

Quantum Sensing Autumn School for DRD5 / RDQuantum

Prof. Dr. Steven Worm

Deutsches Elektronen-Synchrotron (DESY) / Humboldt-Universität zu Berlin November 5, 2024

Outline

- Clocks in History
- Clock Basics
- What makes a good clock?
- Physics with a Clock
- Networks of Clocks
- The Future?

Disclaimer: not covering essential AMO techniques for clocks, such as laser / sympathetic cooling, trapping techniques

Revolutionary Clocks for Science

- Galileo proposed the pendulum clock to fix longitude for astronomical observations (1637)
- Huygens made the first pendulum clocks (1656); essential for astronomy, navigation, mapping the earth Newton used pendulum clocks for gravity experiments (1687)
- Maxwell proposed using atoms as natural standard units of time (and length) in 1879
- Many advances driven by science needs/discoveries, which in turn enables new science

Astronomical predictions for the Solar System

Galileo's pendulum clock design

Remapping of France with pendulum clocks

Newton's tests of gravity

Fractional Uncertainty of Clocks vs. Year

- Mechanical
- Crystal
- Atomic (microwave)

4

Fractional Uncertainty of Clocks vs. Year

- Mechanical
- Crystal
- Atomic (microwave)
- Atomic (optical in Hz)
- Atomic (optical w/ estimated uncertainty)

What Science can you do with an Optical Atomic Clock?

Q: What (science) can you do with such a good clock?? A: Discover new stuff!

- Ultra-light Dark Matter, topological defects Dark Matter
- Local Lorentz Invariance
- 5th Forces
- Gravitational redshift
- Change in fundamental constants
- Dark Energy

. . .

- **Gravitational Waves**
- Equivalence Principle

Clock Basics

- Clock parts: oscillator and counter
- Both parts are important, true especially for atomic clocks
- Earth is imperfect oscillator, same for man-made resonators
- Many different atoms available, and they are all the same

minutes

seconds

7

Optical Atomic Clocks

- Laser for oscillator, usually a narrow frequency around atomic transition
- Ultra-stable laser needed (e.g. referenced to a cavity)

ultra-stable, narrow laser:

 $\Delta \nu \approx \mathcal{O}(1 \text{ Hz})$

around atomic transition cavity)

Optical Atomic Clocks

- Laser for oscillator, usually a narrow frequency around atomic transition
- Ultra-stable laser needed (e.g. referenced to a cavity)
- Locked to atomic transition: frequency detuned/offset (e.g. $\pm \Delta \nu$) to find max

around atomic transition cavity)

Optical Atomic Clocks

- Laser for oscillator, usually a narrow frequency around atomic transition
- Ultra-stable laser needed (e.g. referenced to a cavity)
- Locked to atomic transition: frequency detuned/offset (e.g. $\pm \Delta \nu$) to find max
- Frequency comb used to link optical frequencies to countable microwave

10

What Makes a Good Atomic Clock?

- Choice of atom
- How to stabilise the oscillator
- Arrangement of atoms (trap, fountain, ...)
- Measurement choices & measuring ratios
- How to characterise the clock (Allan deviation, noise sources, etc)
- How to count really fast (Frequency Comb)

Selecting an Atomic Reference

- Two requirements for the atom/transition:
 - long observation/interrogation time
 - narrow transition (can find the peak more precisely)
- Long-lived transitions are favourable
 - one minute or more... "forbidden" transitions
 - possible in some atoms with dipole transitions
 - more common for quadrupole/octupole transitions
- Other considerations:
 - convenient optical wavelengths
 - ease of preparation/operation
 - availability of atoms
 - sensitivity to external effects (low or high)

Strontium Level Diagrams

| = 2

Single-Crystal Silicon Optical Cavity

Normalized fast Fourier transform of the beat signal recorded with a HP 3561A FFT analyser (37.5 mHz resolution bandwidth, Hanning window). A Lorentzian fit is indicated by the red line. The combined result of five consecutive recordings of the beat signal (black dots) is displayed here, demonstrating the robustness of this record-setting linewidth.

