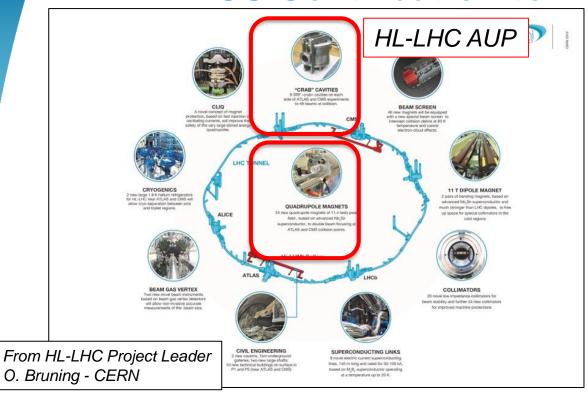


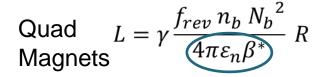
HILUMI HL-LHC PROJECT

Status of US AUP Contribution

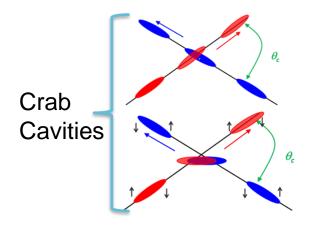
Giorgio Apollinari – FNAL HL-LHC AUP Project Manager

14th HL-LHC Collaboration Meeting Genova, Italy - October 2024




Outline

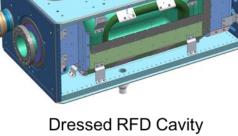
- Introduction
- AUP Project Overview
- AUP Technical and Financial Status
- Summary



US Contribution to HL-LHC

Beam size

- HL-LHC: from 300 fb⁻¹ to 3000/4000 fb⁻¹
- LARP (DOE supported R&D Program) established the necessary technology for the HL-LHC Focusing Magnets and Crab Cavities
- DOE baselined HL-LHC AUP Project in 2019 (FNAL, BNL, LBNL with contributions from ANL, SLAC, JLAB, ODU & FSU)
- DOE re-baseline AUP in 2023 to absorb COVID impacts on Cost and Schedule


HL-LHC AUP Deliverable Scope Technical Details

Dressed RFD Cavity

(10 Dressed Cavities & Ancillaries`

High Order Mode
Antennas

Bare RFD Cavity

(front wall removed to show internal components)

