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which particle physics: motivation for SC circuits/quantum sensors

◦ below 1 eV ⇐⇒ wave-like DM

◦ resonant cavities (µeV - .1 meV): this is most sensitive method, QCD axions can be probed

◦ broadband haloscopes (≳ .1 meV)



which SC circuits are of interest in this search

→ parametric amplifiers

→ transmons

→ photon counters

building block: the Josephson Junction

knowledge, skills

⊙ circuit QED (starting from cavity QED)

⊙ related hamiltonians

X circuit design

X nanofabrication

⊙⊙ testing and use in particle physics experiments

⊙ dilution refrigerators



which SC circuits are of interest in this search

knowledge, skills

⊙ circuit QED (starting from cavity QED)

⊙ related hamiltonians

X circuit design

X nanofabrication

⊙⊙ testing and use in particle physics experiments

⊙ dilution refrigerators

4He cryostats →∼ 4.2 − 1.3 K
3He cryostats →∼ 1.3 − 0.4 K
3He-4He mixture →∼ 0.4 K to mK

F. Pobell “Matter and methods at low temperature”

same as QC, but with a smaller number of RF lines. . .
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FIG. 1. Range of available dark matter candidates. Current observations allow for dark matter to

consist of quanta with an enormous range of masses. Here we classify these candidates as particle-

like when m & 1 eV, and ultralight, wave-like dark matter when m . 1 eV. A few prototypical

models are listed as examples.

II. MOTIVATIONS FOR MECHANICAL SENSORS

The present landscape of viable dark matter candidates is enormous, leading to a wide
variety of potential experimental signatures. Dark matter particles could range in mass
from 10�22 eV up to hundreds of solar masses, a range of some 90 orders of magnitude.1

Moreover, dark matter could interact with the standard model through many possible in-
teractions, although perhaps only through gravity. To span this diverse range of possible
models, di↵erent regions of parameter space will require di↵erent detector architectures and
measurement techniques. In particular, for models interacting with the standard model only
through mass or other extensive quantities such as nucleon number, massive mechanical sen-
sors may be required. Mechanical sensing technologies o↵er an extensive set of platforms,
as discussed in section IV, and thus have the potential to search for a wide range of such
dark matter candidates in regions of parameter space that are complementary to existing
searches.

The ability to monitor a large number of atoms in aggregate o↵ers two key advantages over
other approaches. The first advantage is the large volume integration of any putative dark
matter signal. Any dark-visible interactions are necessarily tiny, so using a large volume (or a
large mass of target nuclei or atoms, for models that can resolve the underlying substructure
of the masses) is key to meaningful detection prospects. The second advantage is that long-
wavelength signals can be integrated coherently across the full device, leading to greatly
enhanced sensitivities. Such coherent detection has applications in the search for signals
from wave-like dark matter signals like the axion or other ultralight bosons, as well as in
the case of impulses delivered with extremely small momentum transfers. In section III,
we give some examples of dark matter models leading to these types of signals, and discuss
prospects for their detection with mechanical sensors.

III. DETECTION TARGETS AND TECHNIQUES

Possible signals of dark matter are controlled by a few key parameters. Astrophysical ob-
servations tell us that the dark matter mass density in our neighborhood is ⇢ ⇠ 0.3 GeV/cm3

1 In this paper, we use natural units ~ = c = 1 to quote particle physics quantities like masses and momenta.

m ≲ 10 eV
classical field oscillating at the Compton frequency 10−6 coherence

to what extent is this detectable with current technology?
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2.5 ⇥ 10�21 W

2002, 12 billion km from Earth

Pioneer 10
(1972)



quantum microwaves in DARK MATTER search



quantum microwaves in DARK MATTER search

QUANTUM  2.0 < few photons/s



1. 3D microwave resonator for resonant amplification
-think of an HO driven by an external force-

2. with tunable frequency to match the axion mass

3. the resonator is within the bore of a SC magnet → B0
multi-tesla field

4. it is readout with a low noise receiver
delfridge operation at mK temperatures



Microwave receivers

(1965) Penzias and Wilson Green Bank telescope

Amplifiers introduce noise

→ Johnson noise N = kTB

→ quantum noise (fundamental limit)

measured in Watt or number of photons
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measured in Watt or number of photons



Microwave receivers

(1965) Penzias and Wilson Green Bank telescope

see ch10, Pozar “Microwave engineering”

the noise introduced by an amplifier is quantified
by its noise temperature Te

the same load noise power is obtained by driving
an ideal noiseless amplifier with a resistor at the
temperature Te



Microwave receivers

(1965) Penzias and Wilson Green Bank telescope

assessing receiver’s noise

cascaded system



quantum-limited readout
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a poor S/N ratio

In these searches, the signal is much smaller than noise

Pn = kBT∆ν ≫ Ps ∝ B2 Veff QL ∼ 10−23 W

To increase sensitivity we rely on averaging several
spectra recorded at the same cavity frequency over a
certain integration time.

