

Quantum Sensing Autumn School for DRD5 / RDQuantum

Prof. Dr. Steven Worm

Deutsches Elektronen-Synchrotron (DESY) / Humboldt-Universität zu Berlin November 5, 2024

• Disclaimer: not covering essential AMO techniques for clocks, such as laser / sympathetic cooling, trapping techniques

Outline

- Clocks in History
- Clock Basics
- What makes a good clock?
- Physics with a Clock
- Networks of Clocks
- The Future?

- Galileo proposed the pendulum clock to fix longitude for astronomical observations (1637)
- Huygens made the first pendulum clocks (1656); essential for astronomy, navigation, mapping the earth • Newton used pendulum clocks for gravity experiments (1687)
-
- Maxwell proposed using atoms as natural standard units of time (and length) in 1879
- Many advances driven by science needs/discoveries, which in turn enables new science

Revolutionary Clocks for Science

- Mechanical
- Crystal
- Atomic (microwave)

Fractional Uncertainty of Clocks vs. Year

- Mechanical
- Crystal
- Atomic (microwave)
- Atomic (optical in Hz)
- Atomic (optical w/ estimated uncertainty)

Fractional Uncertainty of Clocks vs. Year

Q: What (science) can you do with such a good clock?? A: Discover new stuff!

- Ultra-light Dark Matter, topological defects Dark Matter
- Local Lorentz Invariance
- 5th Forces
- Gravitational redshift
- Change in fundamental constants
- Dark Energy

- Gravitational Waves
- Equivalence Principle

• …

What Science can you do with an Optical Atomic Clock?

- Clock parts: oscillator and counter
- Both parts are important, true especially for atomic clocks
- Earth is imperfect oscillator, same for man-made resonators
- Many different atoms available, and they are all the same

Clock Basics

minutes

seconds

microseconds

- Laser for oscillator, usually a narrow frequency around atomic transition
- Ultra-stable laser needed (e.g. referenced to a cavity)

Optical Atomic Clocks

ultra-stable, narrow laser:

 $\Delta \nu \approx \mathcal{O}(1 \text{ Hz})$

- Laser for oscillator, usually a narrow frequency around atomic transition
- Ultra-stable laser needed (e.g. referenced to a cavity)
- Locked to atomic transition: frequency detuned/offset (e.g. ±Δ*ν*) to find max

Optical Atomic Clocks

- Laser for oscillator, usually a narrow frequency around atomic transition
- Ultra-stable laser needed (e.g. referenced to a cavity)
- Locked to atomic transition: frequency detuned/offset (e.g. $\pm \Delta \nu$) to find max
- Frequency comb used to link optical frequencies to countable microwave

Optical Atomic Clocks

- Choice of atom
- How to stabilise the oscillator
- Arrangement of atoms (trap, fountain, ...)
- Measurement choices & measuring ratios
- How to characterise the clock (Allan deviation, noise sources, etc)
- How to count really fast (Frequency Comb)

What Makes a Good Atomic Clock?

Selecting an Atomic Reference

- Two requirements for the atom/transition:
	- long observation/interrogation time
	- narrow transition (can find the peak more precisely)
- Long-lived transitions are favourable
	- one minute or more... "forbidden" transitions
	- possible in some atoms with dipole transitions
	- more common for quadrupole/octupole transitions
- Other considerations:
	- convenient optical wavelengths
	- ease of preparation/operation
	- availability of atoms
	- sensitivity to external effects (low or high)

Strontium Level Diagrams

$1 = 2$

Single-Crystal Silicon Optical Cavity

Normalized fast Fourier transform of the beat signal recorded with a HP 3561A FFT analyser (37.5 mHz resolution bandwidth, Hanning window). A Lorentzian fit is indicated by the red line. The combined result of five consecutive recordings of the beat signal (black dots) is displayed here, demonstrating the robustness of this record-setting linewidth.