Manipulation and Trapping of Atoms

- Fountains (or ovens): e.g. Cesium Fountain Clock
- Neutral atoms in optical lattice: e.g. Strontium Lattice Clock
- lons held in electromagnetic trap:

Atomic Fountain (Cesium)

[https://www.nist.gov/news-events/news/1999/12/nist-f1-cesium-fountain-clock] **DESY.** Clocks! | Steven Worm | 5.11.24

[Wikipedia, https://www.amop.phy.cam.ac.uk/]

Penning and Paul Traps

[Barontini/PTB, https://www.nist.gov/image/penningtrappng]

14

Interacting with Atoms: Spectroscopy

- **Incoherent:** absorption spectroscopy for laser stabilisation
 - Signal is continuous (timing is not an issue)
 - Absorption/scattering method \implies short lifetime \implies broad linewidth
- **Coherent:** interactions via Rabi oscillations
 - Very long lifetime—usually limited by other effects
 - Setup, query and read-out is not continuous
 - Oscillation between ground and excited states (rotation around Bloch sphere)

Bloch vector:
$$\frac{\mathrm{d}}{\mathrm{dt}}\vec{b} = \vec{\Omega}_{\mathrm{eff}} \times \vec{b}$$

Rabi Frequency: $\vec{\Omega}_{\mathrm{eff}} = \begin{pmatrix} \Omega \\ 0 \\ -\delta \end{pmatrix}$
Pulse: $\vec{\Omega}_{\mathrm{eff}} \approx \begin{pmatrix} \Omega \\ 0 \\ 0 \end{pmatrix}$ free evolution: $\vec{\Omega}_{\mathrm{eff}} = \begin{pmatrix} 0 \\ 0 \\ -(\pm\delta) \end{pmatrix}$

[Akatsuka et al, Nature Phys. 4, 954 (2008); Lisdat: Optical Clocks: An Introduction] 15

Clock Performance: Allan Deviation

- Allan or two-sample variance better suited to oscillators than e.g. standard deviation
- Used to measure frequency stability in clocks, characterise (non-systematic) noise

Slope of the curve (log scale) gives different exponent-dependent noise source

DESY. Clocks! | Steven Worm | 5.11.24

[Lombardi, Fundamentals of Time and Frequency; NIST Pub 1065, Handbook of Frequency Stability Analysis, 2008; Wikipedia] 16

Optical Clock Uncertainties

- Typically many systematic noise sources
 - Blackbody radiation: local heat sources (e.g. for room temperature clock
 - Stark/Zeeman shift: know your fields very well
 - Motional uncertainty, background gas: better vacuum
 - Laser-induced effects: improve laser stability
 - Micromotion (ion motion in sync with trap AC field): better trap design, better control of AC field
- Quantum Projection Noise (shot noise)
 - After laser interrogation, you want to read out the state (either ground or excited, 0 or 1)
 - Binary, discrete nature of quantum leads to uncertainty a for frequency f, probe time T_p and measurement time τ
 - Can be reduced further using squeezing/entanglement ($\sim 1/N$), or more atoms!

NIST ²⁷Al⁺ Quantum-Logic Clock

TABLE I. Fractional frequency shifts $(\Delta \nu / \nu)$ and associated systematic uncertainties for the ²⁷Al⁺ quantum-logic clock.

Effect	Shift (10 ⁻¹⁹)	Uncertainty (10 ⁻¹
Excess micromotion	-45.8	5.9
Blackbody radiation	-30.5	4.2
Quadratic Zeeman	-9241.8	3.7
Secular motion	-17.3	2.9
Background gas collisions	-0.6	2.4
First-order Doppler	0	2.2
Clock laser Stark	0	2.0
AOM phase chirp	0	<1
Electric quadrupole	0	<1
Total	-9336.0	9.4