Pn = kBT
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Heavier (axions) & Harder (life)
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ρ0 = 0.45 GeV cm−3

⊙ heavier axions are well motivated,
BUT
the scan rate df/dt scales unfavourably with f

df
dt

∝
g4

aγγB4 V2
eff QL

T2
sys

∝ f−4

(asm. quantum noise, SC cavities, relax r/L)

⊙ (df/dt)DFSZ ∼ 50 (df/dt)KSVZ

DIELECTRIC CAVITY 
(higher order modes) THIN SHELL

MULTI-CELL 
(pizza cavity)

DIELECTRIC CAVITY 
(higher order modes)

→ new cavities with larger Veff compared to a
pill-box cavity

→ QIS technologies and methods to reduce the noise
(parametric amplifiers, photon counters)



photon counting vs parametric amplification at standard quantum limit (SQL)

IDEAL PHOTON DETECTOR

Rcounter

RSQL
≈ QL

Qa
e

hν
kBT

Ex. at 7 GHz, 40 mK → gain by 103

S. K. Lamoreaux et al., Phys Rev D 88 035020 (2013)

REAL DETECTOR WITH DARK COUNTS Γdc

Rcounter

RSQL
≈ η2 ∆νa

Γdc
Γdc dark counts

η photon counter efficiency
∆νa axion linewidth

→ (×100s) gain [Γdc ∼ 10s count/s, η2 ∼ 70%]

- can probe in a day the same range a linear amplifier at SQL would
take more than 3 months-

https://arxiv.org/abs/2403.02321

A transmon-based SMPD needs a JPA

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.88.035020


qubits as sensors

very recent proposals to detect DM using phonons
excitations, phonons → qubit readout

We learn about the qubit state by sending low
power microwave pulses and ultra low noise
microwave amplification in the output line is
accomplished using Josephson Parametric
Amplifiers

=⇒ dispersive readout



from Cavity-QED to circuit QED

studies of the interaction of a single atom with (few) microwave photons has been first studied atomic cavity
quantum electrodynamics experiments and later on transposed to circuit QED experiments

In both cases two-level atoms interact directly with a microwave field mode in the cavity



from Cavity-QED to circuit QED

Can the field of a single photon have a large effect on the artificial atom?

Interaction: H = −d⃗ · E⃗, E(t) = E0 cosωqt

It’s a matter of increasing the coupling strength g between the atom and the field g = E⃗ · d⃗:

→ work with large atoms

→ confine the field in a cavity

E⃗ ∝ 1√
V
, V volume

κ rate of cavity photon decay
γ rate at which the qubit loses its excitation
to modes ̸= from the mode of interest

g ≫ κ, γ ⇐⇒ regime of strong coupling
coherent exchange of a field quantum between the atom (matter) and the cavity (field)



from cavity-QED to circuit-QED

g is significantly increased compared to Rydberg atoms:

→ artificial atoms are large (∼ 300µm)
=⇒ large dipole moment

→ E⃗ can be tightly confined
E⃗ ∝

√
1/λ3

ω2λ ≈ 10−6 cm3 (1D) versus λ3 ≈ 1 cm3 (3D)
=⇒ 106 larger energy density

8 CHAPTER 2. REVIEW AND THEORY

[Leek07], coupling of two qubits via a cavity bus [Majer07, Sillanpää07], observation of
the

p
n nonlinearity of the Jaynes-Cummings ladder [Fink08], observation of the Lamb

shift [Fragner08], cooling and amplification with a qubit [Grajcar08], controlled symme-
try breaking in circuit QED [Deppe08], generation of Fock states [Hofheinz08] and arbi-
trary superpositions of Fock states [Hofheinz09], observation of collective states of up to 3
qubits [Fink09b], observation of Autler-Towns and Mollow transitions [Baur09], high drive
power nonlinear spectroscopy of the vacuum Rabi resonance [Bishop09], demonstration
of two qubit entanglement using sideband transitions [Leek09], demonstration of gates
and basic two qubit quantum computing algorithms [DiCarlo09], violation of Bell’s in-
equality [Ansmann09], demonstration of single shot qubit readout [Mallet09], implemen-
tation of separate photon storage and qubit readout modes [Leek10], measurement of the
quantum-to-classical transition and thermal field sensing in cavity QED [Fink10], quan-
tum non-demolition detection of single microwave photons [Johnson10], implementa-
tion of optimal qubit control pulse shaping [Motzoi09, Chow10a, Lucero10], preparation
and generation of highly entangled 2 and 3-qubit states [Chow10b, Neeley10, DiCarlo10]
and the first measurement of microwave frequency photon antibunching [Bozyigit10c,
Bozyigit10b] using linear amplifiers and on-chip beam splitters.

