Microcalorimeters

NI

NII

Loredana Gastaldo

MI

E

MII

Kirchhoff Institute for Physics Heidelberg University

Outline

Basic of low temperature detectors TES MMC

Overview on some applications
 Photon detection
 Neutrino physics
 Search for Dark Matter interactions

How do they fit to the quantum sensing school?

How do they fit to the quantum sensing school?

They precisely detect quanta of energy

How do they fit to the quantum sensing school?

They precisely detect quanta of energy ... as an increase of temperature

How do they fit to the quantum sensing school?

They precisely detect quanta of energy ... as an increase of temperature

- Very small volume
- Working temperature below 100 mK small specific heat small thermal noise
- Very sensitive temperature sensors

Near equilibrium sensors

Athermal sensors

Near equilibrium sensors

Athermal sensors

Near equilibrium sensors

Athermal sensors (based on superconducting films) Temperature increase induces breaking of Cooper pairs

- Very thin superconducting films
- Working at mK

"no" quasi-particles @ equilibrium long quasi-particle half-life

• High efficiency of "counting" quasi-particles

Near equilibrium sensors

Athermal sensors (based on superconducting films) Temperature increase induces breaking of Cooper pairs

Superconducting Tunnel Junctions - STJ

Quasi-particles tunneling through a thin isolating barrier Measurement of current

Near equilibrium sensors

Kinetic Inductance Detectors – KID

Breaking Cooper pairs \rightarrow change of kinetic inductance

Superconducting film operated at the transition temperature

Operating temperature defines:

- heat capacity
- thermal conductance
- thermal noise

In the periodic table only 18 elements with $T_{\rm C}$ < 2 K \rightarrow only 5 are actually used in TES

Al	Τ _C ~ 1.1 K	
Ti	<i>Т</i> _с ~ 0.39 К	
Мо	<i>T</i> _C ~ 0.92 K	
W	$T_{\rm C} \simeq 0.012 ~\rm K$	only elemental superconductor routinely used as TES
Ir	<i>Т</i> _с ~0.140 К	

How to reduce the transition temperature of superconducting films to be \sim 100 mK???

Proximity effect Magnetic impurities

Proximity effect: Lowering the transition temperature of a superconducting film by the presence of a normal metal layer in good electrical contact

Normal conducting	d _N	If \textit{d}_{N} is smaller than the coherence length ξ	Superconductors	Normal
Superconducting	ds	→ the bilayer behaves as a homogeneous superconducting film	Ti Mo Al Ir	Cu Ag Au

Different model have been developed for the description of the physics of bilayer system. As an example Usadel theory:

$$T_{C} = T_{C0} \left[\frac{d_{S}}{d_{0}} \frac{1}{1.13(1+1/\alpha)} \frac{1}{t} \right]^{\alpha} \qquad \alpha = \frac{d_{N}n_{N}}{d_{S}n_{S}} \\ \frac{1}{d_{0}} = \frac{\pi}{2} K_{B}T_{C0}\lambda_{F}^{2}n_{S}$$

 $\lambda_{\rm F}$ = Fermi wavelength $n_{\rm S}$, $n_{\rm N}$ = density of electronic states *t* = transmission coefficient

Proximity effect: Lowering the transition temperature of a superconducting film by the presence of a normal metal layer in good electrical contact

Normal conducting	d _N	If $d_{_{ m N}}$ is
Superconducting	d _s	→ the super

f d_N is smaller than the coherence length ξ

→ the bilayer behaves as a homogeneous superconducting film

Different model have been developed for the description of the physics of bilayer system. As an example Usadel theory:

$$T_{C} = T_{C0} \left[\frac{d_{S}}{d_{0}} \frac{1}{1.13(1+1/\alpha)} \frac{1}{t} \right]^{\alpha}$$

Monticone et al. Journal of Physics: Conference Series **150** (2009) 052168

Magnetic impurities: in a superconducting film magnetic impurities induce pair breaking \rightarrow the film thickness is not limited by coherence length

R = R(T,I) : TES resistance T: TES temperature

C: Heat capacity TES + absorber *G*: thermal conductivity to the bath $- G = nkT^{n-1}$