$$\sigma(\tau) = 1/f_{\sqrt{NT_p\tau}},$$

[Brewer at al, PRL 123, 033201 (2019)] 17

Uncertainties from Shifts and Broadening

- Doppler broadening: velocity distribution of atoms can cause spectral lines to shift
- An issue at low pressure, high temperature, small wavelengths
- Can be addressed by reducing the thermal motion: laser or sympathetic cooling
- Collisional broadening: electronic interactions with nearby particles can cause frequency shifts
- Suppressed by cryogenic temperatures, or with better vacuum
- Lattice potentials can be used to eliminate collisions and first-order Doppler shifts
- Stark shift: shift in atomic energy levels as a result of external electric fields
- Effects minimised by eliminating constant external fields (linear Stark shift)
- Zeeman shift: the split of energy levels in the presence of magnetic fields
- Can be reduced by local shielding, or by choosing transitions insensitive to first-order Zeeman shift

Micromotion & Black Body Radiation

- Micromotion is excess ion motion synchronous with trap AC field
 - Can change atomic transition line shapes
 - Induce significant second-order Doppler shifts
 - Limit confinement time (for room temp traps)
 - Stark shifts in atomic transitions from the AC field
 - Addressed by better trap design, better control of AC field
- Black-Body Radiation changes the energy levels in clock transitions
 - From heat: major source of uncertainty in room-temperature clocks
 - Shift atom's energy levels via the radiation's electric field (Stark shift)
 - Control by reducing local temperatures, heat sources, windows, etc.
 - Advances in calculating the effects (theory)

J. Appl. Phys., Vol. 83, No. 10, 15 May 1998

FIG. 2. Effect of micromotion on the spectrum of P_e (excited state population). We plot $P'_e = P_e [\hbar \gamma / (2 \mathscr{P} | E_0 |)]^2$ for various values of β . For both graphs, we assume that the ion is driven below the saturation limit. (a) $\Omega/\gamma=0.1$. For $\beta=10$, heating occurs in the regions $<0.6<(\omega_{\text{laser}})$ $-\omega_{\text{atom}})/\gamma < 0$ and $(\omega_{\text{laser}} - \omega_{\text{atom}})/\gamma > 0.6$. (b) $\Omega/\gamma = 10$. For $\beta > 0$, heating can occur when the laser frequency is tuned near, but above the center of, any of the sideband frequencies.

Deadtime-Related Uncertainty

- It takes some unavoidable time for interrogation (Rabi/Ramsey)
- The data acquisition also add dead time... net effect (Dick's effect) is added uncertainty

probe time + long dead time

probe time + short dead time

[Santarelli et. al., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 887 – 894 (1998); M. Schioppo et al., Nature Phot. 11, 48 (2017)] 20

Deadtime Mitigation

• Example of recent efforts to overcome the effect

[M. Schioppo et al., Nature Phot. 11, 48 (2017)] 21

What about the Counter?

- Ok, so we have the oscillator and have characterised it, how do we count the clock "ticks"?
- The problem... we can count electronically up to microwave frequencies, but not the 100's of THz optical
- Al⁺ clock example from earlier: 1121015393207859 Hz!
- Frequency combs solve this problem, by translating/connecting the optical frequencies to countable microwave

22

Frequency Comb

Q: How to precisely measure optical frequencies? The clock ticks? Compare to other clocks?

• Frequency comb: mode-locked laser w/ stabilised rep rate (f_{rep}) and carrier-envelope-offset (f_0)

- Repetition frequency f_{rep} typically larger than CEO-frequency f_0 (e.g. 200 MHz vs. 50 MHz)

 $f_n = nf_{rep} + f_0$

Both frequencies are tunable, defined in relation to a frequency reference for high-end applications

Frequency Comb: Operation

- For a comb with f_0 and f_{rep} , an unknown frequency can be measured wrt one tooth by creating a beat note The integer n can be found using a wavemeter with an accuracy better than $f_{rep}/2$ (e.g. 40 MHz) Beat notes with additional teeth avoided by extracting only the relevant tooth (e.g. with a grating) One can slightly increase f_{rep} to find out whether the sign of the beat frequency is + or -

