
Experiment Control with the
ARTIQ/Sinara Control
Ecosystem
Paweł Kulik
Mikołaj Sowiński
Jakub Matyas

Quantum Sensing autumn school 2024 - CERN, Geneva

Disclaimer
ARTIQ is originally authored by

Bourdeauducq, Sébastien et al. (2016). ARTIQ 1.0. Zenodo. 10.5281/zenodo.51303

and currently is maintained and developed by M-Labs with and the community.

About us
The Faculty of Electronics and Information Technology

Warsaw University of Technology

- Electronics for High Energy and Quantum Physics research group

https://github.com/elhep

- Sinara Open-Hardware Project

https://github.com/sinara-hw/

https://github.com/elhep
https://github.com/sinara-hw/

Organization

Slides and source codes

 https://github.com/elhep/artiq_dax_tutorial_materials

ARTIQ 8 manual (used for this tutorial):

 https://m-labs.hk/artiq/manual/introduction.html

https://github.com/elhep/artiq_dax_tutorial_materials
https://m-labs.hk/artiq/manual-legacy/introduction.html

Glossary

● ARTIQ - Advanced Real-Time Infrastructure for Quantum physics

Motivation for ARTIQ

● Experiments have a lot of requirements that are hard to get right on your own

○ Precise timing

○ Low latency

○ Flexibility

○ Extensibility

● No vendor lock-in

● Deduplicating efforts between labs

● User agency - change underlying project, extend, contribute

Motivation for ARTIQ

Glossary

● ARTIQ

● Sinara - Hardware designed for ARTIQ

Motivation for Sinara

● Physicists are not engineers - and that’s OK!

● If you’re not careful, you’ll end up with this:

Motivation for Sinara

● Physicists are not engineers - and that’s OK!

● If you’re not careful, you’ll end up with this:

● Worst case scenario - this was done years ago by someone who graduated

Motivation for Sinara

● Again - no vendor lock-in

● Deduplicating efforts between labs

● User agency - change underlying project, extend, contribute

● Dream of enabling experiment reproducibility across laboratories

Glossary

● ARTIQ

● Sinara

● Controller

Glossary

● ARTIQ

● Sinara

● Controller

● Satellite - secondary controller

Glossary

● ARTIQ

● Sinara

● Controller

● Satellite

● Gateware - firmware for the FPGA

Glossary

● ARTIQ

● Sinara

● Controller

● Satellite

● Gateware

● EEM

Glossary

● ARTIQ

● Sinara

● Controller

● Satellite

● Gateware

● EEM

● hard real-time - all or nothing

What does ARTIQ code
 look like?

● Python-based DSL

● Stages:

○ Build - devices used, parameters,

no hardware access

○ Prepare - pre calculating values,

no hardware access

○ Run - perform operations

on hardware

○ Analyze - analyze data gathered

during run stage, no hardware

access

from artiq.experiment import *

class Experiment(EnvExperiment):

 def build(self):
 self.setattr_device("core")
 self.setattr_device("ttl1")

 def prepare(self):
 self.foo = [i%2 for i in range(100)]

 @kernel
 def run(self):
 self.core.reset()
 self.ttl1.pulse(100*ns)

 def analyze(self):
 result = sum(self.foo)

ARTIQ system architecture

What happens with my
 code?

● Python

● Build stage

● Run stage

○ Access to the FPGA

○ Hard real-time on the FPGA

○ RPC between PC and the FPGA

 @kernel
 def run(self):
 self.core.reset()
 self.ttl1.pulse(100*ns)

What happens with my
 code?

● Python

● Build stage

● Run stage

○ Access to the FPGA

○ Hard real-time on the FPGA

○ RPC between PC and the FPGA

1. Compilation

 @kernel
 def run(self):
 self.core.reset()
 self.ttl1.pulse(100*ns)

What happens with my
 code?

