

Status of LQXFA cold mass, cryostating and cold test

Sandor Feher – HL-LHC AUP L2 manager, Fermilab

Outline

- Cold Mass and Cryo-assembly production status
- Cold Mass and Cryo-assembly production achievements and challenges progress
- CA02 test status and results

Cold Mass & Cryostat Assembly Status

- CA01 accepted by CERN.
- CA02 IB1 test completed, warm up in progress.
- CA03 prep for combination pressure/leak test.
- CM04 capillary tubes are next.
- CM05 ready for longitudinal shell welding.
- CM06 MQXFA13b has been shipped to FNAL

	Qa	Qb	Weld	Cryo	Test	Ship
CA01	✓	√	✓	✓	✓	\checkmark
CA02	\checkmark	\checkmark	\checkmark	\checkmark	✓	
CA03	✓	√	✓	✓		
CA04	\checkmark	\checkmark	✓			
CA05	\checkmark	√				
CA06	✓	✓				
CA07						
CA08						
CA09						
CA10						

Welding

- It was a long process to converge
 - Approved procedure applied first on CM02
- Bought new Fronius power supplies. They are better suited for the foreign weld wire (stable arc) & provides a data log.
- Ultrasonic Test (UT) results have been exceptionally better since updates. CM-02 & CM-03 passed with minimum to no weld repairs.
- Internal Weld Inspections are now completed with an inspection Borescope (newly purchased) by a Certified Weld Inspector (CWI).

Starting with CM02 we are using the welding shims

- 2 mm target value for the shims were used (proposed by the analysis presented at MT 28) to calculate the SS vessel circumference based on the measured magnet circumference values
- It was important to machine and measure the shell correctly

CM02 strain measured by survey

- Six locations along the cold mass it is measured the circumference of the SS shell before and after welding
- The same six locations the weld shrinkage is measured as well
- The average weld shrinkage of the six values -3.009 mm
- The average circumference change of the six values -2.995 mm

CM02 strain measured by strain gauges

High-definition distributed fiber optic sensors are used

- Can be used as strain and temperature sensors
- Highest spatial resolution can be 0.65 mm
- Sensor length can go up to 20 m (30000 measuring points)
- Highest sample rate is 250 Hz with some length limitation

CM02 strain measured by strain gauges

One 10 m long fiber One 20 m long fiber (broke)

CM02 strain measured by strain gauges

We measured a ~30 $\mu\epsilon$ of avg azimuthal strain after the third welding pass in CM02. The presence of shims has reduced the stress value Using the average azimuthal strain on the SS shell and a value of 200 GPa for stainless-steel Young modulus: 6 MPa SS stress in average. Good agreement with the target value.

Magnet alignment using Stretched wire technique

Stringent requirement and tough measurement

~11 m

Magnet alignment using Stretched wire technique

CM05 with final roll adjustment

Alignment Relative to MQXFA15/MQXFA07b Average Center Line 07Aug2024 - Initial Meas. - after Zcen repositioning

Magnet Measurements using LT

Magnetic length, magnetic center and magnet separation

Cold Mass Lesson learned

- Capillary tube too many wires for tube diameter made it difficult to pull the wires through the 4 m long capillary causing the splice plug to be out of position in the cold mass tee.
 - Re-routed RTD instrumentation wires to reduce wire count in capillary tube.
 - Developed 3D printed tools to aid in wire alignment and wire pulling through the capillary tube.
 - Improved the wire splice robustness using barrel splice design, DocDb-4974.
 - Adopted CERN's water hipot procedure to test wire insulation integrity.

Cryo-assembly Production Achievements and Challenges

- Both CA02 and CA03 installation went very well
 - Lesson learned from CA02 was implemented in CA03
 - Essentially no major traveler revision was required for CA03
 - FSI target installation method was optimized using surveyors
 - Final positioning of the CM inside the cryostat procedure has been fine tuned using surveyors' measurements
- Combination pressure/leak test procedure has been developed with CERN and it has been approved both sides.
 - New pumping system has been procured and it is under installation
 - For CA02 still the leak test was not conclusive due to the contamination of the pumping system that was borrowed from the test facility

14

Cryo-assembly Production Achievements and Challenges

CA02 IFS Head to Flange Misalignment

- Root cause: IFS Assembly was cut at weld due to incorrect wiring.
- Corrective action: Wiring schematics were adjusted to correctly illustrate the orientation of the wiring.
- Made wire solder connections using new IFS head and welded in place.
- After welding there was a misalignment of the new IFS and the existing lower flange that was slightly distorted from the original weld.
- The issue meets requirements of ASME B&PV Code Sect. VIII div.2 and can be operational at FNAL, however, it does not meet ISO requirements and escalated to an NCR (LHC-QQXFA-QN-0012 (ver.1).

- The second pre-series cryo-assembly CA02 test is almost complete; so far, the test is very successful though the cryogenic facility was not able to satisfy the requested LHe delivery capacity on time; contributed a lot of delay to finish the test
- The test facility modifications/improvements were successfully completed
 - Added a heater to the He vapor suction line
 - New improved splice between the Power lead flag and the superconducting cable joint

14th HL-LHC Collaboration Meeting, Genoa (Italy), 7-10 October 2024

Controlled Cool Down

Controlled Cooldown - CA-01 vs CA-02

Controlled Cool Down

- Controlled warmup and cooldown requires 50 K temperature difference between the magnet ends
- TC was achieved within 19 days; there is still room for improvements

CA02 cold test results are satisfactory

 $A \vec{U} \vec{P}$

- Excellent vacuum pressure at cold 10⁻⁷ torr
- Only one spontaneous quench; two trips PS phase back glitch
- Holding current test up 300 min successful

LQXFA/B-02 Quench Performance

Conclusions

- Cold mass production and Cryo-assembly production progressing well
- Lesson learned implemented and installation speed is gradually increasing
- Lot of challenges were solved successfully
- CA02 test close to completion; only warm up is required
- CA02 cold test results are satisfactory

Trip