Similarly, strong interactions have also been observed between superconducting
qubits and freely propagating photons in microwave transmission lines. This includes
the observation of resonance fluorescence [Astafiev10a], quantum limited amplification
[Astafiev10b] and electromagnetically induced transparency [Abdumalikov10] with a sin-
gle artificial atom. The rapid advances in circuit QED furthermore inspired and enabled
the demonstration of single phonon control of a mechanical resonator passively cooled to
its quantum ground state [O´Connell10].

We will now review the basics of circuit QED using transmon type charge qubits and
coplanar waveguide resonators.

L=19 mm

a

b

Figure 2.1: Schematic of an experimental cavity QED (a) and circuit QED (b) setup. a, Optical analog of circuit
QED. A two-state atom (violet) is coupled to a cavity mode (red). b, Schematic of the investigated circuit QED
system. The coplanar waveguide resonator is shown in light blue, the transmon qubit in violet and the first
harmonic of the standing wave electric field in red. Typical dimensions are indicated.

(a) (g/2π)cavity ∼ 50 kHz

(b) (g/2π)circuit ∼ 100 MHz (typical)

104 larger coupling than in atomic systems



the Josephson Junction

the only circuit element that is both dissipationless and nonlinear
(fundamental properties to make quantum hardware)

It’s integrated in superconducting (SC) circuits, solid state electrical circuits fabricated using techniques
borrowed from conventional integrated circuits.





Josephson Junction

▶ Josephson equations relate the voltage and
current in this element to a phase δ across the
junction

▶ I0 depends on the barrier thickness and
superconducting gap energy

▶ current-dependent inductance LJ(I) that diverges
as I → I0
=⇒ basic nonlinearity at the core of many
devices



HOW TO BUILD AN ARTIFICIAL ATOM

The same underlying physics is at work in cavity and circuit QED:
two-level spin-like systems are interacting with quantum harmonic oscillators

In Sec. IV, we provide a review of how single- and two-qubit
operations are typically implemented in superconducing circuits, by
using a combination of local magnetic flux control and microwave
drives. In particular, we discuss the family of two-qubit gates arising
from a capacitive coupling between qubits, and introduce several
recent advances that have been demonstrated to achieve high-fidelity
gates, as well as applications in quantum information processing that
use these gates. The continued development of high-fidelity two-qubit
gates in superconducting qubits is a highly active research area. For
this reason, we include sufficient technical details that a reader may
use this review as a starting point to critically assess the pros and cons
of the various gates, as well as develop an appreciation for the types of
gate-engineering already implemented in-state-of-the-art supercon-
ducting quantum processors.

Finally, in Sec. V, we discuss the physics and engineering associ-
ated with the dispersive readout technique, typically used to measure
the individual qubit states in modern quantum processors. After a
discussion of the theory behind dispersive coupling, we give an intro-
duction to design of Purcell filters and the development of quantum-
limited parametric amplifiers (PAs).

II. ENGINEERING QUANTUM CIRCUITS
In this section, we will demonstrate how quantum systems based

on superconducting circuits can be engineered to achieve certain
desired properties. Using the most common qubit modalities, we dis-
cuss how properties such as the qubit transition frequency, anharmo-
nicity, and noise susceptibility can be tailored by the choice of circuit
topology and element parameter values. We also discuss how to engi-
neer the interactions between different quantum systems, in particular,
the cases of qubit-qubit and qubit-resonator couplings.

A. From quantum harmonic oscillator to the transmon
qubit

A quantum mechanical system is governed by the time-
dependent Schr€odinger equation

Ĥ jwðtÞi ¼ i"h
@

@t
jwðtÞi; (1)

where jwðtÞi is the state of the quantum system at time t, "h is the
reduced Planck’s constant h/2p, and Ĥ is the “Hamiltonian” that
describes the total energy of the system. The “hat” is used to indicate
that Ĥ is a quantum operator. As the Schr€odinger equation is a first-
order linear differential equation, the temporal dynamics of the quan-
tum system may be viewed as a straightforward example of a linear
dynamical system with a formal solution

jwðtÞi ¼ e$iĤ t="hjwð0Þi: (2)

The time-independent Hamiltonian Ĥ governs the time evolution of
the system through the operator e$iĤ t="h. Thus, just as with classical
systems, determining the Hamiltonian of a system—whether the clas-
sical Hamiltonian H or its quantum counterpart Ĥ—is the first step to
deriving its dynamical behavior. In Sec. IV, we consider the case when
the Hamiltonian is time-dependent in the context of qubit control.

