaboracja MEDIPI i TIMEPIX w CERN
- Hybrydowe detektory o wysokiej zdolności rozdzielczej stworzone do śledzenia cząstek w LHC
- Aplikacje w wielu dziedzinach
- Zliczanie fotonów Rentgenowskich w diagnozie medycznej z użyciem tomografii komputerowej:
 - Niższe dawki
 - Wyższa rozdzielcośc przestrzenna
 - Rozdzielcośc w energii promieniowania
- 1st przenośny skaner CT w Europie

Śruba metalowa (niebieski), K- (zielony)

13 Transfer technologii n.p. do MARS, New Zealand, and Czechia

Tomografia komputerowa ze zliczaniem fotonów

Detektory PET dla kwantów 511 keV

- Detektory z ns i ps rozdzielczością czasową lepsza lokalizacja źródła fotonów anihilacyjnych:
 - > Jak w trakerze ATLASu: monolityczne detektory krzemowe projekt TT-PET UNIGE
 - Szybkie scyntyjujace kryształy z CMSu: CrystalClear w CERN
 - > Jak w szybkiej jądrowej spektroskopii : U Complutense Madrid
- Tańsze materiały:
 - Scyntylatory organiczne: J-PET w Krakowie

Jądra niestabilne

Diagnostyka medyczna z izotopami nistabilnymi

- Diagnostyka z jądrami radioaktywnymi:
 - Jądro radioaktywne zwykle połączone chemicznie z biologicznym "ligandem"
 - "ligand" znajduje obszary do diagnozy: cukry lub peptydy trafiają do komórek, które ich najbardziej potrzebują, np. komórki rakowe
 - Emitowane promieniowanie wskazuje lokalizację interesującego regionu
 - Wydajne detektory cząstek wykrywają bardzo niskie, nieszkodliwe stężenia radioligandu (nM/ pM)
- Odpowiednie izotopy:
 - Izotop pierwiastka, który może wiązać się z ligandami biologicznymi
 - Czas życia wystarczająco długi do dostarczenia i wystarczająco krótki dla organizmu: godziny do dni
 - Odpowiedni rodzaj promieniowania i jego energia
- Wykrywanie: promieniowanie, nie cząstki, bo jest ono mniej zatrzymywane w ciele:
 - Promienie gamma z dekscytacji/rozpadu jądra lub z anihilacji emitowanej cząstki beta+
- Podejścia (medycyna nuklearna):
 - ➢ PET
 - SPECT

PET: pozytonowa tomografia emisyjna

- Sygnał z jąder emitujących beta+ (pozyton)
 - Emitowany pozyton zatrzymuje się po przebyciu kilku mm w tkance
 - Pozyton = antymateria, więc anihiluje z elektronem z sąsiedniej cząsteczki (E=mc2)
 - 2 promienie gamma o energii 511 keV są emitowane pod kątem 180 stopni
- Wykrywanie:
 - > Na podstawie czasu i położenia trafień w detektorach identyfikuje się miejsce anihilacji

PET i CERN

- PET opracowano w Szpitalu Genewskim w 1977 r.
 - Pierwsze izotopy wyprodukowano w CERN
- Rozwój detektorów w CERN i okolicach
 - Działalność związana z CMS: CrystalClear
 - Szybka odpowiedź detektora -> lepsza lokalizacja
 - Tańsze, bardziej wydajne
- Nowe izotopy PET:
 - ISOLDE i MEDICIS (siostra ISOLDE)
- Mocne strony:
 - Niezwykle czuła technika
- Względne słabości :
 - Rozdzielczość czasowa detektorów jest kluczowa -> można lepiej określić miejsce anihilacji
 - Koincydencja między 2 gamma: stosunkowo złożona rekonstrukcja maszyny i zdarzenia
 - e+ może przebyć kilka milimetrów przed anihilacją: ograniczenie rozdzielczości

Leczenie raka za pomocą radio-izotopów

- Leczenie poprzez uszkodzenie komórek (głównie DNA):
 - Promieniowania beta o wysokiej dawce
 - Promieniowanie alfa: cięższe, więc krótszy zasięg, ale wyższa śmiercionośniośc (dwu-niciowe uszkodzenie DNA)
- Dostarczanie izotopów do nowotworu jak w diagnozie: połączenie z ligandem
- Izotop:
 - Odpowiedni okres półtrwania
 - Emisja alfa