AUP Q1/Q3 and RFD Cavities KPPs

Inner Triplet Focusing Quadrupoles (Q1 and Q3) Quadrupoles (Q2 Q2 Q					
by CERN after testing at HL-LHC agreed upon Acceptance Criteria for the Cryoassembly. The Cryoassemblies will be assembled from Cold Masses built by HL-LHC AUP and Cryostat kits provided by CERN. b) 3 Q1/Q3 Cold Masses built with magnets tested vertically at HL-LHC agreed-upon Acceptance Criteria c) Complete coils and remaining components for 1 additional Q1/Q3 Cold Mass Cavities c) Complete coils and remaining components for 1 additional Q1/Q3 Cold Mass a) 8 Radio Frequency Dipoles (RFDs) Dressed cavities for the HL-LHC Crab Cavity System are accepted by CERN after being tested at HL-LHC nominal temperature, nominal frequency, and ultimate cavity voltage. Dressed cavities include HOM couplers, pick-ups, He Vessel and magnetic shields. Cryoassemblies are accepted by CERN after testing at HL-LHC agreed-upon Acceptance Criteria Cryoassemblies are accepted by CERN after testing at HL-LHC Cryoascemble, and HL-LHC Cryoassemble in the Cryoassembly will be assembled from Cold Masses built by HL-LHC AUP and Cryostat kits provided by CERN 10 Q1/Q3 Cryoassemblies (8 Operations + 2 Hot Spares) 2 additional Radio Frequency Dipoles (RFDs) Dressed cavities for the HL-LHC Crab Cavity System are accepted by CERN after testing at HL-LHC agreed-upon Acceptance Criteria for the Cryoassembly will be assembled from Cold Masses built by HL-LHC AUP and Cryostat kits provided by CERN 10 Q1/Q3 Cryoassemblies (8 Operations + 2 Hot Spares) 2 additional Radio Frequency Dipoles (RFDs) Dressed cavities for the HL-LHC Crab Cavity System are accepted by CERN after being tested at HL-LHC nominal frequency, and ultimate cavity voltage. Dressed cavities include HOM couplers, pick-ups, He Vessel and magnetic shields.	П	Parameters	Threshold Performance	Objective Performance	
components for 1 additional Q1/Q3 Cold Mass a) 8 Radio Frequency Dipoles (RFDs) Cavities a) 8 Radio Frequency Dipoles (RFDs) Dressed cavities for the HL-LHC Crab Cavity System are accepted by CERN after being tested at HL-LHC nominal temperature, nominal frequency, and ultimate cavity voltage. Dressed cavities include HOM couplers, pick-ups, He Vessel and magnetic shields. (8 Operations + 2 Hot Spares) (9 Operations + 2 Hot Spares) (1 Operations + 2 Hot Spares) (1 Operations + 2 Hot Spares) (2 additional Radio Frequency Dipoles (RFDs) Dressed cavities for the HL-LHC Crab Cavity System are accepted by CERN after being tested at HL-LHC nominal temperature, nominal frequency, and ultimate cavity voltage. Dressed cavities include	ı	Focusing Quadrupoles	by CERN after testing at HL-LHC agreed upon Acceptance Criteria for the Cryoassembly. The Cryoassemblies will be assembled from Cold Masses built by HL-LHC AUP and Cryostat kits provided by CERN. b) 3 Q1/Q3 Cold Masses built with magnets tested vertically at HL-LHC	Cryoassemblies are accepted to CERN after testing at HL-LHC agreed-upon Acceptance Criter for the Cryoassembly. The Cryoassembly will be assemble from Cold Masses built by HL-LAUP and Cryostat kits provided	ria ed LHC
Dipoles (RFDs) Dressed cavities Cavity System are accepted by CERN after being tested at HL-LHC nominal temperature, nominal frequency, and ultimate cavity voltage. Dressed cavities include HOM couplers, pick-ups, He Vessel and magnetic shields. Dipoles (RFDs) Dressed cavities for the HL-LHC Crab Cavity System are accepted by CERN after being tested at HL-LHC nominal temperature, nominal frequency, and ultimate cavity voltage. Dressed cavities			components for 1 additional Q1/Q3 Cold		•
b) Procurement of components for 2 additional RFD Dressed Cavities HOM couplers, pick-ups, He Vessel and magnetic shields (8 Operations + 2 Hot Spares)			a) 8 Radio Frequency Dipoles (RFDs) Dressed cavities for the HL-LHC Crab Cavity System are accepted by CERN after being tested at HL-LHC nominal temperature, nominal frequency, and ultimate cavity voltage. Dressed cavities include HOM couplers, pick-ups, He Vessel and magnetic shields. b) Procurement of components for 2	Dipoles (RFDs) Dressed cavities for the HL-LHC Crab Cavity System are accepted by CERN after being tested at HL-LHC nominal temperature, nominal frequency, and ultimate cavity voltage. Dressed cavities included HOM couplers, pick-ups, He	0 RFD Dressed Cavities

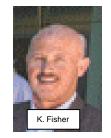
- HL-LHC AUP Project includes Objective KPPs
- Goals untouched since the Project inception

AUP Project Office Change(s)

 After 26+ years at FNALy, Ruben Carcagno has decided to benefit from the Self-Select Voluntary Separation Program (SSVSP) initiated by Fermilab in early 2024

In name of the whole AUP and HL-LHC teams, we extended to Ruben our most sincere thanks for everything he has done for the HL-LHC Project, wishing him the best in this new phase of life.

- Interactions with DOE
 - Dr. Gianluca Sabbi (LBNL)
 - Long-standing member of AUP LBNL team, previous leader in LARP.
- Interactions with CERN
 - Vito Lombardo (FNAL)
 - Risk Manager and CAM in AUP since CD-1


HL-LHC AUP Project Organization

Office of Science

Acquisition Executive

Office of Project Assessment Director

Office of High Energy Physics

Associate Director
DOE Program Manager

DOE AE: Harriet Kung

<u>OHEP AD</u>: Regina Rameika

DOE Program Manager: A. Hatzikoutelis

DOE FPD: Jerry Kao

FNAL Project Manager: Giorgio Apollinari Deputy Project Manager: GianLuca Sabbi

Vito Lombardo

J. Kao

G. Ambrosio

DOE Fermi Site Office Site Manager

DOE Federal Project Director

CERN HL-LHC Project Office

Project Leader Deputy Project Leader

US Partner Labs

BNL Representative LBNL Representative

ES&H Coordinator

Fermi Research Alliance, LLC M&O Contractor

Director Chief Technology Officer

US HL-LHC Accelerator Upgrade Project (HL-LHC AUP)

Project Manager Deputy Project Manager

Project Management L2 Manager/ Lab Repr.

