

Update on collimation losses and halo limitations

Pascal Hermes On behalf of WP5 & LHC Collimation teams

14th HL-LHC Collaboration Meeting, Genoa, Italy 07.10.2024

Collimation Challenges in HL-LHC

Quench Risk

IR7 DS (betatron collimation losses) and IR1/IR5 (collision debris)

Beam Halo

Threat to system integrity with fast failures

Impedance

Beam stability issues with higher beam intensities

Heavy lons

Quench risk (collimation & collision), backgrounds

HL-LHC collimation system upgrades

Table of Contents

Introduction **Collimation System in Run 3 HL-LHC Collimation Status** Beam Halo Quench Risk Heavy-Ion Collimation

Conclusions

Collimation System in LHC Run 3

2023 Collimation Highlights: Pb Ions

First operation with TCLD collimators in IR2

• Factor 6 higher luminosity in ALICE

First physics operation with crystal collimation

- Cleaning performance improved by factor > 5
- Issue with optimal crystal angle drift during fill

2024 Collimation Highlights

First deployment of **full collimation hierarchy** with tilt angles

- Excellent cleaning performance
- Important ingredient for tighter hierarchy & smaller β*
- IR7 loss distribution issue → next slides

2024 Loss Distribution Issue

Courtesy of F.F. Van der Veken

2024 Dispersion / Local Optics Issue

Courtesy of F.F. Van der Veken

• Apparent breakage of collimation hierarchy

- Issue occurred at end of luminosity levelling (32.5cm → 30cm at intensities ~1.3x10¹¹)
- Identified as
 - Beam-beam driven
 - High vertical dispersion at TCSG
 - Unfortunate phase space properties (increased 3Qy)

2024 Dispersion / Local Optics Issue

- Resolution after understanding of main effects involved:
 - Reduced local dispersion
 - Reduced chromaticity and a3 correction
- Illustrates the potential complexity of LHC collimation optimization
- Good understanding achieved but must be studied in more detail for HL-LHC

HL-LHC Collimation Status

Transverse Beam Halo

Assuming nominal σ with $\epsilon_{\text{N}}\text{=}3.5\mu m$ rad

Halo Population

- Measured by collimator scraping
- **Overpopulated halo:** found to 5% beyond 3σ in previous (Run 2) analyses
- Potential threat for HL-LHC if scales to post-LS3 beams mitigation HW unavailable
- Motivates further measurements, extended analysis, exploring alternative mitigation

Revised Run 2 Measurements

Final collimator position [σ]				Halo content [%] at					
	Halo content [%]				3.0 [σ]				
Fill number	No. of Bunches	B1H	B1V	B2H	B2V	B1H	B1V	B2H	B2V
4910	313	4.1	3.9	4.0	4.1				
		0.1	1.2	0.7	1.0				
5105	2076	3.8	3.1	3.1	3.4				
		0.0	1.7	0.9	0.2				
5834	900	3.0	3.0	3.1	3.1	16	2.5		1.4
		4.6	2.5	1.4	1.4	4.0			1.4
5848	1741	3.2	/	3.1	/				
		8.7	/	8.1	/				
5849	2029	3.2	/	/	3.1				
		5.3	/	/	1.3				
6052	2550	3.7	3.3	3.5	2.8				28
		3.0	5.2	1.0	5.5				2.0
6194	224	2.3	2.4	2.1	2.2	6.2	15	0.1	1 Q
		29.5	7.9	6.8	19.6	0.2		0.1	1.0
7221	2550	/	3.0	/	3.2		5.6		
		/	5.6	1	0.6		5.0		
7264	2550	2.9	3.1	3.3	2.8	15			1.0
		2.4	0.6	1.0	2.1	1.5			1.0
7392	300	3.5	2.0	2.9	2.0		0.7	4.4	0.2
		10.0	9.4	5.7	2.5				

Run 3 Halo Measurements (Selection)

			Final collimator position [σ]				Halo content [%] at			
			Halo content [%]				3.0 [σ]			
Fill number	Stage	No. of Bunches	B1H	B1V	B2H	B2V	B1H	B1V	B2H	B2V
8233 EOF	FOF	200	3.0	3.1	3.2	3.1	0.3	0.2	03	0.6
	LOI	200	0.4	0.2	0.3	0.6		0.2	0.5	0.0
8313	FOF	1200	3.1	3.5	3.0	3.6	1.2		0.2	
0313			1.2	0.6	0.3	1.4				
8387 EO	FOF	2462	3.5	3.7	3.7	3.4				
	LOP	2402	0.9	0.3	0.1	0.7				
0757	9754 INJ	624	2.8	2.8	2.7	2.7	3.3	1.5	1.8	1.8
7754			4.7	2.8	4.0	4.5				
9756 INJ	624	2.8	2.9	2.7	2.7	3.6	1.7	2.0	2.0	
		5.0	2.4	3.7	3.9					
0909	0909 505	1238	2.6	/	2.6	/	0.8	0.2		
9000 EOF	EOF		2.6	/	1.1	/			0.3	
9996 EOF	FOF	2351	3.1	3.2	3.2	3.5				
	EOF		0.7	0.1	0.4	0.2				
10045 INJ	INU	96	/	1.7	/	1.5		1 2	2	1 2
	UNI		/	26.5	/	31.5		1.5	1.3	

Run 2 vs. Run 3 Data

Run 2

 High population (>5% at >3σ) confirmed for isolated cases

Run 3

- Above Gaussian (assuming 3.5 µm rad) but less populated than Run 3
- Higher halo population at injection (in MDs)
- Mostly smaller emittances than HL-LHC (2.5 µm rad)
- Remaining uncertainty on scaling to 2.5umrad

Courtesy of M. Rakic

Bunch-by-bunch halo analysis

- Bunch-by-bunch variation observed in F-BCT analysis
- Simply linked to emittance?

