

WP12 update with a focus on beam screen production edms 3171248

V. Baglin for the HL-LHC WP12

https://indico.cern.ch/event/1421594/overview

-LHC Collaboration Meeting, Genoa, Italy, 7-10 October 2024

OUTLINE

- 1. Shielded & non-shielded beam screen
- 2. Vacuum layout
- 3. Summary

1. Shielded & non-shielded beam screens

Design of shielded beam screen

Objective

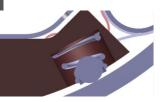
- Provide vacuum stability, control gas density
- Protect the Triplet cold mass against particle collision debris

Thermal links:

In copperConnected to the absorbers and the cooling tubes or beam screen tube

Tungsten alloy blocks:

- Chemical composition: 95% W, ~3.5% Ni, ~ 1.5% Cu
- Mechanically connected to the beam screen tube: positioned with pins and titanium elastic rings
- Heat load: 15-25 W/m
- 40 cm long


Beam screen tube (BS) at 60-75 K:

- Perforated tube (~2%) in High Mn High N stainless steel (1600 l/s/m (H_2 at 300K))
- Internal copper layer (75 μm) for impedance
- a-C coating for e- cloud mitigation

Cooling tubes:

- Outer Diameter: 10 mm
- Laser welded on the beam screen tube

Elastic supporting system: Low heat leak to the cold bore tube at 1.9K Ceramic ball with titanium spring

Cold bore (CB)

4 mm thick tube in 316LN

Pumping slot

shield

at 1.9 K:

Cold bores– Procurement completed

- Contract completed last July (first delivery in June 2019)
- Manufactured from billets (Ø 160mm) in EN 1.4429 grade stainless steel.
 - ID 136.7, H8, 4 mm thick, tolerances 0 +0.063
 - Iength: 8.7; 7.5; 10.55; 10.85 for resp. D1, CP, Q2 and Q1,Q3
- Reception at CERN:
 - UHV cleaning, metrology (EN-MME), leak testing, OD control, endoscopy
- 41 cold bores delivered to WP3 (out of 44 cold bores)

EN 1.4429 billets

Honing of cold bores

Metrology 3D scanning (EN-MME)

Shielded beam screen – Procurement

- All building parts are at CERN
- Today, enough material ready to produce 11 shielded BS

Tungsten alloy blocks:

- 3'000
- 100 % received
- 64 % cleaned
- 56 % vacuum acceptance tested.

P506 pins:

- 7'200
- All Q1 and Q2 type at CERN and cleaned

P506 cooling tubes:

At CERN

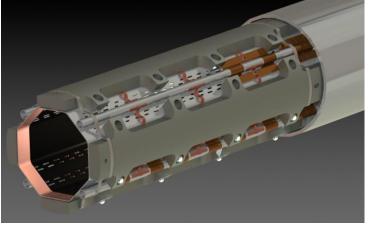
CERN

· Leak/pressure tests and cleaning completed for shielded and D2 beam screens

- Thermal links: • 9'900
- EN-MME

Ti elastic rings:

• 100 % received (Q1 &


• 1'600

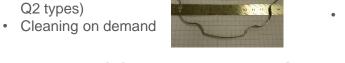
- Brazing thermal links/absorbers:
- EN-MME
- 37% completed

Cold bores:

44/44 delivered

Pumping slot shields

- 25'500
- 100% received



Ti springs:

- 12'000
- 100 % received (Q1 & Q2 types)
- · cleaning on demand

Ceramic balls:

- 12'500
- At CERN, cleaning on demand

Beam screen production overview

• All BS tubes ready

Pre-assembly phase ongoing

Туре	BS tube quantity	Punching	Forming	Tack welding	Long. Welding	Butt welding	BS tube ready	contact ring & cooling tube welding	Pins welding, cleaning, RT leak test	Tungsten assembly	Cold testing	aC coating
Q2D1	24+8	Finished	Finished	Finished	Finished	Finished	32	11	5	1	0	0
Q1	5+2	Finished	Finished	Finished	Finished	Finished	7	2	0			
D2	10+2	Finished	Finished	Finished	Finished	Finished	12	2 Ongoing	0	-		

All (39+12) BS tubes butt welded and ready for assembly

Cooling tube welding

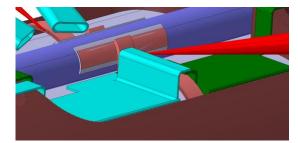
→ Beam screen production aligned with magnets deliveries

