

Test results of MQXF series magnets at CERN

<u>F. Mangiarotti</u>, G. Willering, G. Ninet, G. Pichon, S. Juberg, R. Bouvier, G. Deferne, P. Rogacki, L. Fiscarelli, S. Izquierdo Bermudez, S. Russenschuck, et al.

2024.10.08

MQXF test history at CERN

		20	16	201	2018		2019		2020					2022					2023					2024							
Magnet:	Cold mass:										Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	2 Q3	3 Q4	Q	1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
MQXFS3			ab		(c c																									
MQXFS5				a	а																										
MQXFS4							a b		С	С						С	ł	de													
MQXFS6								а		b			С	d																	
MQXFS7															a		b)	С	d	е	f	g	h	h	h	i		j	j	
MQXFS8																							a				a	a			
MQXFBP1																															
MQXFBP2	LMQXFB01																														
MQXFBP3	LMQXFB02																														
MQXFB02																															
MQXFMT4																															
MQXFB03	LMQXFB05																														
MQXFB04	LMQXFB04																														
MQXFB05	LMQXFB06																														
MQXFA03-04	LMQXFA01																														
																															•
HL-LHC meetings					\uparrow		\uparrow			\uparrow				\uparrow				\uparrow				\uparrow					1				\uparrow
il umi	CERN				7 th	1 -	<u>8</u> 1	th		9 th	ר -		1	0 th			1	1 th			1	2 th				1	3 th			1	4 th

IL-LHC PROJECT

MQXF test history at CERN

		2016		2017	2018		2019		2020					20)21			20)22			2	023		2024			
Magnet:	Cold mass:								Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q	2 Q3	Q4	Q1	Q2	Q3	Q4
MQXFS3			ab)	с с																							
MQXFS5				a a																								
MQXFS4					а	b	C	с						C	1	de												
MQXFS6							a	b			С	d	-												Ne.	XI là	aik	
MQXFS7													a		b)	С	d	e	f	g ł	n	h	i		j	j	
MQXFS8																					а			а	а			
MQXFBP1																											ノ	
MQXFBP2	LMQXFB01																										2:	
MQXFBP3	LMQXFB02																											Š
MQXFB02																												¥
MQXFMT4																												
MQXFB03	LMQXFB05																											
MQXFB04	LMQXFB04																											
MQXFB05	LMQXFB06																											
MQXFA03-04	LMQXFA01																											
HL-LHC meetings					`	\uparrow		\uparrow				\uparrow				\uparrow			/	\uparrow				1				\uparrow
lilus	CERN			7	th	8 th	-	9 th	h		1	0 th			1	1 th			12	2 th			_	13 th			1	4 th

L-LHC PROJECT

Overview of these five cryomagnets

- Q2b LMQXFB01 (with MQXFBP2)
 - Quench performance: as during standalone test
 - NC: short to ground in busbar (repaired)
- Q2a LMQXFB02 (with MQXFBP3)
 - Quench performance: as during standalone test
 - NC: short QH to coil during 100 K HV test
- Q2b LMQXFB04 and Q2a B06 (with MQXFB04 and B05 respectively)
 - Virgin magnets, good quench performance
 - No NC
- Q3 LMQXFA01 (with MQXFA03 and MQXFA04)
 - Quench performance: quenches during long flat-top
 - NC: leak from cold mass circuit (incl. test station) towards vacuum

LINOXFB01

Q2b with MQXFBP2 and MCBXFBP1e

Test results of MQXF series magnets at CERN – F. Mangiarotti - 14th HL-LHC collaboration meeting - 2024

MQXFBP2 quench plot

The magnet behavior is the same as it was during the standalone test

Quench level at 1.9 K, 20 A/s: 16.0 kA

Quench level at 4.5 K, 20 A/s: 14.4 kA

MQXFBP2 quench localization with helical quench antenna

See: https://indico.cern.ch/event/1445929/

MQXFBP2 quench localization with helical quench antenna

MQXFBP2 VI measurements at 4.5 K

Files: HCLMQXFB001-CR000001 2 20240620124655 4.5K MQXFBP02 3 20211026082240 4.5K

Measurements rather noisy but the transition is visible in the bottom row (P3-P1, P2-P1, P4-P1)

This matches what we've seen in standalone configuration

MCBXFBP1e quench plot – nominal ramp rate

CERN

- MCBXFBP1e performs very similar to MCBXFBP1d during its vertical test
- Two nominal current combinations reached in the first quadrant. Three quenches in the fourth quadrant.