MQXFA Magnets Fabrication

L2 Manager

RFD Dressed Crab Cavities Fabrication

Q1/Q3 CryoAssemblies Fabrication

Progress since last CM 6A on Magnets and CryoAssemblies

- BNL Coil Factory completed Production
 - FNAL Factory maintained at very low production rate for potential coil replacements
- MQXFA07b and MQXFA13b re-assembled and tested
 - MQXFA07 was the first magnet impacted by operations under COVID
 - MQXFA13 was limited (report at last CM), coil replacement
 - ✓ Successfully passed BNL Vertical Test
- MQXFA14b and MQXFA15 assembled and tested
 - ✓ Successfully passed BNL Vertical Test
- MQXFA17 assembled and tested
 - Failed to pass acceptance test at BNL, under coil replacement with TLS
- MQXFA18*TLS* presently under test at BNL
- MQXFA12bTLS has been shipped to BNL
- MQXFA16TLS under final preparation at LBNL, soon to be shipped to LBNL

MQXFA Magnets Test History

MQXFA03	VTS Tested OK	LQXFA/B-01	
MQXFA04	VTS Tested OK		
MQXFA05	VTS Tested OK	LQXFA/B-02	
MQXFA06	VTS Tested OK	LQXIA/D-02	
MQXFA07	VTS COVID Limitations, coil replaced	MQXFA07b	VTS Tested OK
MQXFA08	VTS COVID Limitations, coil replaced	MQXFA08b	VTS Tested OK
MQXFA09	Assembly NCR (2 coils affected by folded Kapton)	Dismantled	2 coils rejected 2 coils used in 14b and 5, structure used in 11
MQXFA10	VTS Tested OK	LOVEN/D 02	LQXFA/B-04
MQXFA11	VTS Tested OK	LQXFA/B-03	29/11/02/07
MQXFA12	Assembly NCR (Hipot fail) coils to be replaced	MQXFA12b	TBT₄ LQXFA/B-05
MQXFA13	VTS Limitations (end prestress), coil replaced	MQXFA13b	VTS Tested OK
MQXFA14	Assembly NCR (QH hipot fail), coil replaced	MQXFA14b	VTS Tested OK
MQXFA15	VTS Tested OK		

MQXFA Vertical Tests History: TC1 vs. TC2

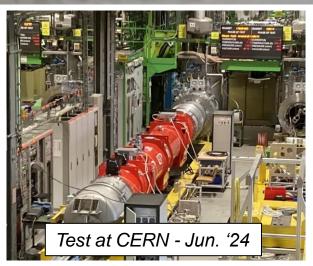
Magnet	NC found in TC1	NC confirmed in TC2
MQXFA03	0	0
MQXFA04	0	0
MQXFA05	0	0
MQXFA06	0	0
MQXFA07	1	N/A
MQXFA07b	0	0
MQXFA08	1	1
MQXFA08b	0	0
MQXFA10	0	0
MQXFA11	0	0
MQXFA13	1	N/A
MQXFA13b	0	0
MQXFA14b	0	0
MQXFA15	0	0
MQXFA17	1	N/A
TOTAL	4	1
Detection rate	100%	N/A

Magnet Vertical Test Decision

- MQXFA Magnets vertical test is a critical QC step in the execution of the AUP Project
- "Demonstration of stable performance following a thermal cycle" (Memory) was a critical early demonstration at the beginning of the MQXF magnets construction
 - Since the beginning of the AUP projects, all magnets have been tested vertically through 2 Thermal Cycles, and – again – horizontally in the final cryostat through 2 thermal cycle.
- Early in the AUP planning due to financial constraints a total of ~5 MQXFA magnets were planned to be inserted in cryostats without a Vertical Test.
 - Experience is indicating that the risk of not testing a magnet vertically has not decreased substantially as production progressed
 - The re-assembly of an LQXFA/B Cryostat was introduced in the AUP Baseline to mitigate risks due to untested magnets

Magnet Vertical Test Decision (cont.)