DESY. Clocks! | Steven Worm | 5.11.24 [https://www.nist.gov/news-events/news/1999/12/nist-f1-cesium-fountain-clock] [Wikipedia, https://www.amop.phy.cam.ac.uk/]

Manipulation and Trapping of Atoms

- Fountains (or ovens): e.g. Cesium Fountain Clock
- Neutral atoms in optical lattice: e.g. Strontium Lattice Clock
- Ions held in electromagnetic trap:

Atomic Fountain (Cesium) 2D and 3D Lattice Potentials Penning and Paul Traps

[Barontini/PTB, https://www.nist.gov/image/penningtrappng]

- Incoherent: absorption spectroscopy for laser stabilisation
	- Signal is continuous (timing is not an issue)
	- Absorption/scattering method \Longrightarrow short lifetime \Longrightarrow broad linewidth
- Coherent: interactions via Rabi oscillations
	- Very long lifetime—usually limited by other effects
	- Setup, query and read-out is not continuous
	- Oscillation between ground and excited states (rotation around Bloch sphere)

Interacting with Atoms: Spectroscopy

[Akatsuka et al, Nature Phys. 4, 954 (2008); Lisdat: Optical Clocks: An Introduction] 15

Block vector:

\n
$$
\frac{d}{dt}\vec{b} = \vec{\Omega}_{eff} \times \vec{b}
$$
\n
$$
\Omega = \langle g | \vec{d} \cdot \vec{E}_0 | e \rangle
$$
\n**Rabi Frequency:**

\n
$$
\vec{\Omega}_{eff} = \begin{pmatrix} \Omega \\ 0 \\ -\delta \end{pmatrix}
$$
\n**Pulse:**

\n
$$
\vec{\Omega}_{eff} \approx \begin{pmatrix} \Omega \\ 0 \\ 0 \end{pmatrix}
$$
\n**free evolution:**

\n
$$
\vec{\Omega}_{eff} = \begin{pmatrix} 0 \\ 0 \\ -(\pm \delta) \end{pmatrix}
$$

• Slope of the curve (log scale) gives different exponent-dependent noise source

Clock Performance: Allan Deviation

- Allan or two-sample variance better suited to oscillators than e.g. standard deviation
- Used to measure frequency stability in clocks, characterise (non-systematic) noise

[Lombardi, Fundamentals of Time and Frequency; NIST Pub 1065, Handbook of Frequency Stability Analysis, 2008; Wikipedia] 16

- Typically many systematic noise sources
	- Blackbody radiation: local heat sources (e.g. for room temperature clock
	- Stark/Zeeman shift: know your fields very well
	- Motional uncertainty, background gas: better vacuum
	- Laser-induced effects: improve laser stability
	- Micromotion (ion motion in sync with trap AC field): better trap design, better control of AC field
- Quantum Projection Noise (shot noise)
	- After laser interrogation, you want to read out the state (either ground or excited, 0 or 1)
	- Binary, discrete nature of quantum leads to uncertainty ϵ for frequency f , probe time T_p and measurement time τ
	- Can be reduced further using squeezing/entanglement $(\sim 1/N)$, or more atoms!

$$
\sigma(\tau) = 1/f \sqrt{NT_p \tau},
$$

Optical Clock Uncertainties

NIST 27Al+ Quantum-Logic Clock

TABLE I. Fractional frequency shifts $(\Delta \nu/\nu)$ and associated systematic uncertainties for the 27 Al⁺ quantum-logic clock.