Teranostyka z izotopami niestabilnymi

- Teranostyka = teriapia i diagnostyka
 - Jeden izotop służy do diagnozy (np. PET)
 - Inny izotop tego samego pierwiastka: leczenie \geq
- At ISOLDE and Medicis

Dv 151

et a 4.07 Re. 40

6:176

17 m

9.28 d

(a. 3.016

150; 299

7.2 m

149

Gd 148

74.6 a

a 3.183

or 14000

After U. Koster, C Müller et al. 2012 J. Nucl. Med. 53, 1951

Nowe izotopy medyczne z CERN

od U. Koster C Müller et al. 2012 J. Nucl. Med. 53 1951

Ultra-czuły rezonans magnetyczny

- Moje własne projekty
- Magnetyczny rezonans jądrowy (NMR) i obrazowanie (MRI) z detekcją promieniowania
 - Zastosowanie niestabilnych jąder
 - > Wykrywanie sygnału poprzez kierunek promieniowania, a nie odbiór sygnału w cewce
 - Do 10¹⁰ razy bardziej czuły niż konwencjonalny NMR
- Interdyscyplinarny zespół
 - Współpraca (np. z UAM Poznań)
 - > Zastosowania w różnych dziedzinach

Linia na ISOLDE

Zasady magnetycznego rezonansu jądrowego

- Uczestnicy:
 - Jądra o spinie różnym od 0
 - Próbka/środowisko
- Pole magnetyczne
 - Silne pole statyczne (BO)
 - Słabsze pole prostopadłe (B1) oscylujące na częstotliwości radiowej (MHz)

Otoczenie wpływa na częstotliwość Larmora w polu magnetycznym (elektrony w cząsteczkach)

Spolaryzowane jądra niestabilne są specjalne

Ich rozpad beta i gamma jest anizotropowy w przestrzeni

zależą od poziomu i ,stopnia' polaryzacji spinu oraz szczegółów przejścia jądrowego (początkowy spin, zmiana spinu)

Zaobserwowana asymetria rozpadu może być wykorzystana do czułego magnetycznego rezonansu jądrowego

NMR jąder niestabilnych w cieczach

- NMR z detekcją cząstek beta (b-NMR) w próbkach ciekłych:
 - NMR: zmiana częstotliwości Larmora jądra przez sąsiednie molekuły na poziomie 10⁻⁶
 - \triangleright β -NMR: do 10¹⁰ bardziej czuła niż konwencjonaly NMR (sygnał zbierany z zaledwie 10⁶ jąder)
 - NMR w cieczach: o wiele węższe rezonanse niż w ciałach stałych: 100-1000 większa precyzja (ok. 1 część na milion)
- Może dotyczyc pierwiastków chemicznych i próbek poza zasięgiem konwencjonalnego NMR

Harding, ..., Kowalska, Phys. Rev. X., 10, 041061 (2020)

betaDropNMR

erc

t_{1/2} = 1.1 s

Wiązanie potasu z G-kwadrupleksami DNA

W obecności DNA: rezonans ⁴⁷K przesunięty i rozszerzony: wszczepiony K zastępuje Na w G-kwadrupleksie?

Rezonans magnetyczny ze stabilnym ¹²⁹Xe

bl

129Xe gas

Anatomical ¹H

CT airways

- Dostarcza informacji o:
 - wentylacji płuc
 - mikrostrukturze tkanek
 - wymianie gazowej
- Cechy:
 - Czuły
 - Szybki (< 10 s)
 - Precyzyjny (3 mm)
 - Brak tła protonowego
 - Informacje chemiczne
- Zastosowania:
 - Choroby układu oddechowego
 - Nowe: obrazy czynnościowe silnie ukrwionych narządów: nerek, mózgu

J. Chacon-Caldera, Magn Reson Med. 2020;83(1):262 Y. Shepelytskyi, Magn Reson Med. 2022;88:83

γ-MRI z długo-żyjącymi izomerami Xe

- Jednoczesne wykorzystanie czułości detekcji gamma (γ) + rozdzielczości przestrzennej i elastyczności MRI
 - Zastosowanie spolaryzowanych niestabilnych znaczników
 - Zwiększenie czułości MRI i rozdzielczości medycyny nuklearnej
 - Pozycjonowanie podane przez sekwencje MRI
 - Ilość znacznika podana przez stopień asymetrii emisji γ