- Observation that all magnets that failed a vertical test were identified in the 1st Thermal Cycle (TC1) and the vast majority could be repaired.
- Decision: Test all remaining MQXFA Magnets vertically through only TC1 and reduce number of magnetic measurements at BNL
 - Pros:
 - Reduce considerably risks for LQXFA/B, eliminating the necessity to carry forward a cryomodule re-assembly in the baseline schedule
 - Reduces costs and anticipates schedule
 - AUP critical path is stably associated with Horizontal Testing
 - Cons:
 - "Memory" establishment delayed from Vertical Test to LQXFA/B Horizontal Test


LQXFAB-01 Delivery to CERN

Dr. Harriet Kung Visit and LQXFA/B-01 in final Shipment Preparation - Oct. '23

CERN Cryogenic Test of LQXFAB-01 at CERN achieved nominal Current without quenches on June 18th 2024.

Quench Heaters non-Conformities addressed by delivery of additional/spare elements to CERN (1 MQXFA Magnet, Shell, CM Tool)

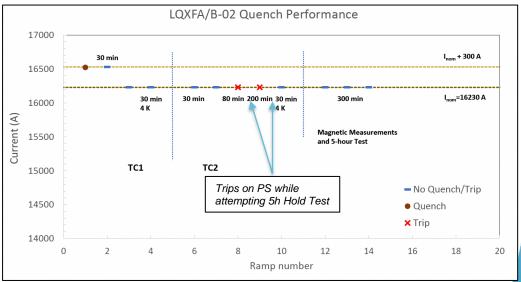
LQXFAB-01 Acceptance at CERN

 LQXFAB-01 Accepted at CERN in June 2024 within the framework of AUP-CERN Acceptance Criteria agreements.

Main Made of Equip	pment data Manufacturing	Operation Non-conformities Do	cuments History			
Actions: Back to list Edit						
Step Generic Data						
Step ID	320	Other name				
Description	Description Cryo-assembly acceptance at CERN					
Status	Accepted	Result	Ok			
Completed on	2024-07-02					
Provided by		Open in EAM Light	33644020			
Responsible		Executed by				
·						
Comments						
Acceptance by CERN according to the document US HL-LHC AUP - LQXFA - Acceptance Cri RECEPTION OF CRYOASSEMBLY AT CERN - EDMS 1868479 v1.2						

LMQXFA01 passed the acceptance tests foreseen in the test plan EDMS 2959525 (see EDM for a summary of the test results for acceptance). The cryo-assembly is accepted for use it the IT String Test, following the agreed path of acceptance between CERN and AUP (see E and EDMS 2958007), and therefore the cold test can proceed with the 'tests to be carried acceptance', as for the test plan. However, during the final leak tests before cool down in 5 the cryomagnet installed on bench A2, a critical (level 3) non-conformity was identified on mass hydraulic circuit (see EDMS 3124113). Further leak tests are foreseen after warming a test bench leak test. This NCR needs to be resolved before proceeding with the phase 2

LQXFA01 is **accepted** after the tests carried out at CERN in the framework of the Acceptance Criteria – Part C (EDMS <u>1868479</u>) with the following remarks:


- The Cryo-assembly is accepted for installation in the IT String but for the installation in the LHC, the agreed path for acceptance between AUP and CERN is to be completed (See EDMS 2958004 and EDMS 2958007).
- During the final leak test prior to cooldown, a leak was detected in the cold mass hydraulic circuit. This nonconformity needs to be investigated and solved prior to starting the phase 2 cryostating.

LQXFAB-02 under Test in IB1- TS4

- TS4 underwent massive upgrades to expedite cold test of a cryomodule
 - ~4 months for LQXFAB-01 to Acceptance
 - Still ~3.5 months for LQXFAB-02 from completion of installation to Acceptance (modulo 100k HiPot)
 - Planned for "Pressure & Leak Test" and shipment from FNAL to CERN by Nov. 18th (arrival at CERN by mid-December).



