

Horizontal Test Results of LQXFA/B02 and Plans for testing LQXFA/B03

Guram Chlachidze Fermilab

> 14th HL-LHC Collaboration Meeting Genoa, Italy 7-10 October 2024

LQXFA/B02

MQXFA05 and MQXFA06 magnets of LQXFA/B02 have been trained at BNL

LHC

14th HL-LHC Collaboration Meeting, Oct. 7-10, 2024

LQXFA/B02 at Fermilab's horizontal test stand

Initial Electrical Checkouts

- All v-taps, temperature sensors and protection heaters functional
- Fast pressure transducers installed at both ends of the cryoassembly to measure pressure wave after the quench/trip
 - Sensors with wiring will be removed after the test, before cryoassembly is shipped to CERN
- Successfully passed room temperature insulation (Hipot) tests
 - Lead-to-ground at 2.5 kV, Top plate w/o magnets
 - Coil-to-ground (heaters grounded) at 368 V
 - Quench heater-to-coil (coil grounded) at 460 V
- Cold insulation (Hipot) tests performed at 1.9 K
 - Coil-to-ground (heaters grounded) at 1840 V (1.9 K)
 - Quench heater-to-coil (coil grounded) at 2300 V (1.9 K)

LQXFA/B02 controlled cooldown

- 14 days of cooldown from Jul 9 to Jul 23 (compare to 19 days in LQXFA/B01)
 - Two days of downtime due to cybersecurity issues
 - GHe mass flow rate varied from 9 g/s to 18 g/s

Fermilab

LHC

LQXFA/B02 Controlled cooldown (2)

 Better temperature control with temperature sensors installed on both ends of each magnet in LQXFA/B02

LQXFA/B02 Quench Performance

- Only one quench in two test cycles
 - Quench at 16524 A, see details on the next slide
- Two power supply related trips during the holding current test at the nominal current of 16230 A

Quench in TC1

- Only one spontaneous quench in MQXFA06 (B), coil 122 (pole 1)
 - Quench current 16524 A
 - Quench Integral 27.2 MIITs

Trips at the nominal current

- Two trips at I_{nom} with very similar pattern
 - No resistive signals in coils or leads, only inductive signals in all coils
 - Quench detection has been triggered due to difference between the inductive signals in magnets B and A

Trips at the nominal current (2)

- Difference in the inductive signals could be related with the protection diode system connected to the magnet A
- We are not familiar with this type of the power supply failure
 - Investigation of these events still in progress, no apparent cause of the problem was found yet

-LHC

Splice measurements

- All splices, made at Fermilab, have been measured
 - Includes two splices required for connected magnets to the test facility

Splice measurements (2)

- Measurements were performed at 1.9 K for currents up to 7 kA
- All splice resistances are less than 1 nOhm

Thermal Cycle

Controlled warmup and cooldown from Aug. 21 to Sep. 10

 Total of 20 days. Further improvement will require modification or upgrade of the heat-exchanger in the helium return line

Pressure wave measurements

- Fast "cold" pressure transducers by WIKA Sensor Technology were installed at both ends of the LQXFA/B02 cryo-assembly, close to the cold-mass end plates
 - Rated for pressures up to 25 bar, frequency response above1000 Hz
 - Sensors calibrated during the cold mass pressure test up to 20 bar

Pressure wave measurements (2)

- Manual trip in Magnet A at 6 kA (single magnet configuration)
 - Data analysis still in progress
 - PT1 (B) signal delay with respect to PT2 (A) is about 20 ms
 - Pressure PT2 reached about 0.08 bar in 5 ms
 - At the nominal current, if pressure continues linear increase all 20 ms, it may reach 0.08 x 4 = 0.32 bar
 - We plan high current tests with one of the future cryo-assemblies

Cryogenic System improvements

- First cryo-assembly test demonstrated that cryogenic system improvements were necessary to meet the Horizontal CA test requirements
- Following upgrades have been completed in preparation for LQXFA/B02 test
 - Various monitoring instrumentation have been added for improvement of the controlled cooldown and warmup of the cryo-assembly
 - Quench recovery automation was improved
 - Fully automated 4.5 K overnight operation has been implemented
 - Helium line heaters are installed to expedite the cooldown and warmup processes
 - Most of the failed instrumentation was replaced or repaired (pressure transmitters, flowmeters and rotameters, leaking valves)
 - <u>Current lead joint improvement has been implemented</u>

Current lead joint improvement

- One of the current lead joints at Stand 4 exhibited increased resistance
 - To avoid overheating of the superconducting bus, the helium liquid level was elevated accordingly
- New copper fixture was designed, fabricated and tested to improve the cooling conditions of the lead joint

Current lead joint improvement (2)

- The lead joint with increased resistance was modified with the newly developed fixture
 - Heat load from this specific lead joint was reduced by factor of 10
 - Other two lead joints will be modified later

Lead joint with increased resistance

Fermilab

Modified lead joint at Stand 4

LQXFA/B02 Test Summary & Plans for LQXFA/B03 Test

- LQXFA/B02 cryo-assembly successfully tested at Fermilab's horizontal test stand
- LQXFA/B02 test goals are achieved
 - Only one spontaneous quench in two test cycles
 - Nominal and acceptance currents are reached at 1.9 K
 - Nominal current was reached at 4 K
 - Ramping down at 150 A/s was validated
 - Nominal current was successfully held for 5 hours
- Horizontal Test Stand is ready for LQXFA/B03 test
 - Cryogenic plant maintenance is scheduled for November
 - Cold test of LQXFA/B03 is expected to start in December