$\overline{\text{S}}$ Effect		Shift (10^{-19})	Uncertainty $(10^{-1}$
	Excess micromotion		5.9
Blackbody radiation		-30.5	4.2
Quadratic Zeeman		-9241.8	3.7
Secular motion		-17.3	2.9
	Background gas collisions	-0.6	2.4
First-order Doppler		0	2.2
Clock laser Stark		Ω	2.0
AOM phase chirp			${<}1$
Electric quadrupole			$<$ 1
Total		–9336.0	9.4

- Doppler broadening: velocity distribution of atoms can cause spectral lines to shift
- An issue at low pressure, high temperature, small wavelengths
- Can be addressed by reducing the thermal motion: laser or sympathetic cooling
- Collisional broadening: electronic interactions with nearby particles can cause frequency shifts
- Suppressed by cryogenic temperatures, or with better vacuum
- Lattice potentials can be used to eliminate collisions and first-order Doppler shifts
- Stark shift: shift in atomic energy levels as a result of external electric fields
- Effects minimised by eliminating constant external fields (linear Stark shift)
- Zeeman shift: the split of energy levels in the presence of magnetic fields
- Can be reduced by local shielding, or by choosing transitions insensitive to first-order Zeeman shift

Uncertainties from Shifts and Broadening

FIG. 2. Effect of micromotion on the spectrum of P_e (excited state population). We plot $P'_e = P_e[\hbar \gamma/(2\mathcal{P}|E_0|)]^2$ for various values of β . For both graphs, we assume that the ion is driven below the saturation limit. (a) $\Omega/\gamma = 0.1$. For $\beta = 10$, heating occurs in the regions <0.6<(ω_{laser}) $-\omega_{\text{atom}}$)/ γ <0 and $(\omega_{\text{laser}} - \omega_{\text{atom}})/\gamma$ >0.6. (b) Ω/γ =10. For β >0, heating can occur when the laser frequency is tuned near, but above the center of, any of the sideband frequencies.

Micromotion & Black Body Radiation

- Micromotion is excess ion motion synchronous with trap AC field
	- Can change atomic transition line shapes
	- Induce significant second-order Doppler shifts
	- Limit confinement time (for room temp traps)
	- Stark shifts in atomic transitions from the AC field
	- Addressed by better trap design, better control of AC field
- Black-Body Radiation changes the energy levels in clock transitions
	- From heat: major source of uncertainty in room-temperature clocks
	- Shift atom's energy levels via the radiation's electric field (Stark shift)
	- Control by reducing local temperatures, heat sources, windows, etc
	- Advances in calculating the effects (theory)

J. Appl. Phys., Vol. 83, No. 10, 15 May 1998

Deadtime-Related Uncertainty

- It takes some unavoidable time for interrogation (Rabi/Ramsey)
- The data acquisition also add dead time... net effect (Dick's effect) is added uncertainty

probe time + long dead time probe time + short dead time

Clocks! *| Steven Worm | 5.11.24* 20 [Santarelli et. al., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 887 – 894 (1998); M. Schioppo et al., Nature Phot. 11, 48 (2017)]

• Example of recent efforts to overcome the effect

Deadtime Mitigation

[M. Schioppo et al., Nature Phot. 11, 48 (2017)] 21

- Ok, so we have the oscillator and have characterised it, how do we count the clock "ticks"?
- The problem... we can count electronically up to microwave frequencies, but not the 100's of THz optical
- Al⁺ clock example from earlier: 1121015393207859 Hz!
- Frequency combs solve this problem, by translating/connecting the optical frequencies to countable microwave

What about the Counter?

• Q: How to precisely measure optical frequencies? The clock ticks? Compare to other clocks?

- Repetition frequency f_{rep} typically larger than CEO-frequency f_0 (e.g. 200 MHz vs. 50 MHz)
- Both frequencies are tunable, defined in relation to a frequency reference for high-end applications

 $f_n = nf_{rep} + f_0$

Frequency Comb

• Frequency comb: mode-locked laser w/ stabilised rep rate (f_{rep}) and carrier-envelope-offset (f_0)

- Beat notes with additional teeth avoided by extracting only the relevant tooth (e.g. with a grating)
- For a comb with f_0 and f_{rep} , an unknown frequency can be measured wrt one tooth by creating a beat note • The integer n can be found using a wavemeter with an accuracy better than $f_{rep}/2$ (e.g. 40 MHz) • One can slightly increase f_{rep} to find out whether the sign of the beat frequency is + or -
-
-