Technical Status Cold Mass (CM) and Cryo-Assembly (CA)

- CA03 (LQXFAB-03) completed, pending Pressure&Leak test
- CM04 and 05 under Production
- Magnets for CM06 (starting with MQXFA13b) being gathered at FNAL

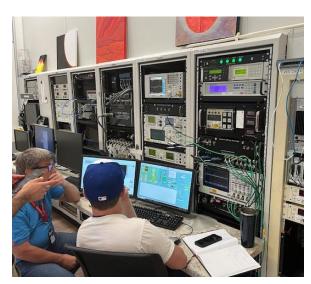
LQXFA/B-03 - Completed

CM04 – Orbital Welding

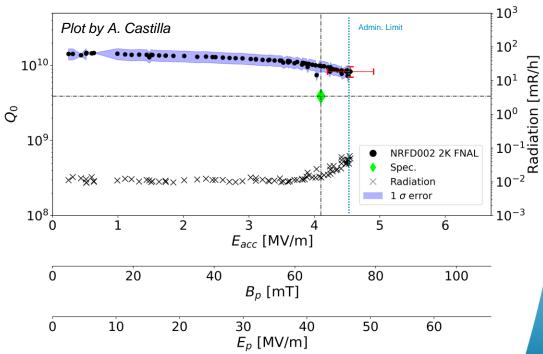
Progress since last CM on RFD Crab Cavities

- Placed order for Production Helium Tanks.
- Completed 2 Pre-series at ZANON.
 - NRFD02 met requirements for Acceptance
 - NRFD01 didn't meet requirements, sent back to ZANON for reprocessing. To be tested at FNAL shortly.
- Documentation under control
- Prototype #2 Cavity (not a deliverable to CERN, but a "trial" delivery to TRIUMF) completed He Vessel installation, at JLAB to be tested.
 - Prototype #1 at Zanon, not useable after multiple BCP cycles. Instrumental in uncovering and addressing processing issues.
- JLAB successfully completed design, fabrication & test of pre-series HOMs. Concern on ceramic windows cracking addressed by HOMs production at CERN.

Completed Pre-Series



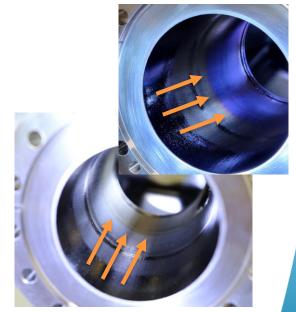
Completed Prototype Helium Tank



Pre-Series #2 (NRFD02) Test Results

- Performed 3 tests in total, always exceeding acceptance requirements, but with radiation onset (indicative of contamination). Onset level continued to improve after successive high-pressure rinses by JLAB.
- Final test shows no radiation up to acceptance level.
- Low field Q₀ is high: Chemistry by Zanon is successful.
- Radiation onset is at high field: HPR and clean assembly by Jlab is successful.

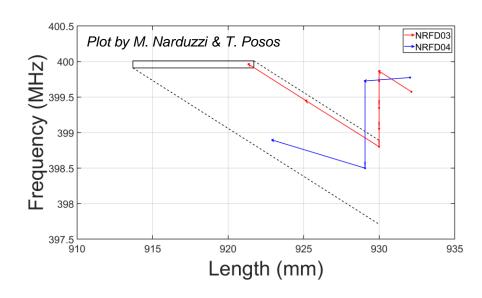
8/26/24: FNAL VTS Control Room



BCP & HPR Issues at Zanon

- BCP: Following the investigation for the uneven removal on prototype #1, the chemistry process was improved and tested with successful results.
- HPR: Both pre-series cavities are showing localized discoloration. Suspecting excessive and localized HPR pressure.
 JLAB performed HPR tests which resulted negative.
- Meetings between JLAB and Zanon are facilitating knowledge transfer. We are also planning visits of JLAB representatives in the next months.