Prace nad prototypem trwają

Porównanie PET/SPECT/MRI/ γ-MRI

Technika	Aktywnośc	Czułośc	Rozdzielczośc
MRI	0	mM to μM	< 1 mm
HP ¹²⁹ Xe MRI	0	100s of nM	< 1 mm
PET	~400 MBq	рМ	1-3 mm
SPECT	500~1000 MBq	рМ	1 mm
γMRI	1-10 MBq (1 mm	рМ	< 1 mm (dla 10'tek
	rozdzielczośc)		MBq)

Oczekiwany sygnał w prototypie:

- mózg szczura z infuzją 10 MBq mXe, czas nagrywania 12 s

zrekonstruowany za pomocą skompresowanych strategii wykrywania w pikselach 0.5 mm

Podsumowanie

- Badania podstawowe CERN prowadzą do aplikacji medycznych z wykorzystaniem:
 - > Akceleratorów
 - Detektorów
 - Jąder niestabilnych
- Zainteresowanie: diagnostyka medyczna i leczenie
- Cel urządzenia medyczne, które są:
 - > MNIEJSZE
 - ➢ TAŃSZE
 - DOKŁADNIEJSZE
 - BARDZIEJ CZUŁE
- Wiele przykładów na różnych etapach dojrzałości

Gamma MRI – spatial resolution

- Pixel size
 - defined by slope of B-field gradients and spectral width of rf pulse
 - more nuclei -> smaller pixels possible up to B gradient and rf limit
- I pixel in resonance: change in gamma counts visible in each detector

Basic principle

Strength of unstable nuclei for life sciences:

- Efficient detection of decay radiation: PET, SPECT diagnostics with γ radiation
- Strong but localised damage: cancer therapy with α , β radiation
- Possibility to combine therapy and diagnostics: terranostics
 - > PET/SPECT diagnosis + α , β treatment, e.g. 155Tb-SPECT, 152Tb-PET, 149Tb- α therapy
 - hadron therapy (and in-situ PET beam-deposition diagnosis) with 11C

New here: anisotropic emission of radiation from spin-polarised nuclei

- Much higher sensitivity for spin-manipulating techniques:
- => Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI)

Radiation-detected NMR

Experiments: ISOLDE lab at CERN

CERN facility for production and research with radioactive nuclei **CMS** LHC 2010 (27 km) North Area ALICE **LHCb** TT20 TT40 TT41 TT42 **SPS** 1976 (7 km) TI8 AWAKE TI2 2016 **ATLAS HiRadMat** 2011 TT66 TT60 AD **ELENA** ISOLDE 1999 (182 m) 1992 BOOSTER **RIBs REX/HIE** TT10 2001/2015 \mathbf{H} n TOF ΗĒ East Area TT2 PS 1959 (628 m) n CLEAR LINAC 4 2020 LEIR LINAC 3 2005 (78 m) lons 1994 ► H⁻ (hydrogen anions) **p** (protons) RIBs (Radioactive Ion Beams) **p** (antiprotons) e⁻ (electrons) ions **n** (neutrons)

ISOLDE selection of radio-nuclei

- Over 1000 isotopes from 70 chemical elements used for experiments
 - Radioactive half-lives: >10 ms
- Interesting for life sciences 26 27 28 with radiation-detected NMR/MRI: 15 16 17 Already polarized 301 ms 5/2* 30.5 ms 1* \geq Planned 1 2 1 н He 3 4 5 6 9 10 8 2 Li С N 0 F. Be в Ne 11 12 13 14 15 16 17 18 beta-detected NMR З Si AL Na Ma P S CL Ar 20 21 22 25 31 32 36 19 23 24 26 27 28 29 30 33 34 35 4 ĸ Ca Sc Ti v. Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 37 38 47 39 44 48 49 50 51 52 54 40 41 42 43 45 46 53 5 Y. Rb Rh Sr. Zr Nb Mo. TC Ru Pd Aq Cd In Sn Sb Te L Xe 55 56 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 ж 6 Hf TL Ph Cs. Ta w Ir Pt Au Ha Bi At Rn Ba Re OS. Po Lu 103 104 105 107 108 109 110 87 88 106 111 gamma-detected MRI 7 ** Fr. Rf Db Mt Ds Ra Lr Sq Bh Hs Rq 62 58 59 60 61 63 64 65 66 67 68 69 70 57 * Lanthanides ж. Ce Pr Nd Pm Sm Eu Gd Tb Dv Ho Er Tm Yb La 91 94 95 97 99 100 101 102 89 90 92 93 96 98 ** Actinides ** Th Bk Cf Md Pa U Np Pu Am Cm Es Fm No Ac