● Python

● Build stage

● Run stage

○ Access to the FPGA

○ Hard real-time on the FPGA

○ RPC between PC and the FPGA

1. Compilation

2. Send to
controller

 @kernel
 def run(self):
 self.core.reset()
 self.ttl1.pulse(100*ns)

What happens with my
 code?

● Python

● Build stage

● Run stage

○ Access to the FPGA

○ Hard real-time on the FPGA

○ RPC between PC and the FPGA

1. Compilation

3. Master
calculates2. Send to

controller

 @kernel
 def run(self):
 self.core.reset()
 self.ttl1.pulse(100*ns)

What happens with my
 code?

● Python

● Build stage

● Run stage

○ Access to the FPGA

○ Hard real-time on the FPGA

○ RPC between PC and the FPGA

1. Compilation

3. Master
calculates2. Send to

controller

4. Send events
to satellites

 @kernel
 def run(self):
 self.core.reset()
 self.ttl1.pulse(100*ns)

What happens with my
 code?

● Python

● Build stage

● Run stage

○ Access to the FPGA

○ Hard real-time on the FPGA

○ RPC between PC and the FPGA

1. Compilation

3. Master
calculates2. Send to

controller

4. Send events
to satellites

5. Controllers
run event queue

 @kernel
 def run(self):
 self.core.reset()
 self.ttl1.pulse(100*ns)

What happens with my
 code?

● Python

● Build stage

● Run stage

○ Access to the FPGA

○ Hard real-time on the FPGA

○ RPC between PC and the FPGA

1. Compilation

3. Master
calculates2. Send to

controller

4. Send events
to satellites

5. Controllers
run event queue

6. PC maintains
RPC link with the
controller

 @kernel
 def run(self):
 self.core.reset()
 self.ttl1.pulse(100*ns)

Devices that will be used

Devices that will be used

Fastino

Devices that will be used

AWS

Warsaw Lab

Fastino

Devices that will be used

● Kasli

○ AMD Artix-7 based controller

○ up to 12 peripherals

○ up to 3 downstream satellites

○ can be both master and satellite

○ https://github.com/sinara-hw/Kasli

Devices that will be used

● Kasli

● DIO TTL

○ 8 digital IOs channels

○ selectable 50 Ohm termination

○ min. pulse width 5 ns

○ https://github.com/sinara-hw/DIO_SMA/wiki

Devices that will be used

● Kasli

● DIO TTL

● Urukul DDS

○ 4 channels GS/s DDS

○ frequency up to 400 MHz

○ ~0.25 Hz resolution

○ https://github.com/sinara-hw/Urukul/wiki

Devices that will be used

● Kasli

● DIO TTL

● Urukul DDS: 3 independent “devices”

○ DDS

○ Attenuator

○ Output switch (on/off output signal)

Organization

Connect to virtual desktop using your personal link

1. Connect to virtual desktop using your personal link

Organization

Organization

1

2 3

4

Organization

artiq_tutorial

system_<a..f>

repository

user<00..05>

Organization

Organization

Organization

Organization

user03

Organization

Organization

ARTIQ DSL - what can be done in FPGA?
● Subset of Python:

○ Objects

○ Conditionals (if..else structure)

○ Loops, iterating over lists

○ Exceptions

○ Code management

More detailed description: m-labs.hk/artiq/manual/compiler.html

ARTIQ DSL - what can be done in FPGA?
● Subset of Python:

○ Objects

○ Conditionals (if..else structure)

○ Loops, iterating over lists

○ Exceptions

○ Code management

● System specific:

○ Timing functions

○ Parallel / Sequential blocks

○ DMA

○ RPC

More detailed description: m-labs.hk/artiq/manual/compiler.html

ARTIQ real-time concepts

ARTIQ real-time concepts

ARTIQ real-time concepts

Experiment

FIFO

CPU

Hardware
Counter

TTL Phy

Software
Counter

Timeline cursor
(now)

Software
Counter

Wall clock
(rtio_counter)