Prototype #1 after 3+ BCP cycles

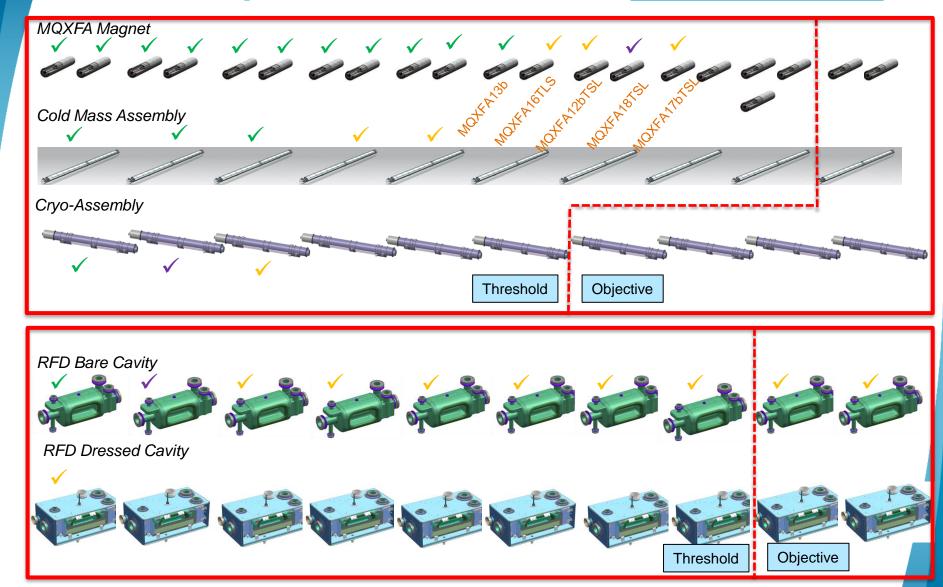


Pre-Series #1 and #2 with internal discoloration

302.03 - Other Updates

- First two series NRFD03 & NRFD04 are undergoing trim-tune operations (see plot and pictures).
- Non-performing NRFD01 has undergone light BCP at Zanon and is in transit to FNAL for test later this month.
- JLAB test facility shut-down is extended to December due to a safety stop which affected all maintenance and repair activities.

Some Components of Series #3 and #4 ready for trim-tuning


302.03 - RFD Tests and Delivery Dates

ZRI Serial	Bare Cavities delivered to FNAL	Bare Cavities qualified and back at Zanon	ZRI Serial	Jacketed Cavities delivered to JLAB	Dressed Cavities Delivered to TRIUMF	CERN Ser	ial
NRFDP001	6/1/2024	8/1/2024	RFDP001	9/15/2024	1/15/2025	HCACFCA005-U	P000001
NRFDP002	8/17/23	9/15/2023	RFDP002	4/16/2024	1/31/2025	HCACFCA005-U	P000002
NRFD01	10/7/2024	12/1/2024	RFD01	1/30/2025	3/31/2025	HCACFCA002-U	P000001
NRFD02	4/16/2024	9/20/2024	RFD02	11/19/2024	2/15/2025	HCACFCA002-U	P000002
NRFD03	11/15/2024	1/14/2025	RFD03	2/28/2025	4/29/2025	HCACFCA002-U	P000003
NRFD04	12/6/2024	2/4/2025	RFD04	3/21/2025	5/20/2025	HCACFCA002-U	P000004
NRFD05	12/27/2024	2/10/2025	RFD05	3/27/2025	5/26/2025	HCACFCA002-U	P000005
NRFD06	1/17/2025	3/3/2025	RFD06	4/17/2025	6/16/2025	HCACFCA002-U	
NRFD07	2/4/2025	3/21/2025	RFD07	5/5/2025	7/4/2025	HCACFCA202-L	Agreed Lat
NRFD08	2/22/2025	4/8/2025	RFD08	5/23/2025	7/22/2025	HCACFCA002-u	Delivery Dat
NRFD09	3/12/2025	4/26/2025	RFD09	6/10/2025	8/9/2025	HCACFCA002-U	Apr
NRFD10	3/26/2025	5/10/2025	RFD10	6/24/2025	8/23/2025	HCACFCA002-U	Jun Jul
NRFD11	4/9/2025	5/24/2025	RFD11	7/8/2025	9/6/2025	HCACFCA002-U	Sep
NRFD12	4/23/2025	6/7/2025	RFD12	7/22/2025	9/20/2025	HCACFCA002-U	Oct

- Delays since last update can be attributed to prioritizing quality and shape accuracy, managing NCRs according to QA plan, increased duration of JLAB VTA shut-down.
- Dressed Prototype estimated to arrive at TRIUMF in January 2025.
- Pre-Series cavities estimated to arrive at TRIUMF in Spring 2025.
- Zanon BCP shut-down in October: We expect this will cause an additional delay for the 2 pre-series (still being estimated ~1-3 weeks).