Tungsten assembly

24 beam screens for series: one beam screen assembled per month from Q3-24 till Q3-2026
Then 5 spares assembly Q1-Q2-2027

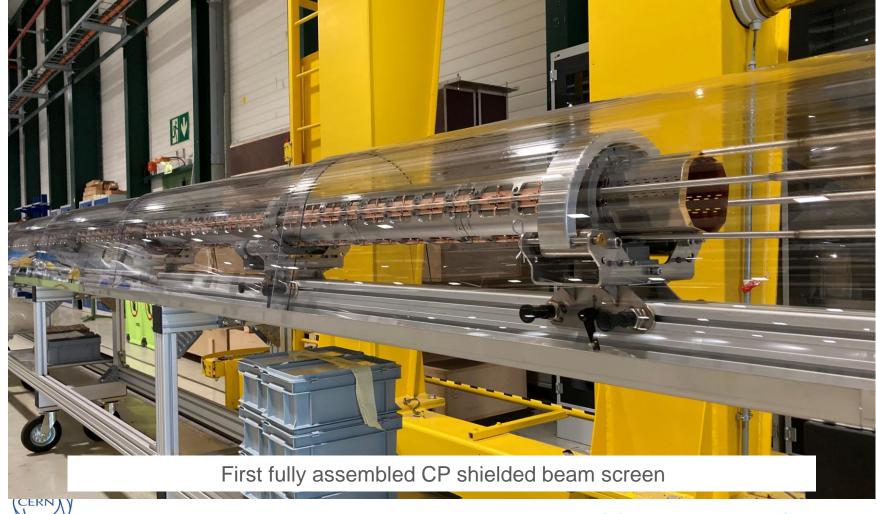
Tungsten assembly

Thermal links laser welding preparation



Welding robot

Soot after welding

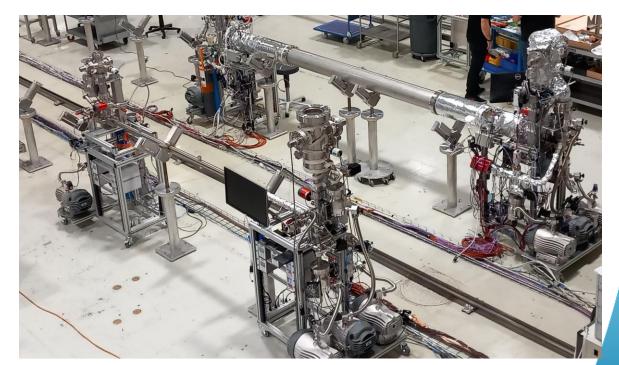


Temporary shielding to intercept the soot

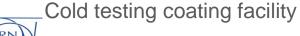
First fully assembled CP beam screen Ready for cold testing