To understand the dynamics of a superconducting qubit circuit,
it is natural to start with the classical description of a linear LC reso-
nant circuit [Fig. 1(a)]. In this system, energy oscillates between

electrical energy in the capacitor C and magnetic energy in the induc-
tor L. In the following, we will arbitrarily associate the electrical energy
with the “kinetic energy” and the magnetic energy with the “potential
energy” of the oscillator. The instantaneous, time-dependent energy in
each element is derived from its current and voltage

EðtÞ ¼
ðt

$1
Vðt0ÞIðt0Þdt0; (3)

where Vðt0Þ and Iðt0Þ denote the voltage and current of the capacitor
or inductor.

To derive the classical Hamiltonian, we follow the standard
approach used in classical mechanics: the Lagrange-Hamilton formu-
lation. Here, we represent the circuit elements in terms of one of its
generalized circuit coordinates, charge or flux. In the following, we
pick flux, defined as the time integral of the voltage

UðtÞ ¼
ðt

$1
Vðt0Þdt0: (4)

In this example, the voltage at the node is also the branch voltage across
the element. In this section, we will simply refer to these as node vol-
tages and fluxes for convenience. For a more detailed discussion of
nodes and branches in this context, we refer the reader to Ref. 44.

Note that in the following, we could have exchanged our associa-
tions with kinetic energy (momentum coordinate) and potential
energy (position coordinate), and instead start with the charge variable
Q(t), which is the time integral of the current I(t).

By combining Eqs. (3) and (4), using the relations V ¼ L dI=dt
and I ¼ C dV=dt, and applying the integration by parts formula, we

FIG. 1. (a) Circuit for a parallel LC-oscillator (quantum harmonic oscillator, QHO),
with inductance L in parallel with capacitance, C. The superconducting phase on
the island is denoted as /, referencing the ground as zero. (b) Energy potential for
the QHO, where energy levels are equidistantly spaced "hxr apart. (c) Josephson
qubit circuit, where the nonlinear inductance LJ (represented by the Josephson-
subcircuit in the dashed orange box) is shunted by a capacitance, Cs. (d) The
Josephson inductance reshapes the quadratic energy potential (dashed red) into
sinusoidal (solid blue), which yields nonequidistant energy levels. This allows us to
isolate the two lowest energy levels j0i and j1i, forming a computational subspace
with an energy separation "hx01, which is different than "hx12.

Applied Physics Reviews REVIEW scitation.org/journal/are
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spins = two-state particles
coupled to:

springs = quantum field oscillators

E01 = E1 − E0 = ℏω01 ̸= E02 = E2 − E1 = ℏω21
→ good two-level atom approximation

control internal state by shining laser tuned at the
transition frequency:
H = −d⃗ · E⃗(t), with E(t) = E0 cosω01t



qubits from “artificial atoms”: LC circuit

In Sec. IV, we provide a review of how single- and two-qubit
operations are typically implemented in superconducing circuits, by
using a combination of local magnetic flux control and microwave
drives. In particular, we discuss the family of two-qubit gates arising
from a capacitive coupling between qubits, and introduce several
recent advances that have been demonstrated to achieve high-fidelity
gates, as well as applications in quantum information processing that
use these gates. The continued development of high-fidelity two-qubit
gates in superconducting qubits is a highly active research area. For
this reason, we include sufficient technical details that a reader may
use this review as a starting point to critically assess the pros and cons
of the various gates, as well as develop an appreciation for the types of
gate-engineering already implemented in-state-of-the-art supercon-
ducting quantum processors.

Finally, in Sec. V, we discuss the physics and engineering associ-
ated with the dispersive readout technique, typically used to measure
the individual qubit states in modern quantum processors. After a
discussion of the theory behind dispersive coupling, we give an intro-
duction to design of Purcell filters and the development of quantum-
limited parametric amplifiers (PAs).

II. ENGINEERING QUANTUM CIRCUITS
In this section, we will demonstrate how quantum systems based

on superconducting circuits can be engineered to achieve certain
desired properties. Using the most common qubit modalities, we dis-
cuss how properties such as the qubit transition frequency, anharmo-
nicity, and noise susceptibility can be tailored by the choice of circuit
topology and element parameter values. We also discuss how to engi-
neer the interactions between different quantum systems, in particular,
the cases of qubit-qubit and qubit-resonator couplings.
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where jwðtÞi is the state of the quantum system at time t, "h is the
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describes the total energy of the system. The “hat” is used to indicate
that Ĥ is a quantum operator. As the Schr€odinger equation is a first-
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approach used in classical mechanics: the Lagrange-Hamilton formu-
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pick flux, defined as the time integral of the voltage
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Note that in the following, we could have exchanged our associa-
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E01 = E1 − E0 = ℏω01 ̸= E02 = E2 − E1 = ℏω21
→ good two-level atom approximation

control internal state by shining laser tuned at the
transition frequency:
H = −d⃗ · E⃗(t), with E(t) = E0 cosω01t