Frequency Comb: Operation

• f_0 : If comb spectrum is broad enough to cover both a frequency f_1 and also $2f_1$, then 0

- add $f 2f$ interferometer to monitor vs. time
- f_{rep} : count comb output with high-bandwidth photodiode
- *Error propagation:* The factor n can be large (106) so the error on f_{rep} dominates the measurement error
- Error on f_0 (e.g. from the BDU) can be up to 5-6 orders of magnitude larger than that of *f rep* 0

Frequency Comb: Calibration and Error

$$
2f_1 = 2(nf_{rep} + f_0)
$$

$$
f_2 = 2nf_{rep} + f_0
$$

$$
f_1 - f_2 = f_0
$$

[U. Schwanke] 25

Why Measure a Frequency Ratio?

- Unitless: Ratios are not limited by the definition/accuracy of the SI second
- Transportable: Frequencies depend on gravity (et al); ratios can be used for comparison
- Measurable: Even at optical frequencies, can use a frequency comb to measure with accuracy and stability limited by the clocks themselves
-
- Comparative: Can be used to compare different atomic species and/or different reference frames • Sensitive: Can be engineered to maximise sensitivity to fundamental constants, symmetries of nature
- ...also with 18 digits of precision, no predictions from theory!

Typical Experiment Setup

Clocks! *| Steven Worm | 5.11.24* 27 [Arvanitaki et al., Phys. Rev. D 91, 015015 (2015)]

Particle Physics Example: Mass Scales for Dark Matter

DESY. Clocks! | Steven Worm | 5.11.24

Primordial Black Holes Gravitational Lensing

 Quantum Sensing needed for Light/Ultralight Dark Matter

Wave-like Dark Matter

• Dark Matter with clock experiments—oscillation timescales and wavelengths

Below $m \approx 10^{-21}$ eV, the long wavelength is in tension with the existence of astrophysical DM halos

Ultra-Light Dark Matter as Semi-Coherent Waves?

- Simple case: DM is coherent and frequency completely determined by mass (previous page)
- This picture is too simple... the frequency is also a function of velocity (Milky Way, local rest frame)
- The result is a superposition of DM waves and a time dependence
- Amplitude of DM signal only approx. constant within coherence time $τ_c$

Dark Matter and the Milky Way

- DM makes up most of the Milky Way mass, and density at the solar circle is 0.3-0.4 GeV cm⁻³
- Velocity dispersion is large, around 300 km/s (DM is virialised, not thermalised)
- Velocity distribution has cutoff at 544 km/s
- Sun moves with 220 km/s toward constellation Cygnus
- Earth moves around Sun at ~30 km/s
- Mean velocity \approx velocity dispersion \approx 300 km/s = 10-³ c

Dark Matter Coherence Time vs Tdata

- Field amplitude varies stochastically with time
- For T_{data} < τ_c : oscillation occurs at same frequency, but field amplitude not same as average DM density • For T_{data} > τ_c : assumption of a single frequency fails, but the amplitude is given by the average DM density Impact on clock experiments: Limits are weakened by about a factor of 3-10
-
-

[U. Schwanke; G. Centers et al., Nature Communications 12, 7321 (2021)] 32

Ultra-Light Dark Matter: Phenomenology

- Starting with Standard Model Lagrangian, adding new DM interaction (field)
- Bosonic: Ultra-light DM must be bosonic in nature
- Non-relativistic (~10⁻³c): so it neither leaves the galaxy or clumps near the center
- Oscillating classical field: coherent, practically monochromatic \rightarrow wave-like