NC: Ground fault in the MQXFB circuit

- A ground fault in the MQXFB circuit was found after a few days of testing and quenches.
- The magnet was warmed up, endoscopy revealed a weak point in the busbars in front of the magnet
- The cold bore was removed, the busbar insulation was improved
- During the second cool down no further defect was found
- NCR: <u>https://edms.cern.ch/document/3012323</u>

LMQXFB02

Q2a with MQXFBP3 and MCBXFBP2d

Test results of MQXF series magnets at CERN – F. Mangiarotti - 14th HL-LHC collaboration meeting - 2024

MQXFBP3 quench plot

CERN

MQXFBP3 VI measurements at 4.5 K

File: HCLMQXFB001-CR000002_J20240304090628_Splice-VI

Measurements rather flat, no indication of superconducting to normal transition

Same situation as we observed in the standalone test

MCBXFBP2d quench plot

CERN

- MCBXFBP2d only had one quench, almost at ultimate current
- No quenches when changing polarity
- Overall similar behavior as during the vertical test

NC: QH to coil fault during HV test at 100 K

- HV test at 100 K results at 850 V:
 - MQXFB+QH vs Ground: OK
 - MQXFB vs Ground+QH: OK
 - QH vs MQXFB+Ground: breakdown
- Further investigation localized the fault between QH YT122 B terminal and coil P3, the last breakdown at 450 V.
- QH YT122 was disconnected at the level of the IFS to avoid using it during operation.
- Proposal to use as is in the IT String, and test procedure changed to reduce risk of overvoltage
- NCR: <u>https://edms.cern.ch/document/3069797</u>

Summary LMQXFB01 (Q2b), LMQXFB02 (Q2a)

- Cold and power tests finished
- Both cryomagnets considered ready for the IT String (from testing point of view), despite some non-conformities
- Q2a installed in the IT String
- Q2b under preparation for the IT String

LMQXFB04

Q2b with MQXFB04 and MCBXFB02b

Test results of MQXF series magnets at CERN – F. Mangiarotti - 14th HL-LHC collaboration meeting - 2024

MQXFB04 quench plot

Fast training to the target current at 1.9 K

Very good training memory: only one quench above nominal current after thermal cycle.

At 4.5 K: some quenches between nominal and target current, we attribute them to lack of training margin

MQXFB04 quench plot (all ramp rates)

Very good performance at higher ramp rates as well

MQXFB04 VI measurements at 4.5 K

File: HCLMQXFB001-CR000004_J20240502132416_Splice-VI

Measurements rather flat, no indication of superconducting to normal transition

MCBXFB02b quench plot

CERN

- No quenches in MCBXFB02b
- No quenches when changing polarity
- Same behavior as during the vertical test

LMQXFB04 other results

- Splice measurements: within specs
- HV test: all passed OK
- No critical non-conformities found

Q2a with MQXFB05 and MCBXFB04

Test results of MQXF series magnets at CERN – F. Mangiarotti - 14th HL-LHC collaboration meeting - 2024

MQXFB05 quench plot (all ramp rates)

Note: tests still ongoing

After reaching target current, no further quenches at 1.9 K

The quench at 4.5 K was at target current (lack of training margin)

First time in a Q2 that we power 3 x 20 hours

MQXFB05 VI measurements at 4.5 K

File: HCLMQXFB001-CR000006 J20240924171633 Splice-VI

Measurements rather flat, no indication of superconducting to normal transition

Point at 16.53 kA affected by the quench

MCBXFB04 quench plot

- No quenches in MCBXFB04 ٠
- No quenches when changing polarity
- Same behavior as during the vertical test
- Long plateau not done yet to ٠ be done during the second cool down.

LMQXFB06 other results (so far)

- Splice measurements: within specs
- HV test: all passed OK (so far)
- No critical non-conformities found (so far)

Summary LMQXFB04 (Q2b), LMQXFB06 (Q2a)

LMQXFB04:

- Cold and power tests finished
- No non-conformities found
- Ready for the LHC (from testing point of view)

LMQXFB06:

- Tests ongoing
- No showstopper identified so far

LIMOXFA01

Q3 with MQXFA03 and MQXFA04

Test results of MQXF series magnets at CERN – F. Mangiarotti - 14th HL-LHC collaboration meeting - 2024

LMQXFA01 quench plot

CERN

The two magnets have good training memory after transport to CERN. Unexpected flat-top quenches happened during magnetic measurements (event 42), prompted a second cool down and extended testing.