24

Frequency Comb: Calibration and Error

• f_0 : If comb spectrum is broad enough to cover both a frequency f_1 and also $2f_1$, then

$$2f_{1} = 2(nf_{rep} + f_{0})$$

$$f_{2} = 2nf_{rep} + f_{0}$$

$$f_{1} - f_{2} = f_{0}$$

- add f 2f interferometer to monitor vs. time
- *f_{rep}*: count comb output with high-bandwidth photodiode
- *Error propagation:* The factor n can be large (10⁶) so the error on f_{rep} dominates the measurement error
- Error on f_0 (e.g. from the BDU) can be up to 5-6 orders of magnitude larger than that of f_{rep}

[U. Schwanke] 25

Why Measure a Frequency Ratio?

- Unitless: Ratios are not limited by the definition/accuracy of the SI second
- Transportable: Frequencies depend on gravity (et al); ratios can be used for comparison
- Measurable: Even at optical frequencies, can use a frequency comb to measure with accuracy and stability limited by the clocks themselves
- Sensitive: Can be engineered to maximise sensitivity to fundamental constants, symmetries of nature
- Comparative: Can be used to compare different atomic species and/or different reference frames
- ...also with 18 digits of precision, no predictions from theory!

Typical Experiment Setup

[Arvanitaki et al., Phys. Rev. D 91, 015015 (2015)] 27

Particle Physics Example: Mass Scales for Dark Matter

Quantum Sensing needed for Light/Ultralight Dark Matter

DESY. Clocks! | Steven Worm | 5.11.24

Gravitational Lensing

Wave-like Dark Matter

Dark Matter with clock experiments—oscillation timescales and wavelengths

Below m $\approx 10^{-21}$ eV, the long wavelength is in tension with the existence of astrophysical DM halos

Ultra-Light Dark Matter as Semi-Coherent Waves?

- Simple case: DM is coherent and frequency completely determined by mass (previous page)
- This picture is too simple... the frequency is also a function of velocity (Milky Way, local rest frame)
- The result is a superposition of DM waves and a time dependence
- Amplitude of DM signal only approx. constant within coherence time τ_c

Dark Matter and the Milky Way

- DM makes up most of the Milky Way mass, and density at the solar circle is 0.3-0.4 GeV cm⁻³
- Velocity dispersion is large, around 300 km/s (DM is virialised, not thermalised)
- Velocity distribution has cutoff at 544 km/s
- Sun moves with 220 km/s toward constellation Cygnus
- Earth moves around Sun at ~30 km/s
- Mean velocity \approx velocity dispersion \approx 300 km/s = 10⁻³ c

Dark Matter Coherence Time vs Tdata

- Field amplitude varies stochastically with time
- For $T_{data} < \tau_c$: oscillation occurs at same frequency, but field amplitude not same as average DM density For $T_{data} > \tau_c$: assumption of a single frequency fails, but the amplitude is given by the average DM density Impact on clock experiments: Limits are weakened by about a factor of 3-10

[U. Schwanke; G. Centers et al., Nature Communications 12, 7321 (2021)] 32

Ultra-Light Dark Matter: Phenomenology

- Starting with Standard Model Lagrangian, adding new DM interaction (field)
- **Bosonic:** Ultra-light DM must be bosonic in nature
- Non-relativistic ($\sim 10^{-3}c$): so it neither leaves the galaxy or clumps near the center •
- Oscillating classical field: coherent, practically monochromatic \rightarrow wave-like

$$\mathscr{L}_{int} = \frac{4\pi\phi}{M_{pl}} \Big(\frac{d_e}{4e^2} F_{\mu\nu} F^{\mu\nu} - d_{m_e} m_e \bar{e}e - \frac{d_g \beta_3}{2g_3} G^A_{\mu\nu} G^{A\mu\nu} - \sum_{i=u,d} (d_{m_i} + \gamma_{m_i} d_g) m_i \bar{\psi}_i \psi_i \Big)$$

$$\mathscr{L}_{DM} = \frac{\phi}{\Lambda_{\gamma}} \frac{F_{\mu\nu} F^{\mu\nu}}{4} - \frac{\phi}{\Lambda_{e}} m_{e} \bar{\psi} \psi$$