 $\phi(t) \approx \phi_0 \cos(m_\phi c^2 t/\hbar)$

• Coupling to Lagrangian is linear (in ϕ) for lowest order interaction w/ scalar field (or quadratic with $\phi \leftrightarrow -\phi$ symmetry)

$$
\mathcal{L}_{DM} = \frac{\phi}{\Lambda_{\gamma}} \frac{F_{\mu\nu} F^{\mu\nu}}{4} - \frac{\phi}{\Lambda_e} m_e \bar{\psi} \psi
$$

• At the effective new physics energy scales Λ_{α} and Λ_{e} , α and m_{e} appear to oscillate

$$
\mathcal{L}_{DM} = \frac{\phi^2}{(\Lambda_{\gamma}^{\prime})^2} \frac{F_{\mu\nu} F^{\mu\nu}}{4} - \frac{\phi^2}{(\Lambda_{e}^{\prime})^2} m_e \bar{\psi} \psi
$$

$$
\frac{d\alpha}{\alpha} \approx \frac{\phi_0 \cos(m_{\phi}t)}{\Lambda_{\gamma}}, \quad \frac{dm_e}{m_e} \approx \frac{\phi_0 \cos(m_{\phi}t)}{\Lambda_e}
$$

$$
\frac{d\alpha}{\alpha} \approx \frac{\phi_0^2 \cos^2(m_\phi t)}{(\Lambda_\gamma')^2}, \quad \frac{dm_e}{m_e} \approx \frac{\phi_0^2 \cos^2(m_\phi t)}{(\Lambda_e')^2}
$$

Clocks! | Steven Worm | 5.11.24 **189 | 18 | Steven Worm | 5.11.24** [Damour & Donoghue, PRD 82, 084033 (2010); Arvanitaki et al., Phys. Rev. D 91, 015015 (2015); Safranova et al., RMP 90, 025008 (2018)] 33

$$
\mathcal{L}_{int} = \frac{4\pi\phi}{M_{pl}} \left(\frac{d_e}{4e^2} F_{\mu\nu} F^{\mu\nu} - d_{m_e} m_e \bar{e}e - \frac{d_g \beta_3}{2g_3} G^A_{\mu\nu} G^{A\mu\nu} - \sum_{i=u,d} (d_{m_i} + \gamma_{m_i} d_g) m_i \bar{\psi}_i \psi_i \right)
$$

Beyond The Standard Model

• Many possible new interactions for light Dark Matter that lead to oscillations in fundamental parameters

Clock Transitions and Sensitivities

• Atomic transition scale set by Rydberg constant $R_{\infty} = \alpha^2 m_e c / 4 \pi \hbar$, also fine structure constant α and proton-to-electron mass ratio μ

Ηyperfine transitions: $ν_{\text{hf}} = A \cdot μ\alpha^2 F_{\text{hf}}(\alpha) \cdot R_{\infty}$ Optical transitions: Vibrational transitions: $\nu_{\rm vib} = C \cdot \mu^{1/2} \cdot R_{\infty}$ $\nu_{\text{opt}} = B \cdot F_{\text{opt}}(\alpha) \cdot R_{\infty}$

• Transitions have different sensitivities to variations in α or μ , given by K_{α} and K_{μ}

$$
\frac{dR}{R} = [K_{\alpha,1} - K_{\alpha,2}] \frac{d\alpha}{\alpha}
$$

$$
= [K_{\alpha,1} - K_{\alpha,2}] \frac{\phi_0 \cos(m_{\phi}t)}{\Delta}
$$

$$
= [K_{\alpha,1} - K_{\alpha,2}] \frac{d\alpha}{\alpha}
$$

=
$$
[K_{\alpha,1} - K_{\alpha,2}] \frac{\phi_0 \cos(m_{\phi}t)}{\Delta}
$$

Sensitivity estimates for for different δα/*α clock transitions… similar for and δμ*/*μ*

$$
K_{\alpha} = \frac{\partial \ln(\frac{v}{cR_{\infty}})}{\partial \ln \alpha} = \begin{cases} 2 + \partial \ln F_{hf} / \partial \\ \partial \ln F_{opt} / \partial \ln \alpha \end{cases}
$$