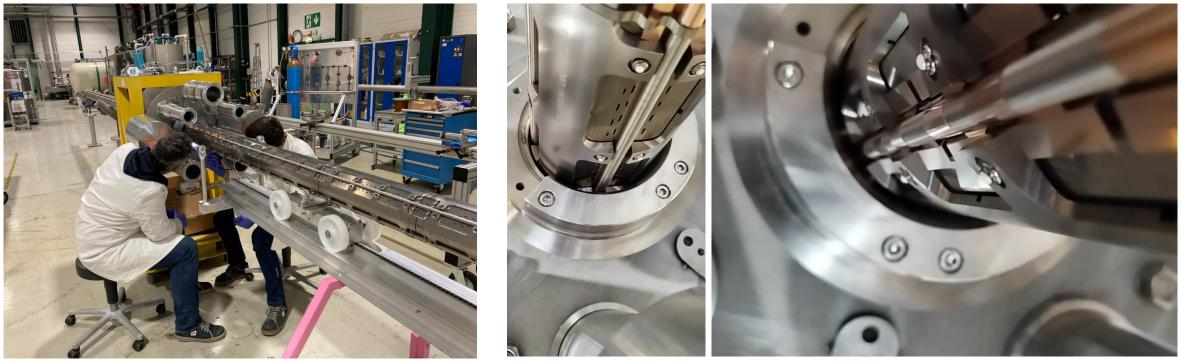
Q2 beam screen under assembly

→ scheduled to be ready by end 2024



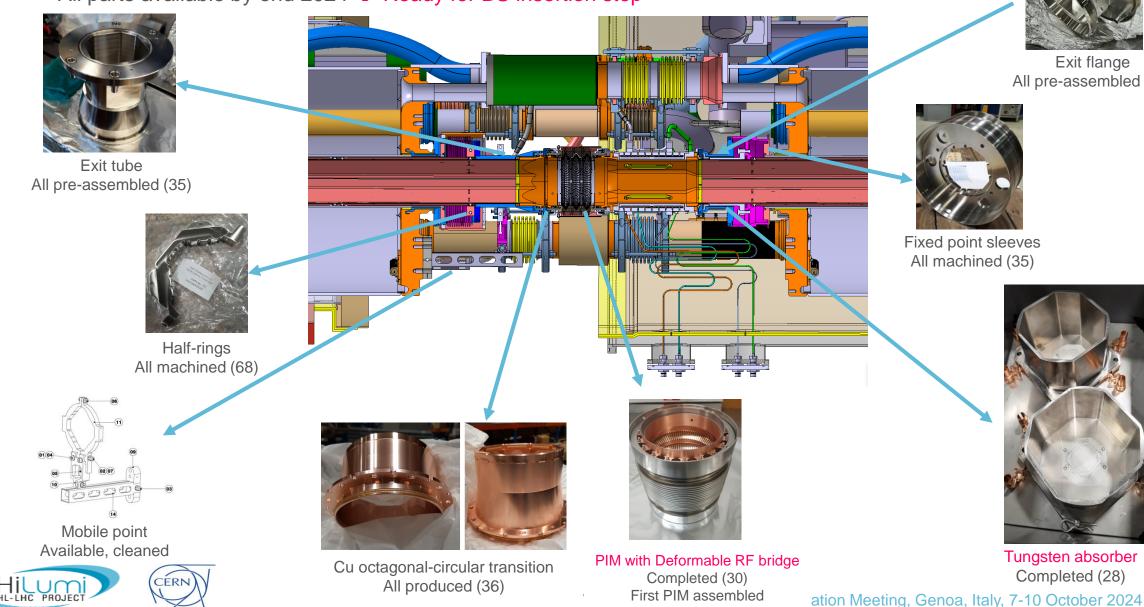
Cold test & aC coating


- Cold testing and aC coating facilities are ready:
 - First cold testing at liquid nitrogen temperature this month
 - First aC coating of CP beam screen by end 2024
 - → then aC coating Q2 beam screen, Jan 2025 → February 2025: ready for insertion !
 - → aC coatings from Q4-2024 until Q1-2027, then spares


aC coating facility

Beam screen insertion into magnet

- Horizontal insertion of CP beam screen ~ 7 m long, 150 kg into the ID150 mm magnet bore
 - → Successful tests → Ready for beam screen insertion into HL-LHC magnets!


Insertion bench

Beam screen insertion tests

Magnets interconnections

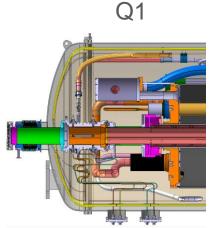
- 20 interconnections
- All parts available by end 2024 → Ready for BS insertion step

Exit flange All pre-assembled (35)

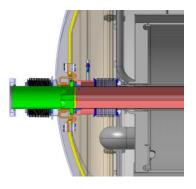
Fixed point sleeves All machined (35)

Tungsten absorber Completed (28)

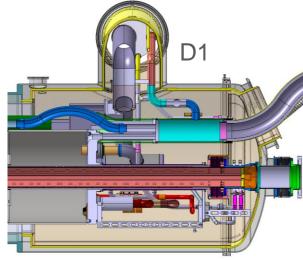
Q1, D1, & D2 cold to warm transitions


All CWT transitions assembled: Cu plating and aC coating ongoing
 First Q1, D1, D2 installation by Q3-2025

7 assembled Tooling for Cu plating in progress

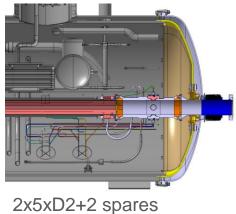


12 assembled Tooling for Cu plating in progress



5xQ1+2 spares

D2 IP side



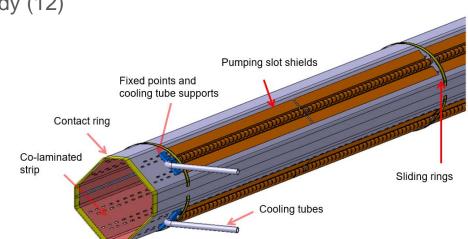
2x5xD2+2 spares

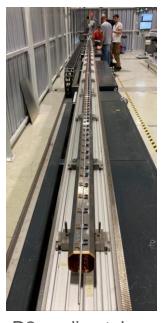
5xD1+2 spares

D2 NIP side

A cocombiod

12 assembled Tooling for Cu plating in progress


7 Cu plated 7 ready for aC coating



Non shielded beam screens

D2

- All components delivered; all BS tubes ready (12)
- Contact ring welding in progress (2/12)
- Cooling tube welding in progress (2/12)
- Sliding ring welding under qualification
- → First D2 BS (x2) assembled by end 2024
- ➔ aC coating by Q1 2025
- ➔ Completion expected Q1 2026