In Sec. IV, we provide a review of how single- and two-qubit
operations are typically implemented in superconducing circuits, by
using a combination of local magnetic flux control and microwave
drives. In particular, we discuss the family of two-qubit gates arising
from a capacitive coupling between qubits, and introduce several
recent advances that have been demonstrated to achieve high-fidelity
gates, as well as applications in quantum information processing that
use these gates. The continued development of high-fidelity two-qubit
gates in superconducting qubits is a highly active research area. For
this reason, we include sufficient technical details that a reader may
use this review as a starting point to critically assess the pros and cons
of the various gates, as well as develop an appreciation for the types of
gate-engineering already implemented in-state-of-the-art supercon-
ducting quantum processors.

Finally, in Sec. V, we discuss the physics and engineering associ-
ated with the dispersive readout technique, typically used to measure
the individual qubit states in modern quantum processors. After a
discussion of the theory behind dispersive coupling, we give an intro-
duction to design of Purcell filters and the development of quantum-
limited parametric amplifiers (PAs).

II. ENGINEERING QUANTUM CIRCUITS
In this section, we will demonstrate how quantum systems based

on superconducting circuits can be engineered to achieve certain
desired properties. Using the most common qubit modalities, we dis-
cuss how properties such as the qubit transition frequency, anharmo-
nicity, and noise susceptibility can be tailored by the choice of circuit
topology and element parameter values. We also discuss how to engi-
neer the interactions between different quantum systems, in particular,
the cases of qubit-qubit and qubit-resonator couplings.

A. From quantum harmonic oscillator to the transmon
qubit

A quantum mechanical system is governed by the time-
dependent Schr€odinger equation

Ĥ jwðtÞi ¼ i"h
@

@t
jwðtÞi; (1)

where jwðtÞi is the state of the quantum system at time t, "h is the
reduced Planck’s constant h/2p, and Ĥ is the “Hamiltonian” that
describes the total energy of the system. The “hat” is used to indicate
that Ĥ is a quantum operator. As the Schr€odinger equation is a first-
order linear differential equation, the temporal dynamics of the quan-
tum system may be viewed as a straightforward example of a linear
dynamical system with a formal solution

jwðtÞi ¼ e$iĤ t="hjwð0Þi: (2)

The time-independent Hamiltonian Ĥ governs the time evolution of
the system through the operator e$iĤ t="h. Thus, just as with classical
systems, determining the Hamiltonian of a system—whether the clas-
sical Hamiltonian H or its quantum counterpart Ĥ—is the first step to
deriving its dynamical behavior. In Sec. IV, we consider the case when
the Hamiltonian is time-dependent in the context of qubit control.

To understand the dynamics of a superconducting qubit circuit,
it is natural to start with the classical description of a linear LC reso-
nant circuit [Fig. 1(a)]. In this system, energy oscillates between

electrical energy in the capacitor C and magnetic energy in the induc-
tor L. In the following, we will arbitrarily associate the electrical energy
with the “kinetic energy” and the magnetic energy with the “potential
energy” of the oscillator. The instantaneous, time-dependent energy in
each element is derived from its current and voltage

EðtÞ ¼
ðt

$1
Vðt0ÞIðt0Þdt0; (3)

where Vðt0Þ and Iðt0Þ denote the voltage and current of the capacitor
or inductor.

To derive the classical Hamiltonian, we follow the standard
approach used in classical mechanics: the Lagrange-Hamilton formu-
lation. Here, we represent the circuit elements in terms of one of its
generalized circuit coordinates, charge or flux. In the following, we
pick flux, defined as the time integral of the voltage

UðtÞ ¼
ðt

$1
Vðt0Þdt0: (4)

In this example, the voltage at the node is also the branch voltage across
the element. In this section, we will simply refer to these as node vol-
tages and fluxes for convenience. For a more detailed discussion of
nodes and branches in this context, we refer the reader to Ref. 44.

Note that in the following, we could have exchanged our associa-
tions with kinetic energy (momentum coordinate) and potential
energy (position coordinate), and instead start with the charge variable
Q(t), which is the time integral of the current I(t).