R_{SH}= shunt resistance R_{SH} < R
V = applied constant voltage
I: current through the TES
L: inductance of the input coil of the SQUID

*P*_{bath}: power flowing to the bath *P*_J: Joule power in *R P*: signal power

R = R(T,I) : TES resistance T: TES temperature

C: Heat capacity TES + absorber *G*: thermal conductivity to the bath $- G = nkT^{n-1}$

R_{SH}= shunt resistance R_{SH} < R
V = applied constant voltage
I: current through the TES
L: inductance of the input coil of the SQUID

 P_{bath} : power flowing to the bath P_{J} : Joule power in RP: signal power

Thermal differential equation:

$$C\frac{\mathrm{d}T}{\mathrm{d}t} = -P_{bath} + P_J + P$$

Electrical differential equation:

$$L\frac{\mathrm{d}I}{\mathrm{d}t} = V - IR_{SH} - IR(T,I)$$

R = R(T,I)

 G

Solution in the small signal limit around the values R_0 , T_0 , I_0 and the temperature dependences of C and G are omitted

$$R(T,I) \approx R_0 + \frac{\partial R}{\partial T} \bigg|_{I_0} \delta T + \frac{\partial R}{\partial I} \bigg|_{T_0} \delta I$$
$$\alpha_1 = \frac{\partial \log R}{\partial \log T} \bigg|_{I_0} = \frac{T_0}{R_0} \frac{\partial R}{\partial T} \bigg|_{I_0}$$

$$R(T,I) \approx R_0 + \frac{\partial R}{\partial T} \Big|_{I_0} \delta T + \frac{\partial R}{\partial I} \Big|_{T_0} \delta I$$
$$\alpha_I = \frac{\partial \log R}{\partial \log T} \Big|_{I_0} = \frac{T_0}{R_0} \frac{\partial R}{\partial T} \Big|_{I_0}$$
$$\beta_I = \frac{\partial \log R}{\partial \log I} \Big|_{T_0} = \frac{I_0}{R_0} \frac{\partial R}{\partial I} \Big|_{T_0}$$

$$R_{\rm dyn} = \frac{\partial V}{\partial I} \bigg|_{T_0} = R_0 (1 + \beta_{\rm I})$$

$$R(T, I) = R_0 + \alpha_1 \frac{R_0}{T_0} \delta T + \beta_1 \frac{R_0}{I_0} \delta I$$

Bennet et al.,LTD16 presentation

If $R_{SH} >> R(T, I)$

→ I ~constant → $P_J = I^2 R$ → R increases → P_J increases → positive feedback

If $R_{SH} \ll R(T,I)$

→ V ~ constant → $P_J = V^2/R$ → R increases → P_J decreases → negative feedback Negative electro-thermal feedback

The negative electro-thermal feedback makes the working point more stable and decreases the decay time of the current signal with respect to the thermal time constant $\tau_0 = C/G$:

$$\tau_{eff} = \frac{\tau_0}{1 + \alpha/n}$$

Pulse shape:

$$\delta I(t) \propto \left(-e^{-\frac{t}{\tau_{+}}} + e^{-\frac{t}{\tau_{-}}}\right)$$

rise time

decay time

$$\tau_{-} = \tau_{eff} = \frac{\tau_0}{1 + \alpha/n}$$

 $\tau_+ \sim \tau_{el} = \frac{1}{R_{SH} + R_{dyn}}$

For strong electro-thermal feedback \rightarrow best energy resolution:

$$\Delta E_{FWHM} = 2\sqrt{2ln2} \sqrt{4k_B T^2 \frac{C}{\alpha} \sqrt{\frac{n}{2}}}$$

Transition Edge Sensors - fabrication

Transition Edge Sensors – Lynx array

Lynx microcalorimeter array for future NASA mission for soft x-ray astronomy:

< 1" angular resolution optic

 \simeq 100,000-pixel with energy resolution of $\Delta E_{FWHM} \,{\sim}3~eV$

Transition Edge Sensors – Lynx array

S.J. Smith et al., JLTP 199 (2020) 330–338

Transition Edge Sensors – Lynx array

S.J. Smith et al., JLTP 199 (2020) 330–338

Paramagnetic temperature sensor

A.Fleischmann, C. Enss and G. M. Seidel, Topics in Applied Physics **99** (2005) 63