LMQXFA01 flat-top quenches investigation

Characteristics quenches - voltage build up

CERN

4 quenches with normal voltage buildup for quenches, with a slope of 20-40 V/s.

All Q3a-P3 flattop quenches at 1.9 K have a very fast voltage buildup already in the first ms of > 60 V/s.

The Q3b-P2 quenches at 4.5 K at 100 A/s show an even faster voltage buildup.

In none of the quenches any precursor is visible, also not in the Quench Antenna data.

The slope will depend on two parts:

- Longitudinal propagation velocity & turn to turn propagation, see next slides.

Most flat-top quenches characterized by very fast dV/dt at the start of the quench

These quenches were in MQXFA04, coil P3, near NCS

A detailed investigation is reported in: <u>https://indico.cern.ch/e</u> <u>vent/1447894/</u>

Q3 - LMQXFA01 - tests at CERN - powering performance

-

LMQXFA01 VI measurements at 4.5 K

File: HCLMQXFA001-FL000001_2_L20240910153545_Splice-VI_VI_4.5k

File: HCLMQXFA001-FL000001_2_L20240910153545_Splice-VI_VI_4.5k

Measurements rather flat, no indication of superconducting to normal transition

NC: high leak rate to vacuum

- Leak rate between cold mass circuit (cold mass + test station) and vacuum at room temperature is 2.5 10⁻⁵ mbar L/s (normal values: 10⁻⁷ – 10⁻⁶ mbar L/s)
- Before the first cool down, investigation with a He sniffer at the cryomagnet connections could not identify the leak.
- After the second cool down the leak was roughly localized close to the cryomagnet – test station connection area (and not the MRB side)
- Leak tests will be repeated with the CP cold mass, to help identify if the leak is at the cryomagnet or test station side.
- NCR: <u>https://edms.cern.ch/document/3124113</u>

Summary LMQXFA01 (Q3)

- Cold and power tests finished
- Acceptance tests passed OK
- Two important nonconformities found:
 - Quenches during long flat-top operation
 - Higher than expected leak rate
- Ready for the IT String (from testing point of view)

Some words about documentation

- We have one test plan in EDMS per cryomagnet type, detailing tests from:
 - TE-MSC-TM: mechanical preparation, electric and magnetic measurements
 - TE-CRG: leak tests and cool down/warm up preparation
 - BE-GM: geometric measurements
 - TE-MPE: reference ELQA tests
- The test report includes a summary of all these tests either explicitly or by reference
 - As example see the LMQXFB02 report (EDMS 3076641)
- In addition, we agreed on an MTF structure to report the activities and key information (to be implemented in October)

Conclusions

- Series testing ramping up: five (!) Q2/Q3 cryomagnets tested this year, probably one more
- No NC found (so far) in the first two cryomagnets for HL-LHC
- New tools (e.g. helical QA) and procedures (e.g. powering overnight) implemented for improved test analysis and efficiency

References

Test plan:

- Q2: <u>https://edms.cern.ch/document/2873724</u>
- Q3: <u>https://edms.cern.ch/document/2959525</u>
- Q3 addendum: <u>https://edms.cern.ch/document/3153284</u>
- Test reports:
 - LMQXFB01: <u>https://edms.cern.ch/document/3023791</u> (in work)
 - LMQXFB02: <u>https://edms.cern.ch/document/3076641</u>
 - LMQXFB04: <u>https://edms.cern.ch/document/3076642</u> (in work)
 - LMQXFB06: <u>https://edms.cern.ch/document/3170453</u> (placeholder)
 - LMQXFA01 for acceptance: <u>https://edms.cern.ch/document/3094617</u>
 - LMQXFA01 full tests: <u>https://edms.cern.ch/document/3094622</u> (in work)
- Photos:
 - https://cds.cern.ch/record/2879572?In=en
 - https://cds.cern.ch/record/2895375?In=en
 - https://cds.cern.ch/record/2899920?In=en
 - https://cds.cern.ch/record/2911476?In=en