Hardware
Counter

Altered by
experiment’s
commands

Counts up every
8 ns

ARTIQ real-time concepts

Timeline cursor
(now)

Software
Counter

Wall clock
(rtio_counter)

Hardware
Counter

SLACK

Altered by
experiment’s
commands

Counts up every
8 ns

ARTIQ real-time concepts

ARTIQ real-time concepts

POSITIVE

SLACK

Hardware
Counter

Software
Counter

NEGATIVE

Hardware
Counter

Software
Counter

Planning the future Altering the past

RTIOUnderflowException

ARTIQ real-time concepts

ARTIQ experiment execution

ARTIQ real-time concepts

ARTIQ real-time concepts

ARTIQ real-time concepts

Manipulating timeline

Delay:

delay(2*us)

ARTIQ real-time concepts

Manipulating timeline

Delay:

delay(-2*us)

ARTIQ real-time concepts

Manipulating timeline

Current software counter (now):

Seconds to machine units:

somewhen_mu = now_mu()

time_mu = \
self.core.seconds_to_mu(12*us)

ARTIQ real-time concepts

Manipulating timeline

Setting software counter (now cursor):

at_mu(some_value_mu)

ARTIQ real-time concepts

Manipulating timeline

Hardware-software counter synchronization:

self.core.wait_unitl_mu(now_mu())

TTL methods:
● <TTL channel>.on()
● <TTL channel>.off()
● pulse(duration) - hidden delay inside!

Goal:

Timing examples - exercise Timing1

Create 2 pulses using two different TTL methods (on/off and pulse) and a delay function.
Use two different TTL channels: self.ttl1 and self.ttl3.

Exercise:
Solution:

timing1.py

timing1_solution.py

Timing functions:
● delay(duration)

Timing examples - exercise Timing1

self.ttl1.on()
delay(2*us)
self.ttl1.off()
delay(1*us)
self.ttl3.pulse(2*us)

TTL methods:
● <TTL channel>.on()
● <TTL channel>.off()
● pulse(duration) - hidden delay inside!

Goal:

Timing examples - exercise Timing2

Create 2 pulses using two different TTL methods (on/off and pulse), now_mu() and at_mu() functions.
Use two different TTL channels: self.ttl1 and self.ttl3.

Exercise:
Solution:

timing2.py

timing2_solution.py

Timing functions:
● now_mu(duration)
● at_mu(time_mu)
● self.core.seconds_to_mu(time_in_sec)

Timing examples - exercise Timing2

We need to store the current counter
value for later use
t = now_mu()

This advances the counter by 3 us
self.ttl1.pulse(3*us)

Let's move counter to the value
corresponding to the start of the second
pulse.
at_mu(t + self.core.seconds_to_mu(2*us))
self.ttl3.pulse(4*us)

ARTIQ DSL - what can be done in FPGA?
● Subset of Python:

○ Objects

○ Conditionals (if..else structure)

○ Loops, iterating over lists

○ Exceptions

● System specific:

○ Timing functions

○ Parallel / Sequential blocks

○ DMA

○ RPC

More detailed description: m-labs.hk/artiq/manual/compiler.html

TTL methods:
● <TTL channel>.on()
● <TTL channel>.off()
● pulse(duration) - hidden delay inside!

Goal:

Timing examples - exercise Timing3

Generate 1 us long pulse on self.ttl1 followed by 1 us delay and 1 us long pulse on self.ttl3.
Just after self.ttl1 pulse print value of now_mu() using print() function.

Exercise:
Solution:

timing3.py

timing3_solution.py

Timing and other functions:
● now_mu(duration)
● print(what)

Timing examples - exercise Timing3

self.ttl1.pulse(1*us)
print(now_mu())
delay(1*us)
self.ttl3.pulse(1*us)

Timing examples - exercise Timing3 - why exception?

Timing examples - exercise Timing3 - why exception?

Timing examples - exercise Timing3 - why exception?

Timing examples - exercise Timing3 - why exception?