Bunch-by-bunch halo analysis

- Correlation observed in some measurements, uncorrelated in others
- Different correlation strength for different planes
- No clear conclusion

Electron cloud hypothesis

Measured beam halo

E-cloud driven losses after hours in collision

Courtesy of M. Rakic

Courtesy of K. Paraschou

Is halo linked to electron cloud effects?

Dedicated MD proposed and performed in 2024

19

Halo vs e-cloud MD 2024

Merit

Study of halo for different beam flavors

Outcome

E-cloud effect confirmed! Likely from triplets Complex setup: limited time in collision

Plan

Repeat in MD5

Longer collision phase & injection measurements

Halo Modeling & Simulations

- Simulations crucial: estimate impact of missing HELs
- Starting over to review using q-Gaussian
- Models used for simulations
 - Diffusion & halo formation
 - Depletion
 - Failure scenarios
- Increased efficiency: Xtrack with GPU

Talk by C. E. Montanari (Wednesday)

- Halo monitoring is crucial
- Dedicated WG (BI, ABP, MPP) est. 2024

Halo monitoring in HL-LHC

- Applications
- Specifications
- Review of R&D and prototypes
- MD plans (coronagraph)

LHC Coronagraph MD

Talk by J. Pucek

(Wednesday)

Figure: Courtesy of J. Pucek

600

800

400

200

600

Conclusions: Beam Halo

- Halo with missing HEL remains critical : work in progress
 - Less halo measured in Run 3
 - Detailed review & new measurements performed
 - Estimate of criticality & possible performance impact ongoing

HL-LHC Collimation Status

Quench Risk

IR7 DS Quench Risk

- Non-availability of IR7 DS collimators
- Issue with Pb ions with standard collimation (2015 Pb Quench Test)
- Crystal collimation installed as alternative mitigation strategy
- For protons likely no issue → nevertheless alternative mitigation studied (e.g. IR7 optics)
- Follow-up quench test (B1) planned 2024

2022 IR7 quench test (B2): 700kW, relaxed collimator settings

Updated IR7 Optics

Talk by B. Lindstrom (Tuesday)

- New optics developed in WP5 to increase β-functions at collimators
 - Improves impedance for given betatron cut
 - Improved collimation cleaning
- Increased single-pass dispersion TCP-TCSG: improved collimation cleaning
- Tested operationally in Mds: cleaning improvement up to ~67%!

Conclusions: IR7 Quench Risk

Protons

- Seems under control with existing HW
- Additional margin thanks to new IR7 optics
- 2024 Quench Test expected to further reduce remaining uncertainties

Heavy-Ions

- Quench risk with standard collimators
- Relies on crystal collimation

Heavy-Ion Operation

2023 Pb-Pb Run

- Slip-stacked 50ns beams used
 → Pb HiLumi era has started!
- Crystal setup and characterization very efficient (after replacement of one device during 2023)
- Excellent cleaning performance demonstrated!
- IR2 TCLD collimators / BFPP Bump
 → 6× higher ALICE luminosity
- Good system performance. But some issues
 encountered

ALICE ITS before mitigation Busy violation per chip - run 543921 - duration 28min

Strong background signal in ALICE

Severely affected data taking

Hypothesis: Electromagnetic Dissociation in IR7 crystal

- Strong background reduction with dispersion bump
- Residual background from unknown origin remained but data taking became possible
- Example for improving understanding of potential issues in HL-LHC

ALICE ITS before mitigation

2023 Pb run: crystal collimation

Overall excellent cleaning performance

µrad precision! Bent crystal ↓ Deflected halo ↓ Beam → →

- But: optimal crystal orientation drifted → reduced cleaning performance with time
- Possibly temperature, no solid conclusions
- Limited mitigation methods (automatic realignment, open collimator settings)
- 2024 objective: ensure compatibility with future lon runs

Conclusions

- Baseline collimation system upgrades well on track & partially completed
 - Low-impedance upgrade partially completed: good performance!
 - TCLDs (IR2) installed and operated without issue
 - Crystal collimation operational with some issues \rightarrow review required
 - IR1/IR5 hardware on track for installation in LS3
- Absence of 11T dipoles likely not critical: excellent system performance & revised IR7 optics
- Halo with missing HEL remains critical : work in progress
 - Less halo measured in Run 3
 - Detailed review & new measurements performed
 - Estimate of criticality & possible performance impact ongoing