- Measure ratios of frequencies of two transitions $(R = \nu_1/\nu_2)$
-

• So for α and simple case of scalar field ϕ and linear coupling, ratio oscillates with frequency $f = m_\phi c^2/h$

-
- (each with e.g. probe time 1 s)
- Ultimately, we would like to measure/limit the signal frequency (thus m_ϕ) and also Λ

- *The challenge:*
- Limited time steps: discreet (~1s) data points
- Limited resolution: can't say anything about periods much smaller than 1s
- Irregular gaps in data-taking periods
- Assumptions/model dependence/systematic errors in $K_{\alpha,1},\,K_{\alpha,2},\,\phi_0$, relation to Λ

• One frequency ratio R measurement per s for $\mathcal{O}(1$ year), i.e. 3 \times 10⁷ data points \to time series analysis • We can estimate the error on dR/R by adding in quadrature the fractional frequency error for the two clocks

Data Analysis Challenge

$$
\frac{dR}{R} = [K_{\alpha,1} - K_{\alpha,2}] \frac{\phi_0 \cos(m_{\phi} t)}{\Lambda}
$$

- There are many techniques to identify periodicity
- Signal is often folded/convolved with a windowing function resulting from experimental constraints
- Suitable analysis method depends on many factors (frequency known or not, phase known or not, cadence of observations)
- Our case: frequency unknown, but relatively high uptime and regularly spaced measurements

Fourier Transform and Power Spectral Density

$$
\frac{dR}{R} \propto A \cos(\omega t + \phi) = g(t)
$$

$$
F(\omega) = \int_{-\infty}^{+\infty} g(t)e^{-i\omega t}dt
$$
 Fourier transfo

$$
P(\omega) = \lim_{T \to \infty} \frac{1}{T} |F(\omega)|^2
$$
 power spectral

orm

density

- Periodogram: serves as an estimate of the power spectral density for the case of discreet data
-
- Lomb-Scargle Periodogram developed for cases where the sampling is irregular

• A periodogram is useful for finding the dominant periods (or frequencies) of a fixed-interval time series

Periodogram and Lomb-Scargle

Simulation w/ Lomb-Scargle fit (red) 1 Hz sampling, $\sigma = 0.1$, N=10³, T=200 s

DESY. Clocks! | Steven Worm | 5.11.24

$$
P(\omega) = \lim_{T \to \infty} \frac{1}{T} |F(\omega)|^2 = \lim_{T \to \infty} \frac{1}{T} \left(\int g \sin \omega t dt \right)^2 + \left(\int g \cos \omega t dt \right)^2
$$

\n
$$
\frac{1}{N} \left\{ \left(\sum g_n \cos(\omega t_n) \right)^2 + \left(\sum g_n \sin(\omega t_n) \right)^2 \right\}
$$

\n
$$
\frac{B_1^2}{2} \left(\sum g_n \cos(\omega (t_n - \tau)) \right)^2 + \frac{B_2^2}{2} \left(\sum g_n \sin(\omega (t_n - \tau)) \right)^2
$$

\n
$$
\frac{B_1^2}{2} \left(\sum g_n \cos(\omega (t_n - \tau)) \right)^2 + \frac{B_2^2}{2} \left(\sum g_n \sin(\omega (t_n - \tau)) \right)^2
$$

\n
$$
\frac{\text{Lomb-Scargl}e}{\text{periodogram}}
$$

Example Clocks

Molecular Clocks

• Oscillations

• Fast transients

Clock-based Search for α Variations at Different Timescales

Slow drifts

Sensitivities to Temporal Variations of *α***,** *μ*

Clocks! *| Steven Worm | 5.11.24* 41 [EPJ Quant.Technol. 9 (2022) 1,12]