Timing examples - exercise Timing3 - why exception?

Timing examples - exercise Timing3 - why exception?

Altering the past

RTIOUnderflowException

Parallel and sequential blocks

with parallel:
self.ttl1.pulse(2*us)
self.ttl3.pulse(2*us)

Parallel and sequential blocks

with parallel:
self.ttl1.pulse(2*us)
self.ttl3.pulse(2*us)

with parallel:
self.ttl1.pulse(2*us)
with sequential:

self.ttl3.pulse(1*us)
delay(1*us)
self.ttl3.pulse(1*us)

Parallel and sequential blocks

with parallel:
self.ttl1.pulse(2*us)
self.ttl3.pulse(2*us)

with parallel:
self.ttl1.pulse(2*us)
with sequential:

self.ttl3.pulse(1*us)
delay(1*us)
self.ttl3.pulse(1*us)

Controlling Urukul DDS

Urukul channel methods
● channel.init()

initialize channel
● channel.set(freq, phase, amplitude)

freq - float frequency in HZ
phase - float phase tuning word in turns
amplitude - float amplitude in units of full scale <0;1>

● channel.set_att(att)
att - float attenuation in SI units [0 .. 31.5 dB]

● channel.sw - TTL controlling RF switch
TTL output functions apply, i.e. on(), off(), pulse()

DDS Attenuator
RF

Switch
RF

Output

TTL methods:
● <TTL channel>.on()
● <TTL channel>.off()
● pulse(duration) - hidden delay inside!

Goal:

TTL and Urukul - exercise TTLUrukul1

Generate simultaneous self.ttl3 and Urukul channel 0 (self.urukul_channels[0].sw) pulse 400 ns long.

Exercise:
Solution:

ttl_urukul1.py

ttl_urukul1_solution.py

Urukul channel methods
● channel.sw - TTL controlling RF switch

TTL output functions apply, i.e. on(), off(), pulse()

TTL and Urukul - exercise TTLUrukul1

with parallel:
 self.ttl3.pulse(400 * ns)
 self.urukul_channels[0].sw.pulse(400 * ns)

TTL methods:
● <TTL channel>.on()
● <TTL channel>.off()
● pulse(duration) - hidden delay inside!

Goal:

TTL and Urukul - exercise TTLUrukul2

On self.ttl3 generate 3 1 us pulses separated by 2 us delay. Enable Urukul ch. 0 RF output in parallel with TTL
output, with the same pattern. Make first RF pulse have attenuation 0 dB, second 6 dB and final again 0 dB.

Exercise:
Solution:

ttl_urukul2.py

ttl_urukul2_solution.py

Urukul channel methods
● channel.set_att(att_dB)
● channel.sw - TTL controlling RF switch

TTL output functions apply, i.e. on(), off(), pulse()

Timing functions:
● now_mu(duration)
● at_mu(time_mu)
● self.core.seconds_to_mu(time_in_sec)

TTL and Urukul - exercise TTLUrukul2

t = now_mu()
with parallel:

with sequential:
for _ in range(3):

 self.ttl3.pulse(1*us)
 delay(2*us)
 with sequential:
 # t + 0 us
 self.urukul_channels[0].sw.pulse(1*us)
 self.urukul_channels[0].set_att(6.0)
 # t + 3 us
 at_mu(t + self.core.seconds_to_mu(3*us))
 self.urukul_channels[0].sw.pulse(1*us)
 self.urukul_channels[0].set_att(0.0)
 # t + 6 us
 at_mu(t + self.core.seconds_to_mu(6*us))
 self.urukul_channels[0].sw.pulse(1*us)

DIO - a closer look at the TTL module

Common TTL methods:
● on()
● off()
● pulse(duration) - hidden delay inside!
● sample_input()
● get_sample()
● gate_rising(duration_sec)/gate_falling(dur

ation_sec)/gate_both(duration_sec)
● count()
● timestamp_mu(timestam_mu)