By combining Eqs. (3) and (4), using the relations V ¼ L dI=dt
and I ¼ C dV=dt, and applying the integration by parts formula, we

FIG. 1. (a) Circuit for a parallel LC-oscillator (quantum harmonic oscillator, QHO),
with inductance L in parallel with capacitance, C. The superconducting phase on
the island is denoted as /, referencing the ground as zero. (b) Energy potential for
the QHO, where energy levels are equidistantly spaced "hxr apart. (c) Josephson
qubit circuit, where the nonlinear inductance LJ (represented by the Josephson-
subcircuit in the dashed orange box) is shunted by a capacitance, Cs. (d) The
Josephson inductance reshapes the quadratic energy potential (dashed red) into
sinusoidal (solid blue), which yields nonequidistant energy levels. This allows us to
isolate the two lowest energy levels j0i and j1i, forming a computational subspace
with an energy separation "hx01, which is different than "hx12.
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toolkit: capacitor, inductor, wire (all SC)
ω01 = 1/

√
LC ∼ 10 GHz∼ 0.5 K

→ simple LC circuit is not a good two-level atom
approximation



qubits from “artificial atoms”: LC circuit with NL inductance of the Josephson Junction

In Sec. IV, we provide a review of how single- and two-qubit
operations are typically implemented in superconducing circuits, by
using a combination of local magnetic flux control and microwave
drives. In particular, we discuss the family of two-qubit gates arising
from a capacitive coupling between qubits, and introduce several
recent advances that have been demonstrated to achieve high-fidelity
gates, as well as applications in quantum information processing that
use these gates. The continued development of high-fidelity two-qubit
gates in superconducting qubits is a highly active research area. For
this reason, we include sufficient technical details that a reader may
use this review as a starting point to critically assess the pros and cons
of the various gates, as well as develop an appreciation for the types of
gate-engineering already implemented in-state-of-the-art supercon-
ducting quantum processors.

Finally, in Sec. V, we discuss the physics and engineering associ-
ated with the dispersive readout technique, typically used to measure
the individual qubit states in modern quantum processors. After a
discussion of the theory behind dispersive coupling, we give an intro-
duction to design of Purcell filters and the development of quantum-
limited parametric amplifiers (PAs).

II. ENGINEERING QUANTUM CIRCUITS
In this section, we will demonstrate how quantum systems based

on superconducting circuits can be engineered to achieve certain
desired properties. Using the most common qubit modalities, we dis-
cuss how properties such as the qubit transition frequency, anharmo-
nicity, and noise susceptibility can be tailored by the choice of circuit
topology and element parameter values. We also discuss how to engi-
neer the interactions between different quantum systems, in particular,
the cases of qubit-qubit and qubit-resonator couplings.

A. From quantum harmonic oscillator to the transmon
qubit

A quantum mechanical system is governed by the time-
dependent Schr€odinger equation

Ĥ jwðtÞi ¼ i"h
@

@t
jwðtÞi; (1)

where jwðtÞi is the state of the quantum system at time t, "h is the
reduced Planck’s constant h/2p, and Ĥ is the “Hamiltonian” that
describes the total energy of the system. The “hat” is used to indicate
that Ĥ is a quantum operator. As the Schr€odinger equation is a first-
order linear differential equation, the temporal dynamics of the quan-
tum system may be viewed as a straightforward example of a linear
dynamical system with a formal solution

jwðtÞi ¼ e$iĤ t="hjwð0Þi: (2)

The time-independent Hamiltonian Ĥ governs the time evolution of
the system through the operator e$iĤ t="h. Thus, just as with classical
systems, determining the Hamiltonian of a system—whether the clas-
sical Hamiltonian H or its quantum counterpart Ĥ—is the first step to
deriving its dynamical behavior. In Sec. IV, we consider the case when
the Hamiltonian is time-dependent in the context of qubit control.

To understand the dynamics of a superconducting qubit circuit,
it is natural to start with the classical description of a linear LC reso-
nant circuit [Fig. 1(a)]. In this system, energy oscillates between
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the element. In this section, we will simply refer to these as node vol-
tages and fluxes for convenience. For a more detailed discussion of
nodes and branches in this context, we refer the reader to Ref. 44.

Note that in the following, we could have exchanged our associa-
tions with kinetic energy (momentum coordinate) and potential
energy (position coordinate), and instead start with the charge variable
Q(t), which is the time integral of the current I(t).