At the effective new physics energy scales Λ_{α} and Λ_{e} , α and m_{e} appear to oscillate

$$\frac{d\alpha}{\alpha} \approx \frac{\phi_0 \cos(m_{\phi} t)}{\Lambda_{\gamma}}, \quad \frac{dm_e}{m_e} \approx \frac{\phi_0 \cos(m_{\phi} t)}{\Lambda_e}$$

 $\phi(t) \approx \phi_0 \cos(m_\phi c^2 t/\hbar)$

Coupling to Lagrangian is linear (in ϕ) for lowest order interaction w/ scalar field (or quadratic with $\phi \leftrightarrow -\phi$ symmetry)

$$\mathscr{L}_{DM} = \frac{\phi^2}{(\Lambda'_{\gamma})^2} \frac{F_{\mu\nu}F^{\mu\nu}}{4} - \frac{\phi^2}{(\Lambda'_e)^2} m_e \bar{\psi}\psi$$

$$\frac{d\alpha}{\alpha} \approx \frac{\phi_0^2 \cos^2(m_{\phi} t)}{(\Lambda_{\gamma}')^2}, \quad \frac{dm_e}{m_e} \approx \frac{\phi_0^2 \cos^2(m_{\phi} t)}{(\Lambda_e')^2}$$

[Damour & Donoghue, PRD 82, 084033 (2010); Arvanitaki et al., Phys. Rev. D 91, 015015 (2015); Safranova et al., RMP 90, 025008 (2018)] 33

Beyond The Standard Model

Many possible new interactions for light Dark Matter that lead to oscillations in fundamental parameters

Clock Transitions and Sensitivities

Atomic transition scale set by Rydberg constant $R_{\infty} = \alpha^2 m_{\rho} c / 4\pi \hbar$, also fine structure constant α and proton-to-electron mass ratio μ

Hyperfine transitions: $\nu_{\rm hf} = A \cdot \mu \alpha^2 F_{\rm hf}(\alpha) \cdot R_{\infty}$ Optical transitions: $\nu_{\rm opt} = B \cdot F_{\rm opt}(\alpha) \cdot R_{\infty}$ Vibrational transitions: $\nu_{\rm vib} = C \cdot \mu^{1/2} \cdot R_{\infty}$

• Transitions have different sensitivities to variations in α or μ , given by K_{α} and K_{μ}

$$K_{\alpha} = \frac{\partial \ln\left(\frac{\nu}{cR_{\infty}}\right)}{\partial \ln \alpha} = \begin{cases} 2 + \partial \ln r \\ \partial \ln r \\ \rho p \end{cases}$$

- Measure ratios of frequencies of two transitions (

$$\frac{dR}{R} = [K_{\alpha,1} - K_{\alpha,2}] \frac{d\alpha}{\alpha}$$
$$= [K_{\alpha,1} - K_{\alpha,2}] \frac{\phi_0 \cos(m_{\phi} t)}{\Lambda}$$

$$= [K_{\alpha,1} - K_{\alpha,2}] \frac{d\alpha}{\alpha}$$
$$= [K_{\alpha,1} - K_{\alpha,2}] \frac{\phi_0 \cos(m_{\phi} t)}{\Lambda}$$

Clock	Κα	
Yb⁺(467 nm)	-5.95	
Sr (698 nm)	0.06	
Cs (32.6 mm)	2.83	
CaF (17 μm)	0	
N_2^+ (2.31 μ m)	0	
Cf ¹⁵⁺ (618 nm)	47	
Cf ¹⁷⁺ (485 nm)	-43.5	