Connections:
● TTL channel 1 - output to scope CH1 and TTL channel 5
● TTL channel 3 - output to scope CH2
● TTL channel 5 - input with signal fed from channel 1

Optional:
● controller may be equipped with with gateware edge

counter

TTL sampling input methods

TTL channel methods:
● sample_input() - instructs the system

to sample input at current now time
marker position

● sample_get() - returns value
previously sampled at current wall
clock position

for _ in range(5):
 self.ttl5.sample_input()
 delay(1 * us)

for _ in range(5):
 self.ttl5.sample_get()

TTL methods:
● <TTL channel>.sample_input()
● <TTL channel>.sample_get()

Goal:

TTL examples - exercise TTLSample

There is a square wave signal generated on TTL channel self.ttl1 that lasts for 8 us and has period of 1us.
Sample signal fed to self.ttl5 exactly in the middle of each state, put these values inside levels list and
print it. You should be able to see a list of the following contents: [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0].

Exercise:
Solution:

ttl_sample.py

ttl_sample_solution.py

Timing functions:
● now_mu(duration)
● at_mu(time_mu)
● self.core.wait_until_mu(time_in_sec)

TTL gate window methods

TTL channel methods:
● gate_rising(duration_in_seconds) -

hidden delay!
● gate_falling(duration_in_seconds)

-hidden delay!
● gate_both(duration_in_seconds) -

hidden delay!
● count(time_mu)

t0 = now_mu()
gate_end_mu = self.ttl5.gate_falling(100 * ns)

t1 = now_mu()
received = self.ttl5.count(gate_end_mu)

t2 = now_mu()

t1 = t0 + 100 * ns
t2 = t1

TTL methods:
● <TTL channel>.gate_both(time_in_sec)
● <TTL channel>.count(time_in_mu)
● <TTL channel>.on()
● <TTL channel>.off()
● <TTL channel>.pulse(duration)

Goal:

TTL examples - exercise TTLGatedInput

There is a square wave signal generated on TTL channel self.ttl1 that lasts for 8 us and has period of 1us.
Count both rising and falling edges of signal fed from self.ttl1 to self.ttl5. Use self.ttl3 output
channel as an indicator of when the gate is open. Print the the number of rising and falling edges - expect 16 of
them.

Exercise:
Solution:

ttl_gated_input.py

ttl_gated_input_solution.py

Timing functions:
● now_mu(duration)
● at_mu(time_mu)
● self.core.wait_until_mu(time_in

_sec)

TTL methods:
● <TTL channel>.gate_both(time_in_sec)
● <TTL channel>.count(time_in_mu)

Goal:

TTL examples - exercise TTLGatedInput cont.

Find out when RTIOOverflow exceptions occurs.
Hint: change the number of events that are to be recorded within the gating period

Exercise:
Solution:

ttl_gated_input.py

ttl_gated_input_solution.py

Timing functions:
● now_mu(duration)
● at_mu(time_mu)
● self.core.wait_until_mu(time_in

_sec)

TTL gate window methods, cont.

TTL channel methods:
● gate_rising(duration_in_seconds) -

hidden delay!
● gate_falling(duration_in_seconds)

-hidden delay!
● gate_both(duration_in_seconds) -

hidden delay!
● timestamp_mu(time_mu)

gate_end_mu = self.ttl5.gate_falling(100 * ns)

result = self.ttl5.timestamp_mu(gate_end_mu)

timestamp_mu(time_mu):

● returns a timestamp of the next event
gathered in input FIFO, or

● -1 if no event has been recorded within the
duration of gate window

TTL methods:
● <TTL channel>.gate_both(time_in_sec)
● <TTL channel>.timestamp_mu(time_in_mu)

Goal:

TTL examples - exercise TTLGatedTimestamp

There is a square wave signal generated on TTL channel self.ttl1 that lasts for 8 us and has period of 1us.
Open gate window for both rising and falling edges of signal fed from self.ttl1 to self.ttl5, but instead
of counting them, retrieve each event’s timestamp and insert into self.timestamps list. You should be able
to see these events’ timestamps in relation to self.t0 printed out.
Note: self.timestamps can hold only 8 elements, so you must make sure not to exceed it’s indexes.