D2 cooling tubes tooling

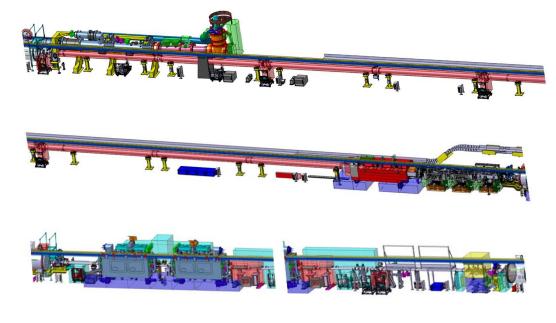
- Q4, Q5, Q10
 - All components available
 - Q4 3D model to be confirmed, drawings by Q1 2026
 - Q5 and Q10 are LHC drawings
 - → BS finishing starting in Q3 2025, completion by Q4 2026
- Crab cryomodules beams screens
 All RFD and DQW BS ready
 - (aC coated and equipped with pumping slot shields)

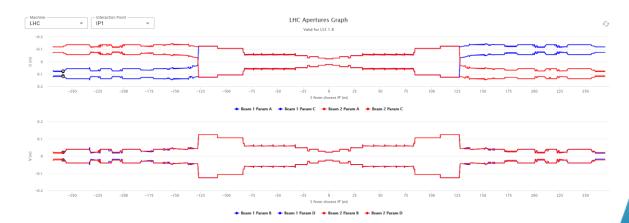
HL-LHC News, 24/9/2024

RFD beam screen

DQW beam screen

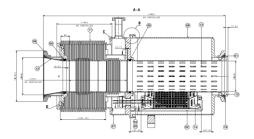
2. Vacuum layout

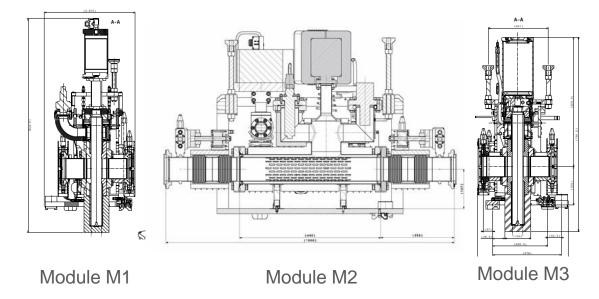

Vacuum layout status


Integration studies and Layout Data Base for optic v.1.8 released

D2 – TAXS region of LSS1L

- Drawings & mock-ups 100 % completed:
 - Vacuum Modules
 - Vacuum Chambers
 - Supports




VAX system & Forward chambers

VAX modules: design completed; production started, delivery end 2025

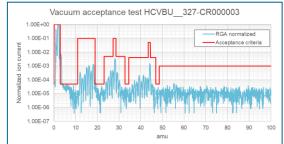
See WP8/WP12 parallel sessions on Tuesday PM and Thursday AM

Module Q1-TASX

Forward chambers: design completed, production in preparation, delivery by 2027

284 Vacuum Modules required (DRF, LRM RF, DN63 to DN250)

Ongoing manufacturing (for optic V1.6) by CERN EN-MME to be completed by end 2024



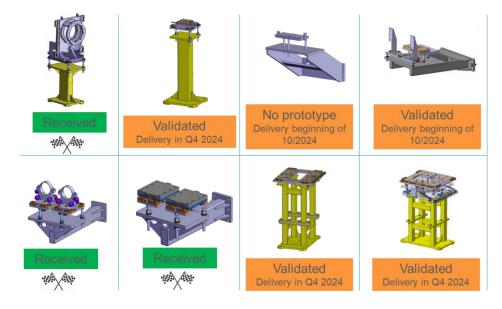
Then aC, NEG coatings, assembly, vacuum validation

➔ Completion expected by end 2025

Vacuum chambers procurement

- NEG (1 µm TiZrV) or a-C coated (~ 100 nm)
- Ongoing production of 125 vacuum chambers by CERN EN-MME (new chambers, cut chambers, special chambers and transitions)