β -detected NMR and metals in biology

- Increase in sensitivity up to 10⁹ times compared to conventional NMR
- Short-lived beta-particle-emitting probe nuclei
- Hyperpolarisation using e.g. lasers -> ideal for metals
 - NMR can provide info on location & evolution of metal-ion binding to biomolecules

NMR on 23Na, 25Mg, 63Cu, 67Zn bound to the biomolecule

- Challenges: almost invisible signals due to small abundance, spin >1/2, and small sensitivity
- Result: metal-ion-NMR used very rarely => sensitive NMR approach is needed
β-NMR spectra

β-NMR 1st biological case

DNA G-quadruplexes and alkali metals

- DNA G-quadruplexes:
 - Guanine-rich DNA fragments
 - > Found in nature, e.g. in telomeres

- Alkali metals (Na, K) in G-quadruplexes:
 - Important for their formation, stability and structural polymorphism
 - Until recently considered invisible in conventional Na+/K+ NMR

B. Karg, M. Kowalska et al, Proposal to the ISOLDE Scientific Committee, Jan 20 M. Trajkovski et al, J. Am. Chem. Soc. 134, 4132 (2012)

β-NMR and G-Quadruplexes

- Advantages:
 - Sensitivity: metal ions are easily visible, cleaner spectra
 - Smaller quadrupole moments -> longer relaxation and narrower spectra
 - Real-time: folding intermediates
- G-rich DNA

Experiments planned for summer 2021, after 2.5-year break in radioactive beams

$\gamma\text{-detected}$ MRI and Xe imaging

Aim: combine advantages of nuclear medicine and MRI in one modality

Record MRI signals from Sensitivity PET/SPECT-type nuclei (Receptivity) http://science.mg.edu.au/~dyves/research/hyper.html Hyperpolarize spins and observe 1 pMasymmetry of gamma decay Result - high efficiency (γ detection) PET and high resolution (MRI) 1 nMSPECT Gamma-MRI Equipment: $1 \mu M$ I>1/2 gamma-emitting nuclei Spin-polarizer MRI MRI magnet \geq 1 mMMRS Gamma detectors inside B field X-ray Shown to work in 2D by: $1 \mu m$ $10 \mu m$ $100 \, \mu m$ 1 mm $1 \, cm$ 1 dm

Spatial resolution (voxel size)

Y. Zheng, G.W. Miller, W.A. Tobias, G.D. Cates, Nature 537, 652 (2016)

γ -detected MRI – spatial resolution

- Pixel size
 - defined by slope of B-field gradients and spectral width of rf pulse
 - more nuclei -> smaller pixels possible up to B gradient and rf limit

γ -MRI and lung & brain imaging

Imaging using long-lived ^{129m,131m,133m}Xe long-lived nuclear states (isomers):

- Xe: biologically neutral, yet binding to biomolecules and passing blood-brain barrier
- Stable ¹²⁹Xe used for MRI lung (and brain) imaging
- Unstable ¹³³Xe used for SPECT brain imaging

Gain: higher MRI sensitivity or higher nuclear-medicine resolution

Y. Zheng, G.W. Miller, W.A. Tobias, G.D. Cates, Nature 537, 652 (2016)

γ -MRI project status

- Unstable Xe production routes established: ISOLDE, ILL reactor (100-300 MBq)
- 1st tests of Xe polarisation in a compact setup

- 2018-21: CERN seed funding, small team funds from CERN, UNIGE, and HESSO (Geneva), and U Complutense (Madrid)
- April 2021: start of EU Future and Emerging Technologies project (FET-Open)
 - > 3.4 MEUR to work on the g-MRI preclinical prototype
 - HESSO (Geneva), U Complutense, UNIGE, CERN, KU Leuven, RS2D, Inspiralia

Summary and outlook

- Unstable nuclei can offer more than diagnosis sensitivity and targeted treatment => decay anisotropy, when their spins are (hyper-)polarised
- Application: strongly increased NMR sensitivity
 - > β -detected metal NMR to study metal-ion interaction with biomolecules
 - \succ γ -detected Xe MRI for lung and brain imaging
- Projects in their first stages:
 - Feasibility shown
 - Funding acquired