Exercise:
Solution:

ttl_gated_timestamp.py

ttl_gated_timestamp_solution.py

Goal:

TTL examples - exercise TTLEdgeCounter

Write missing part of the experiment that generates square-like signal self.ttl1 that lasts 60 us and has
period of 1 us. This signal is fed by wire to self.ttl5. Count both rising and falling edges of using
self.ttl_edge_counter device. Print the number of rising and falling edges. You should see 120 of them.
NOTE: use PERIOD_US and N_PULSES variables to calculate gate duration and to drive outputs with
PERIOD_US period.

Exercise:
Solution:

ttl_edge_counter.py

ttl_edge_counter_solution.py

Useful functions:
● parallel blocks
● sequential blocks

TTL methods:
● <TTL channel>.pulse(duration_in_sec)
● <TTL EdgeCounter>.gate_both(time_in_mu)
● <TTL EdgeCounter>.fetch_count()

Devices that will be used

● Fastino

○ 32 channel, 16-bit, 2.55 MSPS DAC

○ + / - 10 V output range

○ 1 us settlings time

○ https://github.com/sinara-hw/Fastino/wiki

Fastino methods:
● set_dac(dac=0, voltage)

Goal:

Basic Fastino (DAC) output - exercise FastinoBasic

Output any sine wave on Fastino channel. Generate samples in a provided loop. Parametrize your code using
Amplitude and sample_num. Then try to increase sample_num and delay multiplier.

Exercise:
Solution:

fastino_basic.py

fastino_basic_solution.py

Timing functions:
● delay(duration)

Methods:
● List comprehension
● Change oscilloscope horizontal scale in dashboard when needed

Goal:

Precalculating waveforms - exercise FastinoPrepare

Write a loop that calculates a sine wave in a prepare function. Parametrize your code using Amplitude and
sample_num. Then write code that prepares samples with square, sawtooth and triangle functions. Normalize
your sequence to Amplitude. Then try changing sample_num and delay multiplier. What is the maximum
number of samples now?

Exercise:
Solution:

fastino_prepare.py

fastino_prepare_solution.py

Notes:
● You may copy your functions from previous exercise to fastino_interpolation.py.
● When interpolation is enabled Fastino will only accept one input sample per input sample period.

Goal:

Interpolation - exercise FastinoInterpolation

Use dashboard to change parameters, functions, enable/disable interpolation, see how it changes output
shape, levels, delay.

Exercise: fastino_interpolation.py

Notes:
● You may copy your functions from previous exercise to fastino_interpolation.py.
● When interpolation is enabled Fastino will only accept one input sample per input sample period.

Goal:

Interpolation - exercise FastinoInterpolation

Use dashboard to change parameters, functions, enable/disable interpolation, see how it changes output
shape, levels, delay.

Exercise: fastino_interpolation.py

Notes:
● You may copy your functions from previous exercise to fastino_interpolation.py.
● When interpolation is enabled Fastino will only accept one input sample per input sample period.

Goal:

Interpolation - exercise FastinoInterpolation

Use dashboard to change parameters, functions, enable/disable interpolation, see how it changes output
shape, levels, delay.

Exercise: fastino_interpolation.py

Use cases

Sampler ADC Urukul DDS+

Use cases

Frame Grabber Camera+

Use cases

Fastino Shuttleror

Use cases

Phaser

 https://github.com/elhep/artiq_dax_tutorial_materials

● Paweł Kulik

● Mikołaj Sowiński

● Jakub Matyas

If you have any questions, feel free to contact us:

● pawel.kulik@pw.edu.pl

● mikolaj.sowinski@pw.edu.pl

https://github.com/elhep/artiq_dax_tutorial_materials