$\Gamma F_{hf}/\partial \ln lpha$	for hyperfine transitions
1 - 1	

 $d \ln \alpha$ for optical transitions

$$R=\nu_1/\nu_2)$$

So for α and simple case of scalar field ϕ and linear coupling, ratio oscillates with frequency $f = m_{\phi}c^2/h$

Sensitivity estimates for $\delta \alpha / \alpha$ for different clock transitions... similar for and $\delta \mu / \mu$

Data Analysis Challenge

- (each with e.g. probe time 1 s)
- Ultimately, we would like to measure/limit the signal frequency (thus m_{ϕ}) and also Λ

$$\frac{dR}{R} = [K_{\alpha,1} - K_{\alpha,2}] \frac{\phi_0 \cos(m_\phi t)}{\Lambda}$$

- The challenge:
- Limited time steps: discreet (~1s) data points
- Limited resolution: can't say anything about periods much smaller than 1s
- Irregular gaps in data-taking periods
- Assumptions/model dependence/systematic errors in $K_{\alpha,1}$, $K_{\alpha,2}$, ϕ_0 , relation to Λ

One frequency ratio R measurement per s for $\mathcal{O}(1 \text{ year})$, i.e. 3×10^7 data points \rightarrow time series analysis We can estimate the error on dR/R by adding in quadrature the fractional frequency error for the two clocks

Fourier Transform and Power Spectral Density

- There are many techniques to identify periodicity
- Signal is often folded/convolved with a windowing function resulting from experimental constraints
- Suitable analysis method depends on many factors (frequency known or not, phase known or not, cadence of observations)
- Our case: frequency unknown, but relatively high uptime and regularly spaced measurements

$$\frac{dR}{R} \propto A\cos(\omega t + \phi) = g(t)$$

$$F(\omega) = \int_{-\infty}^{+\infty} g(t)e^{-i\omega t}dt$$
Fourier transformation

$$P(\omega) = \lim_{T \to \infty} \frac{1}{T} |F(\omega)|^2 \qquad \text{power spectral}$$

orm

density

Periodogram and Lomb-Scargle

- Periodogram: serves as an estimate of the power spectral density for the case of discreet data
- Lomb-Scargle Periodogram developed for cases where the sampling is irregular

$$P(\omega) = \lim_{T \to \infty} \frac{1}{T} |F(\omega)|^2 = \lim_{T \to \infty} \frac{1}{T} \left(\int g \sin \omega t dt \right)^2 + \left(\int g \cos \omega t dt \right)^2$$

$$\frac{1}{N} \left\{ \left(\sum g_n \cos(\omega t_n) \right)^2 + \left(\sum g_n \sin(\omega t_n) \right)^2 \right\}$$

$$\frac{B_1^2}{2} \left(\sum g_n \cos(\omega (t_n - \tau)) \right)^2 + \frac{B_2^2}{2} \left(\sum g_n \sin(\omega (t_n - \tau)) \right)^2$$

$$\frac{\text{Lomb-Scargle periodogram}}{\text{periodogram}}$$

DESY. Clocks! | Steven Worm | 5.11.24

A periodogram is useful for finding the dominant periods (or frequencies) of a fixed-interval time series

Simulation w/ Lomb-Scargle fit (red) 1 Hz sampling, σ =0.1, N=10³, T=200 s

Example Clocks

Atomic Clocks

DESY. Clocks! | Steven Worm | 5.11.24

Highly Charged Ion Clock

Molecular Clocks

[EPJ Quant.Technol. 9 (2022) 1,12] 39

Clock-based Search for a Variations at Different Timescales

Slow drifts

Oscillations

Fast transients

Sensitivities to Temporal Variations of $\alpha,\,\mu$

Highly Charged Ions: Production, Cooling and Trapping

HCI production

- EBIT: Electron Beam Ion Trap (used as a source of HCI)
- HCI bunches are loaded into a linear Paul Trap on demand (HCI lifetimes can be hours)
- Laser and Sympathetic Cooling e.g. with Be+, Ca+ (lots of lasers for cooling/preparation/readout)

transfer + deceleration

cooling + trapping

Highly Charged Ions: Production, Cooling and Trapping

Ultra-low vibration cryogenic vacuum

Highly Charged Ions: Production, Cooling and Trapping

DESY. Clocks! | Steven Worm | 5.11.24

Be crystal with highly charged ion (Ar)