Stay tuned

Thanks to my collaborators and thank you for your attention

Principles of Nuclear Magnetic Resonance

- Participants:
 - Probe nuclei with spin different from 0
 - Sample/ environment
- Magnetic field
 - Strong static field (BO)
 - Weaker perpendicular field (B1) oscillating at radio-frequency (MHz)

NMR in chemistry and biology

Most versatile method to study structure and dynamics of molecules in solution

- Observables: chemical shift (Larmor frequency) and relaxation times in different hosts
- Determined properties
 - Iocal electronic environment (i.e. number and type of coordinating groups)

Same B, different shielding by host

Derived information:

- Structure and dynamics of different biomolecules
- kinetics and dynamics and ligand binding of the metal ions and biomolecules
- > 3D structure of proteins and protein-metal complexes

Metal ions in biology

- Role of metal ions in human body depends on adopted coordination environment
- Right concentration crucial for correct functioning of cellular processes
 - Na, K: transport of sugars and amino acids into cells; regulate flow of water across membranes
 - Mg: RNA- and DNA-processing enzymes and ribozymes
 - Cu: present in many enzymes involved in electron transfer and activation of oxygen
 - Zn: 2nd most abundant trace element in human body; catalytic and structural role, regulation of genetic message transcription and translation

Metal ions & NMR

NMR can provide info on location & evolution of metal-ion binding to biomolecules
 NMR on 23Na, 25Mg, 63Cu, 67Zn bound to the biomolecule

- Challenges: almost invisible signals due to small abundance, I>1/2, and small sensitivity (due to small magnetic moment)
- Result: metal-ion-NMR used very rarely
- In common with radioactive nuclei:
 - Small amount of nuclei so a sensitive NMR approach is needed

NMR limitation: sensitivity

- NMR is powerful but not sensitive
 - Small degree of spin polarization
 - Inefficient detection
- Our combined paths to increase sensitivity: beta-NMR and gamma-NMR/MRI
 - Hyperpolarization
 - Detection of asymmetry in beta decay

Ultrasensitive beta-detected NMR

- Addresses low sensitivity limitation of conventional NMR:
 - Low degree of polarization -> hyperpolarization
 - Inefficient resonance detection -> particle detection

=> up to **1e10** more sensitive than conventional NMR:

Hyperpolarization: optical pumping

- Multiple excitation cycles with circularly-polarized light
- Photon angular momentum transferred to electrons and then nuclei
 - Works best for 1 valence electron
 - nuclear spin-polarization of 10-90%
 - Polarization buildup time < us</p>

Detection of particles: beta decay

- Many unstable atomic nuclei decay by emitting a β particle (fast electron or positron)
- Beta particles are emitted mostly in the direction of the spin
- => Gain in NMR detection efficiency: up to 10⁵

Experimental setup

57

M. Kowalska et al., J. Phys. G: Nucl. Part. Phys. 44 (2017) 084005 W. Gins et al., to be submitted to Nucl. Instr. and Meth. A Designed and commissioned in 2016 First physics experiments in 2017 First biology-related experiments in 2018

Bio-Beta-NMR chamber

First bio-study: Na+ & G-quadruplexes

- DNA G-quadruplexes:
 - Guanine-rich DNA fragments
 - Found in nature, e.g. in telomeres or oncogenes
 - Synthesised for novel applications
 - Important in different diseases

- Alkali metals in DNA G-quadruplexes
 - Important for their formation, stability and structural polymorphism
 - Until recently considered invisible in conventional Na+/K+ NMR

One of few 23Na NMR GQ studies: R. Ida, G. Wu, JACS, 2008

NMR on Na+ and DNA interaction

- T1 relaxation measurements:
 - Quadrupole moment of 23Na interacts with electric-field inhomogeneities (gradients) in the environment
 - Longer T1 relaxation time: more homogenous environment
 - Shorter T1: less homogenous environment
- 23Na T1 measurements have been used to study:
 - Influence of drugs on DNA folding
 - Na binding site to DNA: grooves or backbone

simulations

J. Phys. Chem. B 2004, 108, 16295

NMR on Na+ and G Quadruplexes

Conventional 23Na NMR

β -NMR: 26Na T1 in G4T4G4 G-quadruplex

- T1 in presence of GQ quite long (due to relatively symmetric environment of GQ?)
- Calculations should help in more detailed interpretation
- Oct18 NMR spectra under analysis probably too broad to see -17 ppm shift