A.Fleischmann et al., AIP Conf. Proc. **1185** (2009) 571

Paramagnetic temperature sensor

 $\tau \cong 50 \text{ ms}$

Paramagnetic temperature sensor

Paramagnetic temperature sensor

Paramagnetic temperature sensor → Dilute alloy Au:Er or Ag:Er (Er concentration: a few hundred ppm)

Time t [ms]

Signal

Inverse Temperature *T*⁻¹ [K⁻¹]

Temperature T [mK]

Detector geometries

- planar paramagnetic sensor ٠
- superconducting coil ٠
- transformed coupled to a dc SQUID

Persistent current

Reliable injection of a persistent current in the superconducting coil:

Achievable critical current density: ~ 10 MA/cm²

MMC readout

Two-stage dc-SQUID readout with flux-locked loop low noise

small power dissipation on detector SQUID chip (voltage bias 1st stage)

In house produced SQUID array

MMC readout

Performance

Amplitude proportional to energy

Rise time limited by the electron spin coupling

Decay time given by C/G

 \rightarrow thermal link optimized for

detector heat capacity at operating temperature

Performance

MMC fabrication

40 m² Cleanroom class 100 at Kirchhoff Institute for Physics

Wet bench Chemistry bench Maskless aligner UHV sputtering system Dry etching system

- Flexibility in design and fabrication
- Reliable processes for thin films
- Production of MMC array and superconducting electronics

MMC Arrays

1 mm

ECHo-1k

ECHo-1k data – Live!

mk temperatures

1/10000

Room Temperature

30 mK

mk temperatures

30 mK

Room Temperature

Necessary instrumentation Dilution refrigerators Adiabatic demagnetization refrigerators

Before ~ 2000 Wet systems

"Complex systems" Require liquid helium continuous maintenance

Low temperature detectors mainly for "niche" experiment

mk temperatures

Low temperature detectors mainly for "niche" experiment

Low temperature detectors in many applications

Outline

Basic of low temperature detectors TES MMC

Overview on some applications
 Photon detection
 Neutrino physics
 Search for Dark Matter interactions

mm and sub-mm cameras

Astrophysics: studying the generation of stars and galaxies from cold gas

Cosmology: study of the Cosmic Microwave Background

SCUBA2 on the James Clerk Maxwell Telescope (JCMT):

- Transition Edge Sensors, 10240 TESs @ T~50 mK
- 0.85 mm (352 GHz) and 0.45 mm (666 GHz)

SCUBA2 map of the highmass star forming region W51 at 850 um

W.S. Holland *Monthly Notices of the Royal Astronomical Society* 430/4 (2013) 2513

mm and sub-mm cameras

Astrophysics: studying the generation of stars and galaxies from cold gas

Cosmology: study of the Cosmic Microwave Background

NIKA2 AI Lumped Elements KIDs

- Kinetic Inductance Detector, 2896 KIDs @ T~150 mK
- 2 mm (150 GHz) and 1.15 mm (260 GHz)

Pixel size $2.3 \times 2.3 \text{ mm}^2$

R. Adam et al., A&A 609, A115 (2018)

mm and sub-mm cameras

Astrophysics: studying the generation of stars and galaxies from cold gas

Cosmology: study of the Cosmic Microwave Background

A-MKID (12 m APEX telescope Chile)

Two sub-mm bands (350 and 850 GHz) Antenna-coupled KID:

- 3,500 pixels @ 0.85mm
- 20,000 pixels @ 0.35mm

mm and sub-mm cameras

Astrophysics: studying the generation of stars and galaxies from cold gas

Cosmology: study of the Cosmic Microwave Background

Planck Satellite

High-Frequency Instrument (HFI): 54 Spiderweb absorber coupled to NTD-Ge bolometers (100mK) for the frequency range 100–857 GHz.