By combining Eqs. (3) and (4), using the relations V ¼ L dI=dt
and I ¼ C dV=dt, and applying the integration by parts formula, we

FIG. 1. (a) Circuit for a parallel LC-oscillator (quantum harmonic oscillator, QHO),
with inductance L in parallel with capacitance, C. The superconducting phase on
the island is denoted as /, referencing the ground as zero. (b) Energy potential for
the QHO, where energy levels are equidistantly spaced "hxr apart. (c) Josephson
qubit circuit, where the nonlinear inductance LJ (represented by the Josephson-
subcircuit in the dashed orange box) is shunted by a capacitance, Cs. (d) The
Josephson inductance reshapes the quadratic energy potential (dashed red) into
sinusoidal (solid blue), which yields nonequidistant energy levels. This allows us to
isolate the two lowest energy levels j0i and j1i, forming a computational subspace
with an energy separation "hx01, which is different than "hx12.
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E01 = E1 − E0 = ℏω01 ̸= E02 = E2 − E1 = ℏω21
→ good two-level atom approximation

control internal state by shining laser tuned at the
transition frequency:
H = −d⃗ · E⃗(t), with E(t) = E0 cosω01t

In Sec. IV, we provide a review of how single- and two-qubit
operations are typically implemented in superconducing circuits, by
using a combination of local magnetic flux control and microwave
drives. In particular, we discuss the family of two-qubit gates arising
from a capacitive coupling between qubits, and introduce several
recent advances that have been demonstrated to achieve high-fidelity
gates, as well as applications in quantum information processing that
use these gates. The continued development of high-fidelity two-qubit
gates in superconducting qubits is a highly active research area. For
this reason, we include sufficient technical details that a reader may
use this review as a starting point to critically assess the pros and cons
of the various gates, as well as develop an appreciation for the types of
gate-engineering already implemented in-state-of-the-art supercon-
ducting quantum processors.

Finally, in Sec. V, we discuss the physics and engineering associ-
ated with the dispersive readout technique, typically used to measure
the individual qubit states in modern quantum processors. After a
discussion of the theory behind dispersive coupling, we give an intro-
duction to design of Purcell filters and the development of quantum-
limited parametric amplifiers (PAs).

II. ENGINEERING QUANTUM CIRCUITS
In this section, we will demonstrate how quantum systems based

on superconducting circuits can be engineered to achieve certain
desired properties. Using the most common qubit modalities, we dis-
cuss how properties such as the qubit transition frequency, anharmo-
nicity, and noise susceptibility can be tailored by the choice of circuit
topology and element parameter values. We also discuss how to engi-
neer the interactions between different quantum systems, in particular,
the cases of qubit-qubit and qubit-resonator couplings.

A. From quantum harmonic oscillator to the transmon
qubit

A quantum mechanical system is governed by the time-
dependent Schr€odinger equation

Ĥ jwðtÞi ¼ i"h
@

@t
jwðtÞi; (1)

where jwðtÞi is the state of the quantum system at time t, "h is the
reduced Planck’s constant h/2p, and Ĥ is the “Hamiltonian” that
describes the total energy of the system. The “hat” is used to indicate
that Ĥ is a quantum operator. As the Schr€odinger equation is a first-
order linear differential equation, the temporal dynamics of the quan-
tum system may be viewed as a straightforward example of a linear
dynamical system with a formal solution

jwðtÞi ¼ e$iĤ t="hjwð0Þi: (2)

The time-independent Hamiltonian Ĥ governs the time evolution of
the system through the operator e$iĤ t="h. Thus, just as with classical
systems, determining the Hamiltonian of a system—whether the clas-
sical Hamiltonian H or its quantum counterpart Ĥ—is the first step to
deriving its dynamical behavior. In Sec. IV, we consider the case when
the Hamiltonian is time-dependent in the context of qubit control.

To understand the dynamics of a superconducting qubit circuit,
it is natural to start with the classical description of a linear LC reso-
nant circuit [Fig. 1(a)]. In this system, energy oscillates between

electrical energy in the capacitor C and magnetic energy in the induc-
tor L. In the following, we will arbitrarily associate the electrical energy
with the “kinetic energy” and the magnetic energy with the “potential
energy” of the oscillator. The instantaneous, time-dependent energy in
each element is derived from its current and voltage

EðtÞ ¼
ðt

$1
Vðt0ÞIðt0Þdt0; (3)

where Vðt0Þ and Iðt0Þ denote the voltage and current of the capacitor
or inductor.

To derive the classical Hamiltonian, we follow the standard
approach used in classical mechanics: the Lagrange-Hamilton formu-
lation. Here, we represent the circuit elements in terms of one of its
generalized circuit coordinates, charge or flux. In the following, we
pick flux, defined as the time integral of the voltage

UðtÞ ¼
ðt

$1
Vðt0Þdt0: (4)

In this example, the voltage at the node is also the branch voltage across
the element. In this section, we will simply refer to these as node vol-
tages and fluxes for convenience. For a more detailed discussion of
nodes and branches in this context, we refer the reader to Ref. 44.

Note that in the following, we could have exchanged our associa-
tions with kinetic energy (momentum coordinate) and potential
energy (position coordinate), and instead start with the charge variable
Q(t), which is the time integral of the current I(t).