[MPIK: José R. Crespo López-Urrutia] 44

Highly Charged Ions: Production, cooling and trapping

HCI ions implanted in a Coulomb crystal

- Sympathetic cooling with the crystal ions (eg ⁹Be⁺)
- Clock-based experiments with highly charged ions
- Also possible: Quantum Logic Spectroscopy (QLS) using the co-trapped ions

Sympathetic Resolved-Sideband Cooling

- a. Laser-cooled Coulomb crystal of fluorescing ⁹Be⁺ ions in the Paul trap
- b. Single Ar⁺¹³ ion is injected, sympathetically cooled, and co-crystallized with ⁹Be⁺
- c. Excess ⁹Be⁺ ions removed by modulating the Paul trap radio-frequency potential
- d. Ar⁺¹³ ⁹Be⁺ two-ion crystal prepared

[Science 347 (6227), 1233-1236 (2015), Nature 578 (7793), 60-65 (2020)]

Test of Lorentz symmetry

Is the electron's dispersion relation isotropic in space?

There is a large variety of electron containers... 171 Yb⁺, $4f^{13}$ 6s², 2 F_{7/2}, $F = 3, m_{F} = 0$

Ch. Sanner *et al*, Nature **567**, 204 (2019)

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

Measure the energy relative to an isotropic state.

[courtesy: N. Huntemann]

[from Lisdat: Optical Clocks: An Introduction]

Lorentz Invariance: Recent Results

- Can move your clock around, but it is sensitive to everything
- the earth rotates around the sun

Lorentz Invariance: outcome of experiment does not depend on the velocity or orientation of inertial frame

• Typical experiments pick a clock transition that is sensitive, fix a magnetic field, and look for variations as

Clock Networks and Fast Transients

- NPL-SYRTE-PTB demonstrated an optical clock network with dark fibres
- Comparing clocks with different sensitivities to variations of α
- Clock-clock comparisons over optical fibres features excellent long-term stability
- Previously unconstrained parameter space for quadratic coupling

[Roberts et al, New J. Phys. 22, 093010 (2020); P. Delva et al., Phys. Rev. Lett., 118 221102 (2017)] 48

International Clock Comparison Data

- Constraints on energy scale, Λ_{α} of dark matter interactions
- Results for T = 0.9, 12, 45 hours
- Collaboration between PTB, SYRTE and NPL

Optical Fibre Networks

- **CLONETS: Clock Network Services**
- EU Programme from 2017-2019
- http://www.clonets.eu

DESY. Clocks! | Steven Worm | 5.11.24

German Dark Fibre planning:

Boulder Atomic Clock Optical Network

BACON Measurement Campaign

Longer Distance Networks?

Quantum-limited performance over 300 km

Space is next!

-10 ⁶	(km)
⁻ 10 ⁵	ertures
-10 ⁴	cm ap(
-10 ³	for 10-
-10 ²	stance
-10 ¹	Max. dis

Transportable Clocks

Zeng et al., arXiv:2303.07566 (2023)

NIST Transportable Yb-lattice clock Fasano PhD thesis (2021)

Grotti et al., Nat. Phys. 14, 437 (2018)

Hannig et al., RSI 90, 053204 (2019)

Ohmae et al., Adv. Quant. Tech. 4, 2100015 (2021)

Stuhler et al., Measurement: Sensors 18, 100264 (2021)

[D. Hume] 54

^{229m}Thorium Clock

Nuclear clocks are here!

C. Zhang et al., Nature 633, 63 (2024) 55

Conclusions

- Optical Atomic Clocks are some of the most sensitive instruments available
- Fantastic testbed for all sorts of new physics, for example ultra-light dark matter
- Lots of new ideas to follow and new innovations... new clocks, networks, and opportunities!