• Other vacuum chamber to be re-used, modified or cut from existing stock


Q4-2025

➔ Completion expected by early 2026

Vacuum supports procurement

- Production by CERN EN-MME
- Ongoing delivery
 - 10 types of supports
 - 116 supports

- Specific FRAS supports
 - D2-sector valves prototype validated
 - D2 crab cryomodule prototype under production

D2 – Crab cryomodules

Completion expected by mid-2025

D2 – sector valves

Bake-out procurement

- 50 % of the required material is received:
 - power, heating jackets bands and collars, thermocouples, insulation, racks, distributions

Remaining 50 % was recently ordered

➔ Completion expected by mid 2025

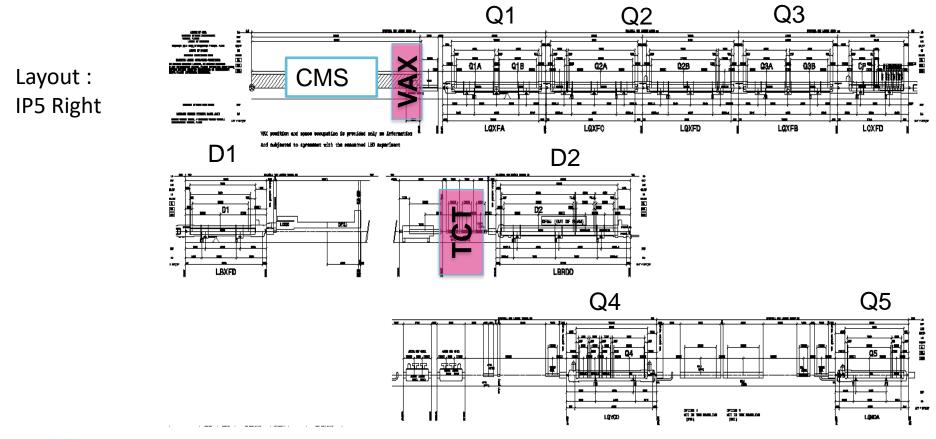
4. Summary

22

Summary

- The construction of the Vacuum System for HL-LHC is ongoing !
- Beam screens
 - All building parts for beam screens are at CERN
 - All beam screen tubes (x39) are produced.
 - Beam screen pre-assembly phase is ongoing for all types of beam screens
 - The first shielded beam screen for CP is fully assembled
 - Next fully assembled shielded beam screens for Q2 are following, ready for insertion by February 2025
 - During 2025, expected beam screens ready for insertion are:
 - 2x Q1, 4x Q2, 1x Q3, 2x CP, 1x D1 and 10x D2
- Vacuum Layout
 - Optic V1.8 is released
 - Ongoing production for VAX modules, vacuum chambers, vacuum modules & supports
 - → Full production expected to be completed by Q1-2026
 - Production preparation of forward chambers for ATLAS and CMS (delivery by 2027)

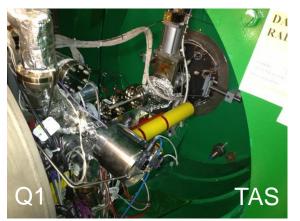
Thank you for your attention !!!



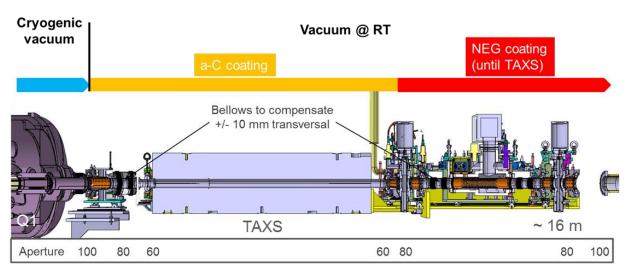
Reserve slides

Vacuum layout overview

- Vacuum sectorisation at cryogenic magnets
- RT vacuum sectors are NEG coated and bake-able
- Re-use LHC components, upgrade when necessary
- Novelty: Full Remote Alignment system up to Q5 included (within ± 2.5 mm)


26

Vacuum Assembly for eXperiments (VAX)


- Objective
 - Avoid human intervention around TAXS in machine and cavern areas
 - Three modules embarking instrumentation and remote connection/disconnection of electrical and pneumatic connectors, and

vacuum flanges

Today: a <u>confined space</u> in LHC

In the Future: **Remote handling** for HL-LHC TAXS at RT a-C coated