By combining Eqs. (3) and (4), using the relations V ¼ L dI=dt
and I ¼ C dV=dt, and applying the integration by parts formula, we

FIG. 1. (a) Circuit for a parallel LC-oscillator (quantum harmonic oscillator, QHO),
with inductance L in parallel with capacitance, C. The superconducting phase on
the island is denoted as /, referencing the ground as zero. (b) Energy potential for
the QHO, where energy levels are equidistantly spaced "hxr apart. (c) Josephson
qubit circuit, where the nonlinear inductance LJ (represented by the Josephson-
subcircuit in the dashed orange box) is shunted by a capacitance, Cs. (d) The
Josephson inductance reshapes the quadratic energy potential (dashed red) into
sinusoidal (solid blue), which yields nonequidistant energy levels. This allows us to
isolate the two lowest energy levels j0i and j1i, forming a computational subspace
with an energy separation "hx01, which is different than "hx12.
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toolkit: capacitor, inductor, wire (all SC) + JJ
JJ is a nonlinear and dissipationless element

LJ =
ϕ0
2π

1
Ic cosϕ



Jaynes-Cummings model

Interaction of a two state system with quantized radiation in a cavity

HJC = 1
2ℏωqσ̂z + ℏωrâ†â + ℏg(âσ̂+ + â†σ̂−)

Parameter space diagram for cavity-QED

∆ = |ωr − ωq|
Γ = min{γ, κ, 1/T}

− ωr ∼ ωq resonance case

− ∆ = |ωr − ωq| ≫ g dispersive limit case



Dispersive regime g/∆ ≪ 1

χ =
g2

∆

→ ℏχσ̂z dispersive qubit state readout

→ 2χa†a number splitting

→ qubit frequency is a function of the cavity photon number

→ measuring the qubit frequency is equivalent to measuring the number of photons in the cavity



dispersive qubit readout of qubits

Phys Rev A 69, 062320 (2004); Appl. Phys. Rev. 6, 021318
(2019)

H/ℏ = (ωr + χσz)

(
aa† +

1
2

)
+

ω′
q

2
σz

χ =
g2

∆
, qubit-state dependent frequency shift

=⇒ Amplitude readout: the frequency of the
microwave probe pulse is at either at ωr + χ or ωr − χ.
Depending on T(|S12|)/R|S11| power you know what
the qubit state is

=⇒ Phase readout: the probe is at 0 (reflected power
same for |1⟩ and |1⟩). All info is in the phase
θ = ± arctan(χ/κ)



Q: How well can we discriminate qubit states?

A: Depends on the noise added by the amplifier



Q: How well can we discriminate qubit states?

A: Depends on the noise added by the amplifier

Any amplifier is going to add some noise → added noise will affect the standard deviation of these two
distributions (gaussian) and in turn fidelity.

Motivation: using amplifiers that add minimum amount of noise.

NHEMT ∼ 20 photons
NJPA ∼ 1 photon =⇒ order of magnitude smaller added noise =⇒ 99% fidelity in ∼ 100 ns



SUPERCONDUCTING PARAMETRIC AMPLIFIERS: a basic example

→ a lossless parallel LC resonator connected to a transmission line
(adds delay to signal at frequency fs tuned within a linewidth)



PARAMETRIC AMPLIFICATION

systems that can periodically convert energy between
conjugate field variables

I ⇐⇒ V

E ⇐⇒ B

x ⇐⇒ p

can exhibit parametric behavior when the
corresponding mediating elements can be modulated.

MECHANICAL SYSTEM

→ change the moment of inertia (parameter) at 2f0
→ pump (energy source): work done against Fc

→ nonlinear resonator: the restoring force ∝ sin θ
and not just θ
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PARAMETRIC AMPLIFICATION

systems that can periodically convert energy between
conjugate field variables

I ⇐⇒ V

E ⇐⇒ B

x ⇐⇒ p

can exhibit parametric behavior when the
corresponding mediating elements can be modulated.



SUPERCONDUCTING PARAMETRIC AMPLIFIERS: a basic example

→ a lossless parallel LC resonator connected to a transmission line
(adds delay to signal at frequency fs tuned within a linewidth)

→ inductance (or capacitance) modulation (pump) at fp generates
mixing with sidebands fi = fs ± fp

→ power is drawn from the pump source to produce gain at fi and fs



PARAMETRIC AMPLIFICATION

fp ≃ 2f0
degenerate parametric amplification (fs = fi)

→ gain response:

BW(G) ≃ BW0√
G

e.g. BW0 = 100 MHz, reduced to 10 MHz for G = 20 dB

→ sensitivity to the pump phase

More complex circuit designs exploit different types of
nonlinearities, to accomplish:

⊙ large gain (≃ 20 dB in practice)

⊙ dynamic and tuning bandwidth

⊙ near-quantum-limited added noise

⊙ other things