Highly Charged Ions: Production, Cooling and Trapping

- EBIT: Electron Beam Ion Trap (used as a source of HCI)
- HCI bunches are loaded into a linear Paul Trap on demand (HCI lifetimes can be hours)
- Laser and Sympathetic Cooling e.g. with Be+, Ca+ (lots of lasers for cooling/preparation/readout)

HCI production transfer + deceleration cooling + trapping

Ultra-low vibration cryogenic vacuum

Highly Charged Ions: Production, Cooling and Trapping

Highly Charged Ions: Production, Cooling and Trapping

Be crystal with highly

HCI ions implanted in a Coulomb crystal

- Sympathetic cooling with the crystal ions (eg 9Be+)
- Clock-based experiments with highly charged ions
- Also possible: Quantum Logic Spectroscopy (QLS) using the co-trapped ions

Sympathetic Resolved-Sideband Cooling

- a. Laser-cooled Coulomb crystal of fluorescing ⁹Be⁺ ions in the Paul trap
- b. Single Ar+13 ion is injected, sympathetically cooled, and co-crystallized with 9Be+
- c. Excess ⁹Be⁺ ions removed by modulating the Paul trap radio-frequency potential
- d. Ar+13 9Be+ two-ion crystal prepared

Highly Charged Ions: Production, cooling and trapping

Clocks! *| Steven Worm | 5.11.24* 45 [Science 347 (6227), 1233-1236 (2015), Nature 578 (7793), 60-65 (2020)]

Test of Lorentz symmetry

There is a large variety of electron containers... $^{171}{\rm Yb}^+, 4f^{13}6{\rm s}^2, ^2{\rm F}_{7/2}, F=3, m_F=0$

Is the electron's dispersion relation isotropic in space?

Measure the energy relative to an isotropic state.

Ch. Sanner *et al*, Nature **567**, 204 (2019) [courtesy: N. Huntemann]

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin

[from Lisdat: Optical Clocks: An Introduction]

• Lorentz Invariance: outcome of experiment does not depend on the velocity or orientation of inertial frame

• Typical experiments pick a clock transition that is sensitive, fix a magnetic field, and look for variations as

-
- Can move your clock around, but it is sensitive to *everything*
- the earth rotates around the sun

Lorentz Invariance: Recent Results

Clock Networks and Fast Transients

- NPL-SYRTE-PTB demonstrated an optical clock network with dark fibres
- Comparing clocks with different sensitivities to variations of *α*
- Clock-clock comparisons over optical fibres features excellent long-term stability
- Previously unconstrained parameter space for quadratic coupling

[Roberts et al, New J. Phys. 22, 093010 (2020); P. Delva et al., Phys. Rev. Lett., 118 221102 (2017)] 48

- Constraints on energy scale, Λ_{α} of dark matter interactions
- Results for $T = 0.9, 12, 45$ hours
- Collaboration between PTB, SYRTE and NPL

International Clock Comparison Data

• German Dark Fibre planning:

Optical Fibre Networks

- CLONETS: Clock Network Services
- EU Programme from 2017-2019
- http://www.clonets.eu

DESY. Clocks! | Steven Worm | 5.11.24

Boulder Atomic Clock Optical Network

BACON Measurement Campaign

Longer Distance Networks?

Quantum-limited performance over 300 km Space is next!

Transportable Clocks

Ohmae et al., Adv. Quant. Tech. 4, 2100015 (2021)

NIST Transportable Yb-lattice clock

Hannig et al., RSI 90, 053204 (2019) Fasano PhD thesis (2021)

Stuhler et al., Measurement: Sensors 18, 100264 (2021)

Zeng et al., arXiv:2303.07566 (2023) Grotti et al., Nat. Phys. 14, 437 (2018)

[D. Hume]

229mThorium Clock

Nuclear clocks are here!

Conclusions

- Optical Atomic Clocks are some of the most sensitive instruments available
- Fantastic testbed for all sorts of new physics, for example ultra-light dark matter
- Lots of new ideas to follow and new innovations... new clocks, networks, and opportunities!