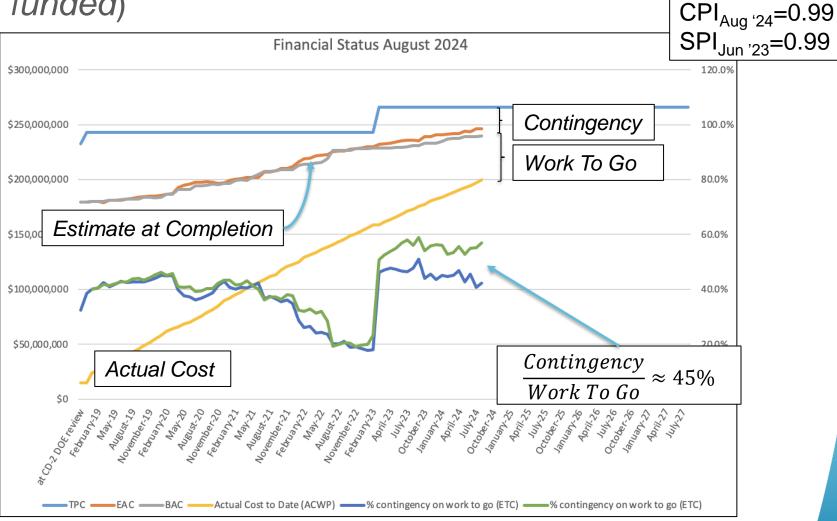
Visual Representation of KPPs <u>Achievements</u>

- ✓ Completed, sitting on a shelf or delivered to CERN
- ✓ Under Fabrication
- ✓ Under Test

DOE Independent Project Review July 2024

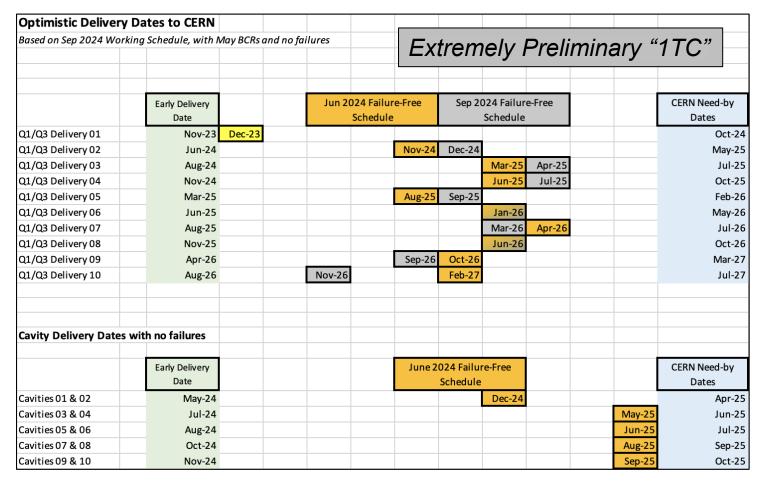
- Standard "yearly" review run by DOE
 - Thanks for help provided by HiLumi Project Office
- Positive outcome

Overall, the project is on track to complete within TPC and CD-4 date. It is fully funded and has sufficient schedule and cost contingencies. The Cost and Schedule Performance Indices (CPI/SPI) are .99 and .99, which is relatively stable. There is aligned production with CERN's delivery/need by dates.


- Few technical (Crab Cavities) and Managerial (Handling of Objective/Threshold KPPs) recommendations
 - To be discussed at the CERN-AUP Steering Meeting

Financial Situation (Past)

DOE has disbursed \$266M to the US-AUP (fully


funded)

AUP is in the "last leg of the race" (~80% complete)

Delivery Dates to CERN (June 2024)

 Success Oriented Schedule provided to CERN WPs as input for upcoming Nov. '24 C&S Review

Conclusions

- AUP is over 80% complete
- Steady progress on MQXFA Construction
 - 11 magnets passed vertical test.
- LQXFAB-01 Accepted by CERN
- LQXFAB-02 under test at FNAL, planned for shipment to for String Test before end of CY.
- LQXFAB-03 Close to completion, awaiting Horizontal Test
- RFD Crab Cavities Series Production Order and He Vessel Production Order placed.
 - Pre-series cavity accepted and moving to He Vessel Assembly.