Beyond 2018

Magnetic resonance imaging

MRI with hyperpolarized nuclei

- MRI: high resolution, but small sensitivity
- Hyperpolarization: increase in sensitivity by up to 1e5
- Best example: 129Xe:
 - Polarized via spin-exchange with laser-polarized Rb
 - > Applications: lung and brain MRI, encapsulation and use in body liquids

1st medical applications of 3He: W. Heil et al, Mainz, Nature 1996

Gamma-decay asymmetry

- Gamma rays emitted by de-exciting nuclear states are anisotropic in space:
 - ➢ I>1/2 nuclei
 - > Asymmetry between spin direction and perpendicular to it
- Change of asymmetry -> very sensitive way to record NMR or MRI resonances
 - Increase in sensitivity: 1e5 vs hyperpolarized MRI with stable nuclei

Beta decay, I>0

Gamma decay, I>1/2

New modality: gamma-MRI

PET/SPECT and MRI have complementary features:

	Detection efficiency	Spatial resolution
PET and SPECT	high	Low (e.g. >5mm for 82Rb)
MRI	low	High

Solution: gamma-MRI (or simultaneous SPECT-MRI):

- What Record MRI signals from PET/SPECT-type nuclei
- How Hyperpolarize spins and observe asymmetry of gamma decay
- Result high efficiency (gamma detection) and high resolution (MRI)
- Status: method shown to work: Y. Zheng, et al., Nature 537, 652 (2016)
- Gamma-MRI Equipment:
 - I>1/2 gamma-emitting nuclei
 - Spin-polarizer
 - MRI magnet
 - Gamma detectors inside B field

Gamma MRI – spatial resolution

- Pixel size
 - defined by slope of B-field gradients and spectral width of rf pulse
 - more nuclei -> smaller pixels possible up to B gradient and rf limit
- 1 pixel in resonance:
 - change in total gamma counts visible in each detector
 - Degree of change proportional to number of nuclei in addressed nixel

First gamma-MRI

Y. Zheng, G.W. Miller, W.A. Tobias, G.D. Cates, Nature 537, 652 (2016)

- **131mXe**: t1/2 = 12 days
- Setup: low B-field
- Results: space-resolved signal (recorded pixel after pixel) with 1e13 nuclei vs 1e24 normally

Our gamma-MRI project

- Work on feasibility of the technique:
 - Use PET/SPECT isotopes or their isomeric states
 - > Optimising rf pulses
 - Maintaining of polarization
 - First detectors
- => lower dose required to record signals
- Work on proof-of-principle experiment with commercial MRI scanner

Our 1st isotopes

Lung and brain studies

Our test gamma-MRI setup

Summary and outlook

- NMR in nuclear physics and biology
 - Valuable, very different, and facing same challenges need for high sensitivity
- NMR and metal ions in biology
 - Sheds light on interactions with different biomolecules
- NMR low sensitivity can be increased by orders of magnitude with beta-NMR
 - Laser spin hyperpolarization
 - Detection of asymmetry in beta decay
- Beta-NMR in biological samples
 - Experimental setup at CERN
 - First biological experiments on Na interaction with DNA G-quadruplex structures
- More studies with Na and other metal ions coming up
- Increase in MRI sensitivity with gamma-detected MRI
 - Ideal for noble gas imaging, e.g. He or Xe
 - Project starting in Geneva

Acknowledgements

Experimental setup:

CERN: J. Croese, R. Harding, S. Pallada, K. Dziubinska-Kuehn, F.
Wienholtz, M. Jankowski, A. Javaji, P. Wagenknecht, R. Engel
KU Leuven: G. Neyens, W. Gins, F. Gustafsson, X. Yang, H. Heylen,
A. Kanellakopoulos, V. Araujo Escalona
U Manchester/CERN: M. Bissell
AMU Poznan: M. Baranowski, M. Walczak
U Tennessee: M. Madurga Flores, X. Zhang
NPI Rez: D. Zakoucky

Biology (and conventional NMR):

NIC, Ljubljana: J. Plavec, V. Kocman AMU Poznan: M. Kozak, J. Wolak, K. Szutkowski U Copenhagen: L. Hemmingsen, F.H. Larsen, UNIGE: L. Cerato, D. Jeannerat, E. Sistate

Gamma-MRI:

UNIGE/CERN: R. K. Kulesz HESGE: J-N. Hyacinthe, E. Vinckenbosch CERN: S. Pallada, J. Croese, T. Stora Madrid: L. Fraile et al

erc

UNIVERSITÉ

DE GENÈVE

KU LEUVEN

NMR in nuclear physics

Method to determine precisely magnetic & quadrupole moments of short-lived nuclei

- Observables: Larmor frequency
- Determined properties
 - Magnetic dipole and electric quadrupole moment of the studied nucleus

Derived information:

- Magnetic moment orbitals occupied by valence nucleons
- Quadrupole moment collective properties
ISOLDE laboratory

Getting probe nuclei into liquid samples

Challenges and constraints:

- Vacuum/liquid interface with little loss in atom beam and polarization
- Binding to biomolecule before decaying
 -> choose suitable systems to study

AFM measurements

Folded G4T4G4 in Emim-DCA

Hyperpolarization via optical pumping

- Multiple excitation cycles with circularly-polarized light
- Photon angular momentum transferred to electrons and then nuclei
 - Works best for 1 valence electron
 - nuclear spin-polarization of 10-90%
 - Polarization buildup time < us</p>

Optical pumping and nuclear spin

- Polarization of atomic spins with circularly polarized laser (Δ mF = +1 for σ + or -1 for σ light)
- Resulting polarization of nuclear spins via hyperfine interaction (PF->PI):
- Resulting beta-decay asymmetry

Magnetic field (and path of ions)

First NMR results in liquids

Dec 2017: First Na beta-NMR signals in liquid hosts compatible with vacuum (ionic liquids)

Comparison to conventional NMR

23Na spectrum in Bmim-Ac ionic liquid (Bmim-COOH study ongoing)

Latest results

In addition: conventional 23Na studies performed 1.5 weeks ago

ISOLDE radionuclei

Results: First Na beta-NMR in liquids

Resonance much narrower than in solid samples used for nuclear physics

Conventional 23Na NMR vs 26Na beta-NMR

Asymmetry in beta-particle emission

 \overrightarrow{B}

Angular distribution of beta-radiation:

Asymmetry factor for β -decay: -1 for $\Delta I = -1$ $I_i/(I_i + 1)$ for $\Delta I = +1$ $-I_i/(I_i + 1)$ for $\Delta I = 0$ (Gamow Teller) 0 for $\Delta I = 0$ (Fermi)

Measured
$$\beta$$
-decay asymmetry: $A = \frac{N(0^{\circ}) - N(180^{\circ})}{N(0^{\circ}) + N(180^{\circ})} = \frac{N_1 - N_2}{N_1 + N_2}$

to vacuum pump

3 mm opening

to vacuum pump 3 mm opening

Studying metal ions in biology

- Role of metal ions in human body depends on adopted coordination environment
- Right concentration crucial for correct functioning of cellular processes
 - Na, K: transport of sugars and amino acids into cells; regulate flow of water across membranes
 - Mg: RNA- and DNA-processing enzymes and ribozymes
 - Cu: present in many enzymes involved in electron transfer and activation of oxygen
 - Zn: 2nd most abundant trace element in human body; catalytic and structural role, regulation of genetic message transcription and translation

Probe nuclei

Already polarized at ISOLDE

Feasible and planned soon

Quadr

Nucle us	half-life	spin	magn mom (μ _N)	quadr mom (mb)	beta asym
8Li	0.84 s	2	1.65	31	5%
9Li	0.18 s	3/2	3.44	-31	
11Be	13.8	1/2	-1.68	0	1%
26Na	1.1 s	3	2.86	-5	30%
27Na	0.3 s	5/2	3.89	-7	30%
28Na	30 ms	1	2.43	40	40%
29Mg 31Mg	1.2 s 0.25 s	3/2 1/2	0.98 -0.88	160 0	3% 8%

Nucleu s	half-life	Nuclear spin	magn mom (µ _N)	mom (mb)
37K	1.2 s	3/2	+0.20	
49K	1.3 s	1/2	+1.34	0
39C a	0.8 s	3/2	1.02	+38
51Ca	0.36 s	3/2	-1.05	+36
58Cu	3.2 s	1	0.57	-150
74Cu	1.6 s	2	-1.07	260
75Cu	1.2 s	5/2	1.01	-270
75Zn	10 s	7/2		
75mZn	5 s	1/2		0
77Zn	2 s	7/2		
77mZn	1.1 s	1/2		0