Jet Propulsion Laboratory (JPL)

mm and sub-mm cameras

Astrophysics: studying the generation of stars and galaxies from cold gas

Cosmology: study of the Cosmic Microwave Background

CMB-S4: next-generation ground-based CMB experiment based on antenna coupled TES:

- ~ 500000 detectors (30 300 GHz)
- multiple telescopes and sites to map \gtrsim 70% of sky

Detector development follows work done in ACT (Aiola et al. 2020) BICEP/Keck (BICEP2/Keck Array Collaborations X 2018) CLASS (Harrington et al. 2016) POLARBEAR/Simons Array (Suzuki et al. 2016; Hasegawa et al.2018) SPT (Bender et al. 2018; Sayre et al. 2020)

mm and sub-mm cameras

Detection of single NIR and visible photons Fibre-coupled TES - quantum cryptography Detection efficiency close to 100%

Single x-ray photons atomic physics, astronomy, material analysis

Single x-ray photons atomic physics, astronomy, material analysis

Single x-ray photons

atomic physics, astronomy, material analysis

32×32 pixel x-ray camera for the X-IFU

- Cryogenic spectrometer, energy band 0.2 12 keV
- Au absorbers + Ti(35nm)Au(200nm) bilayer \rightarrow Tc~ 90mK

γ - and (α -)detectors

homeland security and nuclear non-proliferation

D. A. Bennett et al., Rev. Sci. Instrum. 83 (2012) 093113

γ - and (α -)detectors

HPGe

TES

180

200

220

homeland security and nuclear nonproliferation

More than a factor 10 better resolving power than typical semiconductor detector

D. A. Bennett et al., Rev. Sci. Instrum. 83 (2012) 093113

Low temperature detector for Neutrino Physics

Neutrinoless double beta decay

CUORE, AMORE, CUPID

Coherent neutrino nucleus scattering NuCLEUS (TES), Ricochet (TES), BullKID (mKID) Neutrino interaction induces a nuclear recoil

Sterile neutrino searches

BeEST (Ta-based STJ)

nuclear recoil following electron capture in ⁷Be

Fretwell et al., Phys. Rev. Lett. 125, 032701 (2020)

kink in H-3 beta spectrum with LiF + MMC (Exp. in Korea) Y.C. Lee et al., JLTP **209** (2022) 919

Direct neutrino mass determination ECHo (MMC), HOLMES (TES)

all the energy released upon electron capture in ¹⁶³Ho, besides the one taken away by the neutrino The ECHo Collaboration EPJ-ST 226 8 (2017) 1623 B. Alpert et al, Eur. Phys. J. C 75 (2015) 112

R. Strauss et al., Eur. Phys. J.C 79 (2019) 12, 1018

https://www.lngs.infn.it/en/cuore

Low temperature detector for Dark Matter sirect searches

WIMP produces nuclear recoil ----- temperature rise + light CRESST (TES)

WIMP produces nuclear recoil – on superfluid helium

light + evaporation + de-excitation HeRALD (TES) DELight (MMC)

R. Anthony-Petersen et al. (SPICE/HeRALD Collaboration) *Phys. Rev. D* 110 (2024) 072006

Phys.Rev.Lett. 120 (2018) 6, 061802

Phys.Rev.D 100 (2019) 10, 102002

Low temperature detector for axion searches

 Purely laboratory experiments "light-shining-through-walls", optical photons

 Helioscopes
 ALPs emitted by the sun, X-rays,

 Haloscopes looking for dark matter constituents, microwaves.

Low temperature detector for axion searches

 Purely laboratory experiments "light-shining-through-walls", optical photons ALPS experiment

Helioscopes ALPs emitted by the sun,

X-rays,

 Haloscopes looking for dark matter constituents, microwaves.

Solar

axion flux

Movable platform

Low temperature detector for axion searches

 Purely laboratory experiments "light-shining-through-walls", optical photons ALPS experiment

X-ray optics -

X-ray detectors

Shielding

Helioscopes ALPs emitted by the sun, X-rays (baby)IAXO

•

The IAXO Coll., JHEP 2021, (2021) 137

Haloscopes looking for dark matter constituents, microwaves.

∱ ↑ ↑ ₿field

α

EVENTS

Phys.Rev.D 100 (2019) 10, 102002

Conclusions

Low temperature detectors are very a "cool" choice for high precision experiments

Conclusions

Low temperature detectors are very a "cool" choice for high precision experiments

Thank you!